实际问题7顺逆流
数学七年级上册必备知识点

数学七年级上册必备知识点其实数学和语文一样,需要记的东西都很多。
在记数学知识点的时候,还需要学会运用。
下面是小编给大家整理的一些数学七年级上册知识点的学习资料,希望对大家有所帮助。
初一上学期数学知识点归纳总结(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
初中数学(人教版)七年级上知识点最全总结

初中数学(人教版)七年级上知识点最全总结第一章:有理数一、知识框架二.知识概念1. 有理数:(1) 凡能写成形式的数,都是有理数 . 正整数、 0 、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 . 注意: 0 即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;(2) 有理数的分类 : ①②2 .数轴:数轴是规定了原点、正方向、单位长度的一条直线 .3 .相反数:(1) 只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0 ;(2) 相反数的和为 0 a+b= 0 a 、 b 互为相反数 .4. 绝对值:(1) 正数的绝对值是其本身, 0 的绝对值是 0 ,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5. 有理数比大小:( 1 )正数的绝对值越大,这个数越大;( 2 )正数永远比 0 大,负数永远比 0 小;( 3 )正数大于一切负数;( 4 )两个负数比大小,绝对值大的反而小;( 5 )数轴上的两个数,右边的数总比左边的数大;( 6 )大数 - 小数> 0 ,小数 - 大数< 0.6. 互为倒数:乘积为 1 的两个数互为倒数;注意: 0 没有倒数;若 a ≠0 ,那么的倒数是;若 ab= 1 a 、 b 互为倒数;若 ab= -1 a 、b 互为负倒数 .7. 有理数加法法则:( 1 )同号两数相加,取相同的符号,并把绝对值相加;( 2 )异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;( 3 )一个数与 0 相加,仍得这个数 .8 .有理数加法的运算律:( 1 )加法的交换律: a+b=b+a ;( 2 )加法的结合律:( a+b ) +c=a+ ( b+c ) .9 .有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+ ( -b ) .10 有理数乘法法则:( 1 )两数相乘,同号为正,异号为负,并把绝对值相乘;( 2 )任何数同零相乘都得零;( 3 )几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11 有理数乘法的运算律:( 1 )乘法的交换律: ab=ba ;( 2 )乘法的结合律:( ab ) c=a ( bc );( 3 )乘法的分配律: a ( b+c ) =ab+ac .12 .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13 .有理数乘方的法则:( 1 )正数的任何次幂都是正数;( 2 )负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时 : (-a) n =-a n 或 (a -b) n =-(b-a) n , 当 n 为正偶数时 : (-a) n =a n 或(a-b) n =(b-a) n .14 .乘方的定义:( 1 )求相同因式积的运算,叫做乘方;( 2 )乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15 .科学记数法:把一个大于 10 的数记成 a × 10 n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法 .16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 .17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字 .18. 混合运算法则:先乘方,后乘除,最后加减 .本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是探讨船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个根本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运输河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的间隔 ?