自动控制中的根轨迹
自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理第四章根轨迹课件

幅值条件
s z
i 1
Hale Waihona Puke mi s p
j 1
n
j
1 Kg
Kg=0
(s p ) 0
j 1 j
n
根轨迹起始于开环极点
Kg=∞
(s z ) 0
i 1 i
m
根轨迹终止于开环零点
根轨迹分支数 • n阶系统的根轨迹有n条分支
s z
i 1
m
i
s p
j 1
jω
-p3
ⅹ
j4
K1 G( s) H ( s) s( s 4)( s 2 4s 20)
规则1、2、3、4 根轨迹对称于实轴, 有四条根轨迹分支,分别起 始于极点0,-4和-2±j4,终止 于无限远零点。 实轴上0~-4区段为根轨迹. 相角条件 -p3、-p4的连接线为 根轨迹
-p2
s1 z1 ( z1 p1 )(z1 p2 )
s2 z1 ( z1 p1 )( z1 p2 )
7.根轨迹的出射角和入射角(1)
出射角:根轨迹离开复数极点处的切线方向与实轴 正方向的夹角 入射角:而进入开环复数零点处的切线方向与实轴 正方向的夹角
7.根轨迹的出射角和入射角(2)
i 1 i 1
每对共轭复数极点所提供的相角 之和为360°; s1右边所有位于实轴上的每一个极 点或零点所提供的相角为180°;
ⅹ ⅹ
-p3 s2
-p4
jω
-θ -z1
○
ⅹ
-p2 s1
ⅹ
-p1
σ
s1左边所有位于实轴上的每一个极
点或零点所提供的相角为0°。
自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。
(自动控制原理)第四章根轨迹(06改)

i 1 n
A( )e
j ( )
1 Kg
满足根轨迹方程的幅值条件和相角条件为:
由于Wk ( s )是复数,上式可写成:Wk ( s ) | Wk ( s ) A( )e j ( ) 1 | 或 A( )
| ( s z ) | li 1 | (s p j ) |
N z N p 1 2 ( 0,1,2,)
由此,满足幅值条件:
i j N z N p 180 (1 2 )
i 1 j 1
m
n
[例]: 已知系统开环零极点的分布如图示,判断z 2 和p2 之间的实轴是否存在根轨迹?
p4
p3
例题 4-1 已知开环系统的传递函数为:
K k (1s 1) Wk ( s) s(T1s 1)(T2 s 1)
求s=s0 时的放大系数K g 0。
解:改写传递函数为 K g ( s z1 ) K k 1 ( s 1 1 ) Wk ( s) T1T2 s( s 1 T1 )(s 1 T2 ) s( s p1 )(s p2 ) K k 1 K k p1 p2 Kg —— 根轨迹放大系数 T1T2 z1 K g z1 Kk —— 开环放大系数 p1 p2 可将系统的三个极点和一个有限零点画在复平面上如图:
1) 在根轨迹图中,“ ”表示开环极点,“ ”表示开环有限 值零
点。粗线表示根轨迹,箭头表示某一参数增加的方向。“ ” 表
示根轨迹上的点。
2)在绘制根轨迹时,令S平面横轴和纵轴比例尺相同。
g 3)绘制根轨迹的依据是幅角条件。
k
4)利用幅值条件计算
的值。
自动控制原理第四章--根轨迹法

2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
根轨迹法(自动控制原理)
i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。
自动控制原理-线性系统的根轨迹法1
16
规则4:实轴上的根轨迹 规则 若实轴的某一个区域是一部分根轨迹,则必有:其右边 (开环实数零点数+开环实数极点数)为奇数。 这个结论可以用相角条件证明。 由相角条件
∑ ∠(s − z ) −∑ ∠(s − p ) = (2k +1)π
j =1 j i =1 i
m
n
jω
× × × ×
σ
17
规则5:根轨迹渐近线 规则 当 n>m 时,则有(n-m) 条根轨迹分支终止于无限零点。 这些根轨迹分支趋向无穷远的渐近线由与实轴的夹角和 交点来确定。 与实轴夹角
jω
K →∞
K = 2.5
2
稳态性能 开环传递函数在坐标原点有
一个极点,系统为1型系统,根轨迹上 的K值就是静态速度误差系数。如果给 定系统的稳态误差要求,则由根轨迹图 可以确定闭环极点位置的容许位置。 由开环传递函数绘制根轨迹,通常 采用根轨迹增益 根轨迹增益,根轨迹增益与开环增 根轨迹增益 益之间有一个转换关系。
o o
与实轴交点
σa =
i =1
∑ pi − ∑ z j
j =1
n
m
n−m
( 0 − 4 − 1 + j − 1 − j ) − ( − 1) = = − 1 .67 4 −1
23
24
