二0一0年中考数学模拟试题(11)

合集下载

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学综合复习卷考试范围:初中;考试时间:120分钟;满分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23a <<时,化简23a a -+-=( )A .1B .25a -C .1-D .52a -2.把长为2023个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( ) A .2022个 B .2023个 C .2022或2023个 D .2023或2024个3.如图,将一个含45︒的三角板ABC ,绕点A 按顺时针方向旋转60︒,得到ADE ,连接BE ,且2,90AC BC ACB ==∠=︒,则线段BE =( )A BC D .1 4.下列计算:①()011-=-;②()2124-=;③55-=±.其中正确的有( ) A .3个 B .2个 C .1个 D .0个5.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为( )A .70.421110⨯B .64.21110⨯C .4421.110⨯D .3421110⨯6.如图,在矩形ABCD 中,6cm AB =,对角线AC 与BD 相交于点O ,DE AC ⊥,垂足为E ,3AE CE =,则BD 的长为( )A .B .C .12cmD .7.如图,索玛立方块是由丹麦数学家皮亚特·海恩发明的,它是由7个不规则的积木单元,拼成一个333⨯⨯的立方体,有400多种拼法,则下列四个积木单元中,俯视图面积最大的是( )A .B .C .D .8.用换元法解方程222131x x x x-+=-时,若设21x y x =-,则原方程可化为关于y 的方程是( ) A .22310y y -+= B .21203y y C .2320y y -+= D .2320y y ++=9.已知3,7a b ab +=-=,则多项式22a b ab a b +--的值为( )A .24B .18C .24-D .18-10.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°11.如图,边长为4的正方形ABCD 内接于O ,E 是劣弧AB 上的动点(不与点A ,B 重合),F 是劣弧BC 上一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且90EOF ∠=︒,则在点E 运动过程中,下列关系会发生变化的是( )甲:AE 与BF 之间的数量关系;乙:GH 的长度;丙:图中阴影部分的面积和A .只有甲B .只有甲和乙C .只有乙D .只有乙和丙12.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理13.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图②,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL14.2022年12月4日11时01分,神州十四号载人飞船与空间站组合体成功分离返回地球,为了欢迎在中国空间站出差183天的航天员陈冬、刘洋、蔡旭哲回家,北京市育英学校举行了“我的航天梦”英语演讲比赛.有9名学生通过海选进入决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .频率C .平均数D .中位数15.如图,在矩形ABDC 中,AC =4cm ,AB =3cm ,点E 以0.5cm/s 的速度从点B 到点C ,同时点F 以0.4cm/s 的速度从点D 到点B ,当一个点到达终点时,则运动停止,点P 是边CD 上一点,且CP =1,且Q 是线段EF 的中点,则线段QD +QP 的最小值为( )A .B .5CD 16.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A .4月份的利润为50万元B .治污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元二、填空题(本大题共3个小题,每小题3分,共9分.其中19小题第一空1分,第二空2分)17.小明在学习圆的相关知识时,看到书本上提到可以用一把丁字尺(如图1)来找圆心,他想到爸爸的工具箱里有丁字尺,于是想利用丁字尺还原一个破损的圆,已知尺头4cm AB =,尺身刻度线l 垂直平分AB ,他摆出的情况如图2,发现两次测量丁字尺的尺身交于刻度为6cm 的位置,则这个破损的圆的直径是_______cm.18.在ABC 中,AB AC =,点G F ,分别为AB BC ,的中点,22AG AD EC ==,连接EG DF ,,将ABC 分成四块,如图(1)中∠,∠,∠,∠,四块图形恰好能拼成如图(2)的矩形,则tan B =___________.19.如图①,1234,,,O O O O 为四个等圆的圆心,,,,A B C D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是___;如图②,12345,,,,O O O O O 为五个等圆的圆心,,,,,A B C D E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 __.(答案不唯一)三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤) 20.(7分)已知:整式21A n =+,2B n =,21C n =-,整式0C >.(1)当1999n =时,写出整式A B +的值______(用科学记数法表示结果);(2)求整式22A B -;(3)嘉淇发现:当n 取正整数时,整式A 、B 、C 满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.21.