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的间隔为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度一样,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的间隔相差多少千米?解析:在两船的船速一样的状况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的间隔差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
行程问题

一、基本知识点:1、基本公式:距离=速度×时间2、相遇追及问题:相遇距离=(大速度+小速度)×相遇时间追及距离=(大速度-小速度)×追及时间3、环形运动问题:环形周长=(大速度+小速度)×相向运动的两人两次相遇的时间间隔环形周长=(大速度-小速度)×同向运动的两人两次相遇的时间间隔4、流水行船问题:顺流路程=顺流速度×顺流时间=(船速+水速)×顺流时间逆流路程=逆流速度×逆流时间=(船速-水速)×逆流时间5、电梯运动问题:能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间能看到的电梯级数=(人速-电梯速度)×逆电梯运动方向运动所需时间6、钟面问题(此类问题很多可以转化为追及问题)(1)假设时钟一圈是12格,则时针每小时转1格,分针每小时转12格。
(2)钟面上每两格之间为30°,时针与分针成某个角度一般都有对称的两种情况。
(3)时针与分针一昼夜重合22次,垂直44次,成180°也是22次。
二、例题和解题思路1、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?解析:先画示意图:可以看到它们到第二次相遇时共走了3个AB全程。
当甲、乙两车共同走完一个AB全程时,乙车走了64千米,因此,我们可以理解为乙车一共走了3个64千米,再由上图可知:乙车一共走过的路程减去一个48千米后,正好等于一个AB全程。
①AB间的距离是 64×3-48=192-48=144(千米).②两次相遇点的距离为144—48-64=32(千米).2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?解析:甲的速度为乙的2倍,因此,乙走4小时的路,甲只要2小时就可以了,因此,甲走100千米所需的时间为(4—1+4÷2)=5小时.这样就可求出甲的速度.甲的速度为:100÷(4-1+4÷2)=10O÷5=20(千米/小时).乙的速度为:20÷2=10(千米/小时).3、在一条直的公路上,甲、乙两个地点相距600米,张明每小时行4公里,李强每小时行5公里.8点整,张李二人分别从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再经过3分钟,他们又调头相向而行,依次按照1,3,5,…(连续奇数)分钟数调头行走,那么张、李二人相遇时是8点几分?解析无论相向还是反向,张李二人每分钟都共走4000÷60+5000÷60=150(米).如果两人一直相向而行,那么从出发经过600÷150=4(分钟)两人相遇.画图可知:在16分钟(=1+3+5+7)之内两人不会相遇.在这16分钟之内,他们相向走了6分钟(=1+5),反向走了10分钟(=3+7),此时两人相距600+[150×(3+7-1-5)]=1200米,因此,再相向行走,经过1200÷150=8(分钟)就可以相遇.所以是600+150×(3+7-1-5)=1200(米)1200÷(4000÷60+5000÷60)=8(分钟)1+3+5+7+8=24(分钟)两人相遇时是8点24分.4、姐弟俩出游,弟弟先走一步,每分钟走40米,走80米后姐姐去追他。
五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时。
逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,解析:顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4。
小学奥数行程问题习题及详解系列之七