规则6:根轨迹分离点和会合点 规则 两条或两条以上的根轨迹分支在 s 平面上相遇又立即 分开的点称为分离点(会合点)。 分离点(会合点)的坐标 d 由下列方程所决定:
K =1
1
K =0
−2
−1
0
σ
K = 0.5
−1
−2
动态性能
由K值变化所对应的闭环极 点分布来估计。
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
自动控制原理第四章根轨迹法
第四章 根轨迹法反馈系统的稳定性由系统的闭环极点确定。
研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。
参数变化的作用,体现在对闭环极点的影响上。
对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。
图解法是一种方便的近似方法。
l 、基本内容和要点 (l )根轨迹的基本概念根轨迹的定义。
以二阶系统为例说明什么是根轨迹,怎样从根轨迹分析闭环零、极点与系统的性能。
(2)绘制根轨迹的基本规则根轨迹的特点和性质。
绘制以系统开环增益K 为变量的根轨迹的规则与方法。
常见的几种典型系统的根轨迹图。
(3)参数根轨迹参数根轨迹的定义。
多参变量根轨迹。
多环系统的根轨迹。
(4)非最小相位系统的根轨迹最小相位和非最小相位系统的定义和特点。
非最小相位系统根轨迹的特点和绘制规则。
(5)含有延迟环节的系统的根轨迹有延迟环节的系统的极轨迹特点及绘制规则。
延迟环节的近似表达式及使用条件。
(6)基于根轨迹分析系统的响应根轨迹的形状,零极点的位置与系统时域响应性能指标间的关系。
几种常见的典型系统的零、极点分布与其暂态响应性能指标。
2、重点(l )最小相位系统的以开环增益K 为变量的根轨迹的特点及其绘制的规则和方法。
(2)系统根轨迹的形状,零、极点的分布与其时域响应性能指标的关系。
3、难点对“根轨迹上所有的点只是可能的闭环极点”的理解以及非最小相位系统中含最高次冥项系数为负的因子时根轨迹的绘制。
4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。
即在参数变化时图解特征方程。
近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。
例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。
开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 例4-1 设系统的开环传递函数为
)2)(1(2)()(sssKsHsG
试绘制系统的根轨迹。 解 根据绘制根轨迹的法则,先确定根轨迹上的一些特殊点,然后绘制其根轨迹图。 (1)系统的开环极点为0,1,2是根轨迹各分支的起点。由于系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有3mn条渐进线 渐进线的倾斜角为
03180)12()12(KmnKa
取式中的K=0,1,2,得φa=π/3,π,5π/3。 渐进线与实轴的交点为
13)210(111miinjjazpmn 三条渐近线如图4-13中的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图4-13中的粗实线所示。 (4)确定分离点 系统的特征方程式为 022323Ksss 即 )23(2123sssK 利用0/dsdK,则有 0)26(2123ssds
dK
解得 423.01s 和 577.12s 由于在-1到-2之间的实轴上没有根轨迹,故s2=-1.577显然不是所要求的分离点。因此,两个极点之间的分离点应为s1=-0.423。 (5)确定根轨迹与虚轴的交点 方法一 利用劳斯判据确定 劳斯行列表为 3s 1 2 2s
3 2K
1s
326K 0
0s
2K
由劳斯判据,系统稳定时K的极限值为3。相应于K=3的频率可由辅助方程 0632322sKs 确定。 解之得根轨迹与虚轴的交点为2js。根轨迹与虚轴交点处的频率为41.12 方法二 令js代入特征方程式,可得 02)(2)(3)(23Kjjj 即 0)2()32(22jK 令上述方程中的实部和虚部分别等于零,即
0322K,022 所以
2 3K (6)确定根轨迹各分支上每一点的K值 根据绘制根轨迹的基本法则,当从开环极点0与-1出发的两条根轨迹分支向右运动时,从另一极点-2出发的根轨迹分支一定向左移动。当前两条根轨迹分支和虚轴在K=3处相交时,可按式 3)41.10()41.10(jjx
求出后一条根轨迹分支上K=3的点为οx=-3。 由(4)知,前两条根轨迹分支离开实轴时的相应根值为-0.423±j0。因此,后一条根轨迹分支的相应点为 3)423.0()423.0(x
