2020年高考物理模拟试题及答案(三)

2020年高考物理模拟试题及答案(三)
2020年高考物理模拟试题及答案(三)

2020年高考物理模拟试题及答案(三)

二、选择题:本题共8小题,每小题6分,共48分。在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.下面关于摩擦力做功叙述中正确的是()

A.静摩擦力对物体一定不做功

B.滑动摩擦力对物体一定做负功

C.一对静摩擦力中,一个静摩擦力做正功,另一静摩擦力一定做负功

D.一对滑动摩擦力中,一个滑动摩擦力做负功,另一滑动摩擦力一定做正功

答案 C

15.若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q 倍,则该行星的第一宇宙速度是地球第一宇宙速度的( )

倍倍

倍倍

答案C

16.2012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如图2所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )

图2

A.它们做圆周运动的万有引力保持不变

B.它们做圆周运动的角速度不断变大

C.体积较大星体圆周运动轨迹半径变大,线速度也变大

D.体积较大星体圆周运动轨迹半径变大,线速度变小

答案C

17.把A、B两相同小球在离地面同一高度处以相同大小的初速度v0分别沿水平方向和竖直方向抛出,不计空气阻力,如图5-1-6所示,则下列说法正确的是( )

图5-1-6

A.两小球落地时动能相同

B.两小球落地时,重力的瞬时功率相同

C.从开始运动至落地,重力对两小球做的功相同

D.从开始运动至落地,重力对两小球做功的平均功率相同

选A C

18.放在粗糙水平面上的物体受到水平拉力的作用,在0~6 s内其速度与时间图像和该拉力的功率与时间图像分别如图9甲和乙所示,下列说法正确的是( )

图9

A.0~6 s内物体位移大小为36 m

B.0~6 s内拉力做的功为70 J

C.合外力在0~6 s内做的功与0~2 s内做的功相等

D.滑动摩擦力大小为5 N

选B C

19.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示。已知物体与水平面间的动摩擦因数为μ,弹簧劲度系数为k,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )

A.1

2mv02-μmg(s+x) B.

1

2

mv02-μmgx

C.1

2

kx2D.μmg(s+x)

A C

20.如图5-1-4所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A 点起由静止开始上升。若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1和W2,滑块经B、C两点的动能分别为E k B 和E k C,图中AB=BC,则( )

图5-1-4

A.W1>W2 B.W1<W2

C.E k B>1 2 E k C

D.E k B<1 2 E k C

[答案] A C

年5月10日,天文爱好者迎来了“土星冲日”的美丽天象。“土星冲日”是指土星和太阳正好分处地球的两侧,三者几乎成一条直线。

该天象每378天发生一次,土星和地球绕太阳公转的方向相同,公转轨迹都近似为圆,地球绕太阳公转周期和半径以及引力常量均已知,根据以上信息可求出( )

图6

A.土星质量

B.太阳质量

C.土星公转周期

D.土星和地球绕太阳公转速度之比

答案BCD

22.在追寻科学家研究足迹的过程中,某同学为探究恒力做功和物体动能变化间的关系,采用了如图(甲)所示的实验装置.

(1)实验时,该同学用钩码的重力表示小车受到的合力,为了减小这种做法带来的实验误差,你认为应该采取的措施是.(多选,填选项前的字母)

A.保证钩码的质量远小于小车的质量

B.保证细线与长木板平行

C.把长木板不带滑轮的一端适当垫高以平衡摩擦力

D.必须先接通电源再释放小车

(2)如图(乙)所示是实验中得到的一条纸带,其中A,B,C,D,E,F是连续的六个计数点,相邻计数点间的时间间隔为T,相关计数点间的距离已在图中标出,测出小车的质量为M,钩码的总质量为m.从打B点到打

E点的过程中,合力对小车做的功是,小车动能的增量是(用题中和图中的物理量符号表示).

解析:(1)由于小车运动过程中会遇到阻力,同时由于小车加速下降,处于失重状态,拉力小于重力,故要使拉力接近钩码的重力,要平衡摩擦力,要使钩码的质量远小于小车的质量,同时拉力沿小车的运动方向.故选ABC.

(2)从打B点到打E点的过程中,合力对小车做的功是W=mgh=mgs,根据中间时刻的速度等于平均速度得v B=,v E=,小车动能的增量是

ΔE k=M-M=M()2-M()2.

答案:(1)ABC (2)mgs M()2-M()2

23.光电计时器是一种研究物体运动情况的常用计时仪器,其结构如图(a)所示,a、b分别是光电门的激光发射和接受装置,当有物体从a、b间通过时,光电计时器就可以精确地把

物体从开始挡光到挡光结束的时间记录下来.现利用图(b)所示的装置测量滑块和长木板间的动摩擦因数,图中MN是水平桌面,Q是长木板与桌面的接触点,1和2是固定在长木板上适当位置的两个光电门,与之连接的两个光电计时器没有画出,长木板顶端P点悬有一铅锤,实验时,让滑块从长木板的顶端滑下,光电门1、2各自连接的计时器显示的挡光时间分别为×10-2 s和×10-3 s.用精度为 mm的游标卡尺测量滑块的宽度为d,其示数如图(c)所示.