小学奥数行程问题习题及详解系列之七小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷2181.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….那么先到达终点的比后到达终点的快多少分钟?解: 乌龟到达终点所需时间为5.2÷3×60=104分钟. 兔子如果不休息,则需要时间5.2÷20×60=15.6分钟. 而兔子休息的规律是跑1、2、3、…分钟后,休息15分钟.因为15.6=1+2+3+4+5+0.6,所以兔子休息了5×15=75分钟,即兔子跑到终点所需时间为15.6+75=90.6分钟.显然,兔子先到达,先乌龟104-90.6=13.4分钟达到终点.182. A ,B 两地相距125千米,甲、乙二人骑自行车分别从A ,B 两地同时出发,相向而行.丙骑摩托车以每小时63千米的速度,与甲同时从A 出发,在甲、乙二人间来回穿梭(与乙相遇立即返回,与甲相遇也立即返回).若甲车速度为每小时9千米,且当丙第二次回到甲处时(甲、丙同时出发的那一次为丙第零次回到甲处),甲、乙二人相距45千米.问:当甲、乙二人相距20千米时,甲与丙相距多少千米?解:我们设乙的速度为9x ,即甲的x 倍.当乙、丙第一次相遇的时候,设甲走了“1”,则乙走了“x ”,丙走了“7”,所以有“7”+“x ”=125,于是“1”1257x=+,此时甲、丙相距“7”-“1”=“6”.这样丙第一次回到甲时,甲又向前行639+“6”×9=34“”,丙又行了“6”-32144=“”“”,乙又行了3344x x ⨯=“”“”所以,甲、乙此时相距2133312537(7)(7)1254444747x x x x x x--=-=⨯⨯-=⨯⨯++“”“”“”千米.有丙第二次回到甲处的时,125千米的路程相当于百3712547x x-⨯⨯+千米,即甲、乙相距2371254547x x ⎡-⎤⎛⎫⨯⨯= ⎪⎢⎥+⎝⎭⎣⎦,所以2716725x x -⎛⎫= ⎪+⎝⎭,7475x x -=+,解得79x =所以乙的速度为79979x =⨯=千米/小时.当第三次甲、丙相遇时,甲、乙相距373434545452747455x x-⨯⨯=⨯⨯=⨯=+千米.当第四次甲、丙相遇时,甲、乙相距3812755⨯=千米,而题中甲、乙相距20千米,此时应在甲、丙第三次和第四次相遇的某个时刻. 有81192055-=千米,而甲、乙的速度比为9:7,所以甲从甲、丙第四次相遇处倒退19917159780⨯=+千米即可.又因为丙的速度是甲的7倍,所以丙倒退的路程应为甲的7倍,于是甲、丙相距171171(71)17.18010⨯+==千米当甲、乙二人相距20千米时,甲与丙相距17.1千米.评注:甲从A 地往B 地出发,乙从B 地往C 出发,丙从A 地开始在甲乙之间来回往返跑动.当甲丙第1次相遇时所需的时间为t ,(甲、丙同时出发时,算第0次相遇) 则甲丙第2次相遇时还所需的时间为v v v v tv v v v --⨯⨯++乙丙甲丙乙丙甲丙则甲丙第3次相遇时还所需的时间为2v v v v tv v v v ⎛⎫--⨯⨯ ⎪++⎝⎭乙丙甲丙乙丙甲丙则甲丙第n次相遇时还所需的时间为 1n v v v v tv v v v -⎛⎫--⨯⨯ ⎪++⎝⎭乙丙甲丙乙丙甲丙由此可知,丙在相邻的2次相遇之间所走路程为等比数列.183. 一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行.已知小汽车的速度是大卡车速度的3倍,两车倒车的速度是各自速度的15,小汽车需倒车的路程是大卡车需倒车的路程的4倍.如果小汽车的速度是每小时50千米,那么要通过这段狭路最少用多少小时? 解:如果一辆车在倒车,另一辆的速度一定大于其倒军速度,即一车倒出狭路另一车也驶离狭路,倒车的车可立即通过. 小汽车倒车的路程为947.241⨯=+千米,大卡车倒车的路程为91 1.841⨯=+千米.小汽车倒车的路程为150105⨯=千米/小时,大卡车倒车的速度为111050353⨯⨯=千米/小时当小汽车倒车时,倒车需7.2÷10=O .72小时,而行驶过狭路需9÷50=0.18小时,共需0.72 +0.18=0.9小时; 当大卡车倒车时,倒车需101.80.543÷=小时,而行驶过狭路需5090.543÷=小时,共0.54+0.54=1.08/小时.显然当小轿车倒车时所需时间最少,需0.9小时.184. 在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回.为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车.求甲车所能开行的最远距离. 