(8分)我们定义:一个整数能表示22a b a b +++(a ,b 是整数)的形式,则这个数为“和谐数”,例如8是“和谐数”,理由:因为2282121=+++,所以8是“和谐数”.(1)请判断14______“和谐数”(填“是”或“不是”);(2)请你写出一个大于14且小于20的“和谐数”:______;(3)当整数m ,n 满足()222817x m n x x ++=-+时,求“和谐数”22m n m n +++的值;(4)若实数x ,y 满足992280x y xy +--=,求22x y x y +++的最小值.22.(8分)小红、小明、小亮要参加某电视台组织的主持人演讲比赛,按程序分别进行答辩、笔试和网络投票,(1)在进行答辩之前,需要抽签决定答辩次序,直接写出小红抽到第一个答辩的概率;(2)答辩、笔试成绩如下表,网络投票每张选票只限填写小红、小明、小亮其中的一人,且每张得票记1分,统计选票后,绘出不完整的统计图.答辩、笔试成绩统计表根据以上信息,请解答: ①网络选票总数是________;补全条形统计图:②比赛组委会将答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,分数最高者为冠军,请你通过计算说明谁是冠军.23.(10分)对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90°后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为()00,,点P 关于点A 的“垂链点”为点Q ; ①若点P 的坐标为()20,,则点Q 的坐标为_______________; ②若点Q 的坐标为()21-,,则点P 的坐标为__________; (2)如图2,已知点C 的坐标为()10,,点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标; (3)如图3,已知图形G 是端点为()10,和()02-,的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点()0T t ,,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.24.(10分)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB 的两端都在圆O 上,A 、B 两端可沿圆形钢轨滑动,支撑杆CD 的底端C 固定在圆O 上,另一端D 是滑动杆AB 的中点,(即当支架水平放置时直线AB 平行于水平线,支撑杆CD 垂直于水平线),通过滑动A 、B 可以调节CD 的高度.当AB 经过圆心O 时,它的宽度达到最大值10cm ,在支架水平放置的状态下:(1)当滑动杆AB 的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD 的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE AB =),求该手机的宽度.25.(12分)在平面直角坐标系中,抛物线223(0)y ax ax a a =--≠的顶点为P ,且该抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧).我们规定抛物线与x 轴围成的封闭区域称为“区域G ”(不包括边界);横、纵坐标都是整数的点称为整点.(1)如果抛物线223y ax ax a =--经过点(13),. ①求a 的值;②直接写出“区域G ”内整数点的个数;(2)当a<0时,如果抛物线223y ax ax a =--在“区域G ”内有4个整数点,求a 的取值范围;(3)当0a >时,抛物线与直线x a =交于点C ,把点C 向左平移5个单位长度得到点D ,以CD 为边作等腰直角三角形CDE ,使90DCE ∠=︒,点E 与抛物线的顶点始终在CD 的两侧,线段DE 与抛物线交于点F ,当2tan 3ECF ∠=时,直接写出a 的值.26.(14分)ABC 的边BC 在直线l 上,AC BC ⊥,且AC BC =,EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)如图1,直接写出AB 与AP 的数量关系:______,AB 与AP 的位置关系:______;(2)将EPF 沿直线l 向左平移到图2的位置时,EP 交AB 于点O ,交AC 于点Q ,连接AP ,BQ ,求证:ABQ APQ ∠=∠;(3)将EPF 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连接AP ,BQ ,试探究ABQ ∠与APQ ∠满足的数量关系,并说明理由;(4)若1cm AC BC ==,AB =,点P 在CB 的延长线上继续向左平移,当:3:2CBQ CBA ∠∠=时,请直接写出CBQ △与CBA △的面积之比.参考答案:1.B 【分析】直接利用绝对值的性质化简求出答案.【详解】解:23a <<,20a ∴-<,()222a a a ∴-=--=-,23a a ∴-+-23a a =-+-25a =-.故答案为:B .【点睛】此题主要考查了绝对值的性质,正确利用a 的取值范围化简是解题关键.2.D【分析】根据题意把长为1个单位长度的线段AB 放在单位长度为1的数轴上,可能盖住2个或1个点,以此类推,找出规律即可解答.【详解】解:1个单位长度的线段放在数轴上,两端的放在整数点上,盖住2个点,两端不在整数点上,盖住1个点;2个单位长度的线段放在数轴上,两端的放在整数点上,盖住3个点,两端不在整数点上,盖住2个点; 3个单位长度的线段放在数轴上,两端的放在整数点上,盖住4个点,两端不在整数点上,盖住2个点; ⋯n 个单位长度的线段放在数轴上,两端的放在整数点上,盖住()1n +个点,两端不在整数点上,盖住n 个点;∴2023个单位长度的线段放在数轴上,两端的放在整数点上,盖住2024个点,两端不在整数点上,盖住2023个点;故答案为:D .