(1)滑块的宽度d=________ cm.

(2)滑块通过光电门2时的速度v2=________ m/s.(结果保留两位有效数字)

(3)由此测得的瞬时速度v1和v2只是一个近似值,它们实质上是通过光电门1和2时的________,要使瞬时速度的测量值更接近于真实值,可将________的宽度减小一些.

10.(1) d= cm.

(2) v2= m/s.(结果保留两位有效数字)

(3) 平均速度,滑块

24.动车组是城际间实现小编组、大密度的高效运输工具,以其编组灵活、方便、快捷、安全、可靠、舒适等特点而备受世界各国铁路运输和城市轨道交通运输的青睐。动车组就是几节自带动力的车厢加几节不带动力的车厢编成一组,就是动车组。假设有一动车组由8节车厢连接而成,每节车厢的总质量均为×104 kg。其中第一节、第二节带动力,他们的额定功率分别为×107 W和×107 W,车在行驶过程中阻力恒为重力的倍。(g取10 m/s2)

(1)求该动车组只开动第一节的动力的情况下能达到的最大速度。

(2)若列车从A 地沿直线开往B 地,先以恒定的功率6×107 W(同时开动第一、第二节的动力)从静止开始启动,达到最大速度后匀速行驶,最后除去动力,列车在阻力作用下匀减速至B 地恰好速度为0。已知AB 间距为×104 m ,求列车从A 地到B 地的总时间。

[解析] (1)只开动第一节动力的前提下,当第一节以额定功率运行且列车的牵引力等于阻力时达到最大速度:

P 1m =F f v m

得:v m =P 1m

F f

=60 m/s(其中阻力F f =×8mg =×105 N ,P 1m =×107 W)

(2)列车以恒定的功率6×107 W(同时开动第一、第二节的动力)

从静止开始启动,当牵引力等于阻力时达到最大速度v m =P 1m +P 2m

F f

,代

入数据解得:v m =100 m/s

设列车从C 点开始做匀减速运动,令A 到C 的时间为t 1,AC 间距为x 1;C 到B 的时间为t 2,CB 间距为x 2,在CB 间匀减速运动的加速度大小为a ,列车的总重量M =8m =×105 kg ,运动示意图如图所示。

从C 到B 由牛顿第二定律和运动学公式得:

F f =Ma

代入数据解得:a =F f

M =错误!=1 m/s 2

v m =at 2

代入数据解得:t 2=v m

a =100 s

x 2=v m

2

t 2

代入数据解得:x 2=×103 m 所以x 1=x AB -x 2=×104 m 从A 到C 用动能定理得: (P 1m +P 2m )t 1-F f x 1=1

2Mv m 2

代入数据解得:t 1=500 s 所以:t 总=t 1+t 2=600 s 。 [答案] (1)60 m/s (2)600 s

25.如图10所示,倾角为37°的粗糙斜面AB 底端与半径R = m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高。质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点。g 取10 m/s 2,sin 37°=,cos 37°=。

图10

(1)求滑块与斜面间的动摩擦因数μ;

(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;

(3)若滑块离开C处的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t。

解析:(1)滑块从A点到D点的过程中,根据动能定理有mg·(2R

-R)-μmg cos 37°·

2R

sin 37°

=0

解得μ=。

(2)若滑块能到达C点,根据牛顿第二定律有

mg+F N=mv C2 R

当F N=0时,滑块恰能到达C点,有v C≥Rg=2 m/s,滑块从A 点到C点的过程中,根据动能定理有

-μmg cos 37°·

2R

sin 37°

1

2

mv C2-

1

2

mv02

联立解得v0≥2 3 m/s。

(3)滑块离开C点做平抛运动有x=vt,y=1

2

gt2

由几何关系得tan 37°=2R-y x

联立以上各式整理得5t2+3t-=0

解得t= s。

答案:(1) (2)2 3 m/s (3) s

34.一半径为R的半圆形竖直圆槽,用轻质不可伸长的细绳连接的A、B两球悬挂在圆柱面边缘两侧,A球质量为B球质量的2倍,现将A球从圆柱边缘处由静止释放,如图5-3-5所示。已知A球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:

图5-3-5

(1)A球沿圆柱内表面滑至最低点时速度的大小;

(2)A球沿圆柱内表面运动的最大位移。

[审题指导]

(1)A球沿绳方向的分速度与B球速度大小相等。

(2)A球沿圆柱内表面运动的位移大小与B球上升高度相等。

(3)A球下降的高度并不等于B球上升的高度。

[解析] (1)设A球沿圆柱内表面滑至最低点时速度的大小为v,B球的质量为m,则根据机械能守恒定律有

2mgR-2mgR=1

2

×2mv2+

1

2

mv B2

由图甲可知,A球的速度v与B球速度v B的关系为v B=v1=v cos 45°

联立解得v=2 2-2

5

gR。

(2)当A球的速度为零时,A球沿圆柱内表面运动的位移最大,

设为x,如图乙所示,由几何关系可知A球下降的高度h=x

2R

4R2-x2

根据机械能守恒定律有2mgh-mgx=0

解得x=3R。

[答案] (1)2 2-2

5

gR(2)3R

相关主题
相关文档
最新文档