解:甲车尽可能行驶更远,则乙车离开甲车时,应保证甲车还有可行驶24天的汽油. 设此时乙车已行驶了x 天,有甲也行驶了x 天,乙返程也需要x 天,有x+x+x+24=48,所以x=8,即乙车行驶8天后返程.留下还可行驶8天的汽油,将剩下的24-8-8=8天的汽车给甲车. 所以加上开始的24天的汽油,甲车共得到24+8=32天的汽油.那么甲车单程最多可行驶32÷2=16天.即甲车所能开行的最远距离为16×200=3200千米.185. 有甲、乙、丙三辆汽车,各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙?解:根据已知条件得知,乙用40分钟所走的距离与丙用50分钟所走的距离相等;甲用100分钟所走的距离与丙用130分钟所走的距离相等.故丙用130分钟所走的距离,乙用了1045040130=⨯(分钟),即甲用100分钟走的距离,乙用104分钟走完.由于甲比乙晚出发20分钟,当甲追上乙时,设甲用了x 分钟,则乙用了(x +20)分钟.依题意得20104100+=x x ,解得x =500.186. 甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑2.8米,乙每秒钟跑2.2米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了多少次?解:两人一共跑的路程为(2.8+2.2)⨯30⨯60=9000(米),去掉二人第一次相遇时跑的100米,二人每跑200米,就相遇一次,共相遇的次数为(9000-100)÷200=44.5,取整得44次.加上第一次相遇,共44+1=45(次).187. 甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是 分钟.解:设乙骑自行车走一圈要x 分钟,环行公路长为S 米,则有S x S S =⎪⎭⎫⎝⎛+7045,解得x =126(分钟).188. 有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的 倍.解:设人行速度为每分钟1单位,则自行车速度为每分钟3单位,再设汽车速度为每分钟x 单位,依题意有(x -3)⨯10=(3+1)⨯10,故有x =7.189. 某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的 倍.解:如下图,A 是学校,C 是工厂,B 是相遇地点.ABC汽车从A 到C 往返需要1小时,从A 到B 往返要40分钟即32小时,这说明AC AB 32=,即也说明汽车从A 到B 要用40÷2=20(分钟).而劳模由C 到B 要用1小时20分,即80分钟.是汽车的4倍,又易知AB =2BC ,即汽车的路程是劳模的2倍,于是汽车的速度是劳模步行速度的4⨯2=8(倍).190. 游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有 分钟这两条船的前进方向相同?解:设1小时顺流时间为x 分钟,则逆流时间为(60-x )分钟,由于路程一定,行驶时间与速度成反比例,故x :(60-x )=5:7.解得x =25,60-x =35.当两条船同时从同一地方出发,一条顺流走25分钟后,开始返回(逆流行走),这时另一条还在逆流前进,这其间的35-20=10(分钟).两船同时向上游前进.191. 小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗?解: 小刚走3公里用的时间是4343=÷(小时);小华骑自行车的速度为()2043939=÷+-(公里/小时);小明到火车站所用时间为()2.14912209=÷-+÷(小时);小刚到火车站用的时间为()2.12031243=÷-+÷(小时);小明、小刚开车前到达火车站的时间为2-1.2=0.8(小时)=48(分).即他俩在开车前48分钟到达车站.192. 甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.解:本题要求每天从甲、乙两地同时相对开出一辆客车,每辆客车运行5天再休整2天,需7天后再往回开,这样为保证每天在线路上有两辆客车在相对开,至少应配备2⨯7=14(辆)客车.193. A 、B 两地相距150千米.两列火车同时从A 地开往B 地.快车每小时行60千米.慢车每小时行48千米.当快车到达B 地时,慢车离B 地还有 千米.解:快车到达B 地所需时间是:150÷60=2.5(小时),慢车离B 地的距离是150-48⨯2.5=30(千米).194. 