【点睛】此题考查了数轴规律题,解题的关键是根据题意分情况找出规律.3.A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,由此得出ABD △为等边三角形,然后进一步通过证明BAE BDE ≌得出ABE DBE ∠∠=,根据等腰三角形三线合一可知BF AD ⊥,且AF DF =,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE BF EF =-进一步计算即可得出答案.【详解】解:如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,ABD ∴为等边三角形,AB BD ∴=,在BAE 与BDE △中,AE DE =,BA BD =,BE BE =,BAE BDE ∴≌(SSS ), ABE DBE ∴∠=∠,∠BF AD ⊥,且AF DF =,2AC BC ==,90ACB ∠=︒,AB ∴=22222+=AB BD AD ∴===22AF ∴=2BF ∴=226AB AF -90AED ∠=︒,AE DE =,45FAE ∴∠=︒,BF AD ⊥,45FEA ∴∠=︒,EF AF ∴==2BE BF EF ∴=-=62故选:A .【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.4.D【分析】根据零指数幂,有理数的乘方,绝对值的计算法则求解即可.【详解】解:①()011-=,计算错误,不符合题意;②()224-=,计算错误,不符合题意;③55-=,计算错误,不符合题意; ∠计算正确的有0个,故选D .【点睛】本题主要考查了零指数幂,有理数的乘方,绝对值,熟知相关知识是解题的关键,注意非零底数的零次幂的结果为1.5.B【分析】科学记数法的表示形式为10(110)n a a ⨯≤<,根据小数点移动的位数确定n 的值即可. 【详解】解:421.1万=4211000=64.21110⨯.故选:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是正确确定a 的值以及n 的值.6.C【分析】由矩形的性质得出OA OD OC ==,由已知条件得出OE CE =,由线段垂直平分线的性质得出OD CD =,即可求出BD 的长. 【详解】解:3AE CE =,4AC CE ∴=,四边形ABCD 是矩形,122OA OC AC CE ∴===,12OD BD =,AC BD =,6cm CD AB ==, 2OA OD OC CE ∴===,OE CE ∴=DE AC ⊥,6cm OD CD ∴==,212cm BD OD ,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,证明OD CD =是解决问题的关键.7.D【分析】根据俯视图中正方形的个数作出判断即可.【详解】解:A 、B 、C 三个选项中俯视图都是由3个小正方形组成,D 选项俯视图中有4个小正方形组成,因此俯视图面积最大的是D 选项中的图形,故D 正确.故选:D . 【点睛】本题主要考查了几何体的俯视图,解题的关键是分别判断出四个选项俯视图中正方形的个数.8.A【分析】把原方程按按照所给条件换元,整理即可.【详解】解:设21x y x =-, 222131x x x x-+=-可化为123y y +=, ∠2213y y +=,∠22310y y -+=,故选:A .【点睛】本题考查换元法解方程,解题的关键是熟练掌握换元法.9.D【分析】先将22a b ab a b +--进行因式分解,然后整体代入求值即可.【详解】解:∠3,7a b ab +=-=,∠22a b ab a b +--()()ab a b a b =+-+()(1)a b ab =+-(3)(71)=-⨯-18=-.故选:D .【点睛】本题主要考查了代数式求值以及因式分解的应用,解决本题关键是正确完成分解因式.10.A【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出312∠∠∠、、的度数是多少,进而求出312∠+∠-∠的度数即可. 【详解】解:正三角形的每个内角是:180360︒÷=︒,正方形的每个内角是:360490︒÷=︒,正五边形的每个内角是:()521805-⨯︒÷31805=⨯︒÷5405=︒÷108=︒,正六边形的每个内角是:()621806-⨯︒÷41806=⨯︒÷7206=︒÷120=︒,则()()()312906012010810890∠+∠-∠=︒-︒+︒-︒-︒-︒301218=︒+︒-︒24=︒.故选:A .【点睛】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和()()2?1803n n =-≥且n 为整数).(2)多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和永远为360°.11.C【分析】连接,OB OA ,根据题意可得AOB EOF ∠=∠,45OAB OBH ∠=∠=︒,从而得到AOE BOF ∠=∠,进而得到AE BF =;再证得AOG BOH △≌△,可得OGH 是等腰直角三角形,从而得到2GH OG =,再由在点E 运动过程中,OG 的长度在发生变化,可得GH 的长度会改变;分别求出EOF S 扇形,OGBH S 四边形,再由阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,即可.