所以 ,οx=-2.154。 因本系统特征方程式的三个根之和为-2K,利用这一关系,可确定根轨迹各分支上每一点的K值。 现在已知根轨迹的分离点分别为-0.423±j0和-2.154,该点的K值为 )154.2()423.0(22K 即,K=0.195。 系统的根轨迹如图4-1所示。 例4-2 设控制系统的开环传递函数为 )22)(3()2(3)()(2sssssKsHsG
试绘制系统的根轨迹。 解 (1)系统的开环极点为0,-3,(-1+j)和(-1-j),它们是根轨迹上各分支的起点。共有四条根轨迹分支。有一条根轨迹分支终止在有限开环零点-2,其它三条根轨迹分支将趋向于无穷远处。 (2)确定根轨迹的渐近线 渐近线的倾斜角为
03180)12()12(KmnKa
图4-1 例4-1系统的根轨迹 S平面 σ ω j 取式中的K=0,1,2,得φa=π/3,π,5π/3,或±60°及-180°。 三条渐近线如图4-14中的虚线所示。 渐近线与实轴的交点为
114)2()1130(111jjzpmn
miin
jja
(3)实轴上的根轨迹位于原点与零点-2之间以及极点-3的左边,如图4-14中的粗线所示。从复数极点(-1±j) 出发的两条根轨迹分支沿±60°渐近线趋向无穷远处。 (4)在实轴上无根轨迹的分离点。 (5)确定根轨迹与虚轴的交点 系统的特征方程式为 0)2(3)22)(3(2sKssss 即
06)36(85234KsKsss 劳斯行列表 4s 1 8 K6 3s
5 K36
2s
5
)36(40K K6
1s
KKK33415036
0
0s
6
若阵列中的s1行等于零,即(6+3K)-150K/(34-3K)=0,系统临界稳定。 解之可得K=2.34。相应于K=2.34的频率由辅助方程 034.230)34.236(402s
确定。解之得根轨迹与虚轴的交点为s=±j1.614。根轨迹与虚轴交点处的频率为ω=1.614。
(6)确定根轨迹的出射角 根据绘制根轨迹的基本法则,自复数极点p1=(-1+j)出发的根轨迹的出射角为
j)(p)(pp)(p)k(θ132121801111
将由图4-14中测得的各向量相角的数值代入并取k=0,则得到6.26 系统的根轨迹如图4-14所示。 例4-3 已知控制系统的开环传递函数为 )50)(20)(5()125.0()()(2sssssKsHsG
试绘制系统的根轨迹。 解(1)系统的开环极点为0,0,-5,-20和-50,它们是根轨迹各分支的起点。共有五条根轨迹分支。开环零点为-0.125,有一条根轨迹分支终止于此,其它四条根轨迹分支将趋向于无穷远处。 (2)确定根轨迹的渐近线 渐进线的倾斜角为
15180)12()12(KmnKa
取式中的K=0,1,2,3得φa=±45°和φa=±135°。 渐近线与实轴的交点为
S平面 ω j
σ -1 -2 -3 -4
0
j1 j2 j3
-j3 135° 45° 90° 26.6°
图4-2 例4-2系统的根轨迹 8.184)125.0()5020500(111miinjjazpmn
(3)实轴上的根轨迹位于-0.125和-5之间以及-20,与-50之间。 (4)确定根轨迹的分离点和会合点 本例中,系统各零点、极点之间相差很大。例如,零点-0.125与极点0之间仅相距0.125,而零点-0.125与极点-50之间却相差49.875。因此,可作如下简化:在绘制原点附近的轨迹曲线时,略去远离原点的极点的影响;在绘制远离原点的轨迹曲线时,略去零点和一个极点的影响。 (A) 求原点附近的根轨迹和会合点 略去远离原点的极点,传递的函数可简化为K(s+0.125)/s2。零点-0.125左边实轴是根轨迹,并且一定有会合点。原点处有二重极点,其分离角为±90°。确定会合点的位置。此时,系统的特征方程式为 0125.02KKss 或 125.02ssK
利用0/dsdK,则有 0)125.0()125.0(222s
sssdsdK
解之可得 s1=0.25, 即会合点;s2=0,即重极点的分离点。 (B) 求远离原点的根轨迹和分离角 略去原点附近的开环偶极子(零点-0.125和极点0),传递函数可简化为 )50)(20)(5(/)('ssssKsGH 此时,系统的特征方程式为
0)50)(20)(5(Kssss 或表示为
)50)(20)(5(1ssssK 利用0/dsdK,则有
0)50)(20)(5(500027002254223ssss
sssdsdK
解之可得s1=-2.26 和 s2=-40.3。 分离点的分离角为±90°。 注意,在零点-0.125和极点-5之间的根轨迹上有一对分离点(-2.26, j0)和(-2.5, j0))。 (5) 确定根轨迹与虚轴的交点 令js代入特征方程式,可得 0)125.0()50)(20)(5()(2jKjjjj 整理后有 05000752
0135024K 解之得 16.8,41065.8K