某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时 公里.解:设甲乙两城相距S 公里,平均速度为每小时V 公里,依题意有VS S S 26030=+,解得: V =40.195. 某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为 公里时才能和平常一样按时到达学校. 解:50607605540=⎪⎭⎫⎝⎛-÷(公里/小时).196. 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快 米. 解:汽车行驶余下路程需要的时间是100055315053150750=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-⨯⨯(米);故每分钟必须比原来快1000-750=250(米).197. 一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?解:两只蚂蚁分别从直径AB 的两端同时出发,相向而行,若不调头的话,两只蚂蚁的行程为半个圆的周长,即1.26÷2=0.63(米)=63(厘米).而两只蚂蚁的速度和为每秒5.5+3.5=9(厘米).它们相遇的时间为63÷9=7(秒).即两只蚂蚁需要向前爬的时间是7秒钟.但蚂蚁是按向前,再调头向后,再调头向前……的方式前进.每只蚂蚁向前爬1秒,然后调头反向爬3秒,又调头向前爬5秒,这时相当于又向前爬行了2秒.同理再AB向后爬7秒,再前爬9秒,再向后爬11秒,再向前爬13秒,就相当于一共向前爬了1+2+2+2=7秒,正好相遇,这时它们用了1+3+5+7+11+13=49(秒).198. 有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)解: 机船去甲岛,单程时间为600÷300=2(分).木船去甲岛,单程时间为600÷150=4(分).其中机船在18分钟内,可运5次学生共10⨯5=50(人),到达甲岛时间分别为2、6、10、14、18(分钟);而木船18分钟内,只能运2次学生共25⨯2=50(人),到达甲岛的时间为4、12(分钟),故18分钟内两船可运完学生去甲岛.机船去乙岛,单程时间为:900÷300=3(分),木船去乙岛,单程时间为:900÷150=6(分).其中机船27分钟内,可运5次学生共10⨯5=50(人),到达乙岛的时间为:3、9、15、21、27(分钟),而木船27分钟内,只能运2次学生共25⨯2=50(人),到达乙岛的时间为:6、18(分钟).所以27分钟两船可运光全部学生去乙岛.最短需要时间为18+5+27=50(分)=65 (小时).199. 甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?解: 设学生步行时速度为“1”,那么汽车的速度为“7”,有如下示意图. 我们让甲班先乘车,那么当乙班步行至距学校l 处,甲班已乘车至距学校71处.此时甲班下车步行,汽车往回行驶接乙班,汽车、乙班将相遇.汽车、乙班的距离为7l-l=6l,两者的速度和为7+1=8,所需时间为6l÷8=0.75l,这段时间乙班学生又步行0.75l的路程,所以乙班学生共步行l+0.75l=1.75l后乘车而行.应要求甲、乙班同时出发、同时到达,且甲、乙两班步行的速度相等,所以甲班也应在步行1.75l路程后达到飞机场,有甲班经过的全程为7l+1.75l=8.75 l,应为全程.所以有7l=24÷8.75×7=19.2千米,即在距学校19.2千米的地方甲班学生下车步行,此地距飞机场24-19.2=4.8千米.即汽车应在距飞机场4.8千米的地方返回接乙班学生,才能使两班同时到达飞机场200. 一艘轮船顺流航行120千米,逆流航行60千米共用了12时;顺流航行225千米,逆流航行210千米用了30时。
专题03《流水行船问题》(解析)
2022-2023学年专题卷小升初数学行程问题精选真题汇编强化训练(提高)专题03流水行船问题考试时间:100分钟;试卷满分:100分一.选择题(共5小题,满分5分,每小题1分)1.(1分)轮船往返于一条河的两个码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多B.减少C.不变D.增多、减少都有可能【思路点拨】已知一艘轮船往返于甲、乙两个码头之间,假设去时顺水,则航行速度=船速+水速,返回逆水,则航行速度=船速﹣水速,求出往返时间进行比较即可.【规范解答】解:设路程为s,总时间为t,船速为v,水流速度为v1所以t=s÷(v+v1)+s÷(v﹣v1),={s(v﹣v1)+s(v+v1)}÷(v+v1)(v﹣v1),=2sv÷(v2﹣v12);所以t=2sv÷(v2﹣v12)由题可知:v1增大,所以t变大.故选:A.【考点评析】此题属于流水问题,根据顺水速度=船速+水速,逆水速度=船速﹣水速,据此解决问题.2.(1分)甲、乙两地相距280千米,一艘轮船从甲地到乙地是顺水航行,船在静水中的速度是每小时行17千米,水速是每小时3千米,这艘轮船在甲、乙两地往返一次。
共需()小时。
A.33B.36C.34D.以上都错【思路点拨】顺水航行需要的时间=距离÷(船速+水速),逆水速度=静水速度﹣水流的速度。
据此分别求出顺水和逆水行驶的时间,再相加即可。
【规范解答】解:从甲地到乙地顺水一趟的时间:280÷(17+3)=280÷20=14(时)从乙地到甲地逆水一趟的时间:280÷(17﹣3)=280÷14=20(时)往返一次共用时间:14+20=34(小时)故选:C。
【考点评析】本题是一道有关简单的流水行船问题(奥数)的题目;在此类题目中,顺水速度=静水速度+水流的速度,逆水速度=静水速度﹣水流的速度。
七年级上册数学《一元一次方程》13种应用题
一元一次方程应用考试题型大全1、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。
列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:2、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得x=37则45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x 最后的取值必须为正整数。
行程问题
行程问题例1、甲、乙两车分别从AB两地出发相向而行,甲的速度与乙的速度的比是4:5。
两车第一次相遇后,甲的速度提高了1/4,乙的速度提高了1/3。
两车分别到达B、A两地后立即返回。
这样,第二次相遇点距第一次相遇点48千米。
A、B两地相距多少千米?速度比:甲:乙=4:5全程:4+5=9份第一次相遇甲走4份,距离A 点4份相遇后速度比:甲:乙=4X(1+1/4):5x(1+1/3)=3:4乙到A点,甲走到:(4/4)X3=3(份)甲到B点,乙走:(5-3)/3x4=8/3(份)还剩下:9-8/3=19/3(份)甲乙合走,需要:(19/3)/(3+4)=19/21(时间)19/21时间乙走:19/21x4=76/21份乙距A点:76/21+8/3=132/21份第二次相遇点距第一次相遇点:132/21-4=48/21份第二次相遇点距第一次相遇点48千米每份:48/(48/21)=21(千米)全程:21x9=189(千米)【收藏的解法】第一次相遇时,甲车行了全程的 4/(4+5)=4/9即第一次相遇点距A 地 4/9第二次甲与乙的速度比为(4+4×1/4):(5+5×1/3) =3:4 由于从第一次相遇到第二次相遇,两人合行2个全程,所以两人从第一次相遇到第二次相遇所需的时间为 2/(3+4)=2/7乙从第一次相遇后又行了 2/7×4=8/7第二次相遇点距A地 8/7-4/9=44/63AB两地距离48/(44/63-4/9)=189千米例二、两只小虫从A点出发,沿长方形ABCD的边,逆向爬行,在距C点16厘米的E点他们第一次相遇,在距D点8厘米处的F点第二次相遇,在距A点8厘米的G点第三次相遇,求长方形AB的边长?由题中“在距C点16厘米的E点他们第一次相遇”可知:每一次相遇快的比慢的多行16*2=32厘米从同时开始到第二次相遇快车比慢车多行64厘米快车共行:2AB+3AD+8慢车共行:2AB+AD-82AB+3AD+8-(2AB+AD-8)=64厘米则:AD=24厘米从开始到第三次相遇快车比慢车多行96厘米4AB+4AD-8-(2AB+2AD+8)=96千米AB+AD=56厘米AB=56-24=32厘米例题3:小明和小亮从甲乙两地同时出发相向而行,小明的速度是小亮的5/6,两人分别到达乙地和甲地后,立即返回各自的出发地,返回的速度小明增加了1/5,小亮增加了1/4,已知第一次相遇点距返回时的相遇点42千米,求甲乙两地相距多少千米?解法1:明的速度是小亮的5/6,小亮与小明的速度比是6:5,行程的比也是6:5.第一次相遇的地点,距乙地的距离就是小亮的行程是全程的 6/11. 各自加速后,小亮的速度是原来的:1+1/4=5/4小明的速度是原来的:1+1/5=5/6,等于小亮原来的速度(5/6*(6/5)=1小明到达乙地时,小亮已从甲在加速返回.此时小亮距甲地: (6/5-1)*(5/4)=1/4 全程小亮距乙地:1-1/4=3/4 全程第二次相遇点距乙地的距离小明返回的行程:(3/4)/(1+5/4)=1/3 全程第一次相遇点距返回时的相遇点的距离占全程的: 6/11-1/3=7/33 甲乙两地相距:42/(7/33)=198千米解法二:小明的速度是小亮的5/6,则小明和小亮所行路程比是5:6。
小学数学六年级应用题难题:行程问题
数学思维策略训练(行程3)姓名学号评价1、汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
2、一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?3、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?4、有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
5 、一只蚂蚁沿等边三角形的三条边由A点开始爬行一周。
在三条边上它每分钟分别爬行50cm,20cm,40cm(如左下图)。
它爬行一周平均每分钟爬行多少厘米?6 、老王开汽车从A到B为平地(见右上图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时。
已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?7、一个车队以4米/秒的速度缓缓通过一座长 200米的大桥,共用100秒。
已知每辆车长4米,两车间隔10米,那么这个车队共有多少辆车?8、小亮从家到学校,步行需要40分,骑自行车需要 15分。
当他骑车走了9分后自行车发生故障,只好步行到学校,那么,他从家到学校共用了多少时间?9、小燕上学时骑车,回家时步行,路上共用50分。
如果往返都步行,则全程需要70分。
求往返都骑车所需的时间。
10、小明从甲地到乙地,去时每时走5千米,回来时每时走7千米,来回共用了4时。
小明去时用了多长时间?11、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以 15千米/时的速度行进,上午11时到。
如果希望中午12时到,那么应以怎样的速度行进?数学思维策略训练(行程4)姓名学号评价1、一架飞机所带的燃料最多可以用 6时,飞机去时顺风,速度为1500千米/时,回来时逆风,速度为1200千米/时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程
顺流与逆流
教学目的:1、进一步理解行程问题中的路程、速度、时间之间的关系;
2、探究顺流(顺风)、逆流(逆风)问题中速度的变化。
3、继续体验列方程解应用题问题中的建模思想,学会寻找相等关系。
教学重点:顺流(顺风)、逆流(逆风)速度与静水(静风)速度及水速(风速)之间的关系。
教学难点:顺流(顺风)、逆流(逆风)问题中速度的变化。
教学内容:
一、复习:
行船问题中的速度关系:(静水速度、顺水速度、逆水速度、水速)
顺水速度= 逆水速度=
静水速度= 逆水速度=
二、探索新知
问题1:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
已知水流的速度是3千米/时,求船在静水中的速度。
变式一:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
已知船在静水中的速度是27千米/时,求水流的速度。
变式二:一艘船从甲码头到乙码头顺流行驶所用时间比从乙码头逆流回甲地少用0.5小时,已知船在静水中的速度是27千米/时,水流的速度为3千米/小时。
求甲、乙两地
的距离。
变式三:一架飞机在两城之间航行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离。
问题2:某人乘船由A地逆流向上到达B地,立即又顺流而下到达C地,共用了3小时。
船在静水中的速度为8千米/时,水流速度为2千米/时,如果C在A上游2千米处,那么A.B两地的距离为多少千米?
思考:若把题中C在A上游2千米处改为A.C两地的距离2千米,AB两地又相距多少千米?
问题3:旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回。
已知水流速度是每小时3千米,摩托艇在静水中的速度是每小时18千米,为了使参观时间不超过4小时,旅游者最远可以走多少千米?
拓展:一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需多少小时?
三、小结:顺逆流问题实质还是行程问题中的一种,它大多数情况下仍是根据题目明示还暗
示的路程或时间关系作为相等关系列方程。
只是要注意的是实际行船中的实际速度是顺流速度或逆流速度,而这两个速度要通过静水速度和水流速度转化过来,顺流的路程等于顺流的时间乘以顺流速度,逆流的路程等于逆流的时间乘以逆流的速度,
四、作业:
1、两地相距280 千米,一艘轮船再其间航行,顺流用14个小时,逆流用20个小时,则这
艘轮船在静水中的速度为,在逆水中的速度为。
2、一条轮船在两个码头间航行,顺流需要4.5小时,逆流需要6小时,水流速度为每小时
2.5千米,求船在静水中的速度
3、一艘轮船行驶于A、B 两个码头之间,顺水需要5小时,逆水需要7小时,已知船在静
水中的速度为每小时30千米,求A、B之间的距离。
4、轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h.若船在静水中的速度为26km/h,水速为2km/h,则A港和B港相距多少千米?
5、一架飞机飞行于A、B两城之间,某日从A到B时,顺风用了4.5小时,从B到A时逆
风用了6小时。
已知风速为每小时24千米,求两城A.B之间的距离
6、一架飞机在两城间飞行,顺风比逆风快2小时,已知顺风飞行速度是每小时350千米,
风速为每小时50千米,求逆风飞行的时间?
7、某某船在静水中的速度是24千米/时,水流速度是2千米/时,该船先顺流而下,后逆流
而上,返回出发地,共航行6小时,该船最多行多远?
8、一艘轮船往返于A、B两地之间,由A到B是顺流航行,由B到A是逆流航行。
已知
船在静水中的速度是每小时20千米,由A到B用了6小时,由B到A所用的时间是由A到B所用时间的1.5倍,求水流速度。
9、某人乘船由A地顺流而下到B地,然后又逆流而下到C地,共乘船4小时,已知船在
静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,求A、B两地的距离是多少千米?
10、某人游览区,先乘坐摩托艇顺流而下,然后逆流返回,已知水流的速度是3km/h,摩托
艇在静水速度是18km/h,为了使游览时间不超过3h,且不少于2h,此人走出的范围是多少?
11、在一直的长河中有甲、乙两船,同时由A地顺流而下,乙船到B地接到通知需立即返
回到C地执行任务,甲船继续顺流航行。
已知甲、乙两船在静水中的速度都是7.5千米/时,水流速度为2.5千米/时,A、C两地的距离为10千米,如果两船由A地到B地再返回C地共用了4小时,那么,乙船从B地到达C时,甲船驶离B地有多少千米?
※12、小船由A港至B港顺流需要6小时,由B港到A港需要8小时。
一天,小船从早晨6时由A港出发顺流至B港时,发现一救生圈已在途中掉落水中,立刻返回,1小时后找到救生圈。
问: (1)若小船按水流速度由A港漂到B港需要多少时间?(2)救生圈是何时掉入水中的?
※13、某人畅游长江,逆流而上,在A处丢失一只水壶,他又向前游了20分后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到。
他返回追寻用了多少分?
※14、有一个小孩不慎掉在河里,他抱住了一根圆木顺河水向下漂流,有三条船逆水而上,在A处同时与圆木相遇,但是都没有发现圆木上有小孩,三条船的速度是已知的而且彼此不同。
当三条船离开A处1小时后,船员们同时从无线电中听到圆木上有小孩,要求营救的消息,因此三条船同时返回,去追圆木。
当天晚上,孩子的父母被告知,小孩已在离A 处6千米的下游的B处被救起。
问:是三条船中的哪条船首先来到孩子抱住的圆木处救起了孩子?
※15、某人在河中划船逆流航行,经过A点时草帽落入水中,0.5h后他才发觉,此时船已行至B点。
他立即回转船头追赶,在下游距A点4km的C点追上草帽,设船在静水中的速率v1不变,求水流的速度v2的大小
※16、小船匀速逆流而上,经过桥下时箱子落水了,船继续前进一段时间后才发现,并立即掉头以相同的静水船速顺流而下,经过1h在下游距桥7.2km处追上,则河水流动速度为多少。