【详解】解:如图,连接,OB OA ,∠正方形ABCD 内接于O ,∠90AOB ∠=︒,45OAB OBH ∠=∠=︒,∠90EOF ∠=︒,∠AOB EOF ∠=∠,∠AOE BOF ∠=∠,∠AE BF =,即AE 与BF 之间的数量关系不变;∠45OAB OBH ∠=∠=︒,OA OB =,AOE BOF ∠=∠,∠AOG BOH △≌△,∠OG OH =,∠OGH 是等腰直角三角形,∠222GH OG OH OG +=,而在点E 运动过程中,OG 的长度在发生变化,∠GH 的长度会改变;根据题意得4AB =, ∠22OA OB OE AB ==== ∠(29022360EOF S ππ⨯==扇形,∠AOG BOH △≌△,∠AOG BOH S S =,∠112222422BOG BOH BOG AOG AOB OGBH S S S S S S OA OB =+=+==⋅=⨯四边形, ∠图中阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,不变;综上所述,关系会发生变化的是乙.故选:C【点睛】本题主要考查了圆的综合题,正方形的性质,熟练掌握圆周角定理,扇形面积公式,根据题意得到AOG BOH △≌△是解题的关键.12.B【分析】根据定理证明的一般步骤进行分析判断即可解答.【详解】解:∠证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∠A 的说法不正确,不符合题意;B 的说法正确,符合题意;C 、∠定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∠C 的说法不正确,不符合题意;D 、∠定理的证明必须经过严谨的推理论证,与测量次数的多少无关,∠D 的说法不正确,不符合题意,综上,B 的说法正确,故选:B .【点睛】本题主要考查了三角形的外角的性质的证明以及定理的证明的一般步骤,依据定理证明的一般步骤分析解答是解题的关键.13.C【分析】根据题意可知:王师傅用角尺平分一个角时使得:OM ON =,PM PN =,OP OP =,故王师傅的依据为:SSS ;学生小顾用三角尺平分一个角时使得:OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,故学生小顾的依据为:HL ;即可得到结果【详解】∠王师傅用角尺平分一个角,在AOB ∠两边上分别取OM ON =,使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;∠OM ON =,PM PN =,OP OP =,∠()SSS OMP ONP ≌△△,故王师傅的依据为:SSS ;∠学生小顾用三角尺平分一个角,在AOB ∠两边上分别取OM ON =,分别过M ,N 作OA ,OB 的垂线,交点为P ,∠OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,∠()HL OMP ONP △≌△,故学生小顾的依据为:HL ;故答案为:C【点睛】本题考查了全等三角形的判定和角平分线的概念,熟练掌握全等三角形的判定方法是解决问题的关键14.D【分析】根据题意,可以选取合适的统计量,从而可以解答本题.【详解】解:∠有9名学生参加比赛,一名学生想知道自己能否进入前5名,∠这名学生要知道这组数据的中位数,故选:D .【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.15.A【分析】如图,建立如图所示的平面直角坐标系,连接QB ,PB .首先用t 表示出点Q 的坐标,发现点Q 在直线y =2上运动,求出PB 的值,再根据PQ +PD =PQ +QB ≥PB ,可得结论.【详解】解:如图,建立如图所示的平面直角坐标系,连接QB ,PB .∠四边形ABDC 是矩形,∠AC =BD =4cm ,AB =CD =3cm ,∠C (-3,0),B (0,4),∠∠CDB =90°,∠BC 222234CD CB +=+(cm ),∠EH ∠CD ,∠△BEH ∠∠BCD ,∠BE EH BH BC CD BD==,∠0.5534t EH BH==,∠EH=0.3t,BH=0.4t,∠E(-0.3t,4-0.4t),∠F(0,0.4t),∠QE=QF,∠Q(-320t,2),∠点Q在直线y=2上运动,∠B,D关于直线y=2对称,∠QD=QB,∠QP+QD=QB+QP,∠QP+QB≥PB,PB2224+5,∠QP+QD5∠QP+QD的最小值为5故选:A.【点睛】本题考查轴对称最短问题,矩形的性质,相似三角形的判定和性质,轨迹等知识,解题的关键是构建平面直角坐标系,发现点Q在直线y=2上运动.16.C【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】A、设反比例函数的解析式为kyx =,把(1,200)代入得,k=200,∠反比例函数的解析式为:200yx =,当x=4时,y=50,∠4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则200 100x=,解得:x =2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D 、设一次函数解析式为:y =kx +b ,则4506110k b k b +=⎧⎨+=⎩,解得:3070k b =⎧⎨=-⎩, 故一次函数解析式为:y =30x −70,故y =200时,200=30x −70,解得:x =9, 则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .【点睛】此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键. 17.10【分析】依题意,确定圆心位置,利用垂径定理构造直角三角形,求解即可.【详解】如图:确定圆心O ,依题意:OC AB ⊥122AC AB ∴== 在直角OCA 中:222222640OA AC OC =+=+=210OA =故答案为210OA =【点睛】本题考查了垂径定理和勾股定理的综合运用,关键是根据题意建立圆的模型,利用垂径定理确定线段长度,从而求解.1815【分析】以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,设BF CF m AF n ===,,用相似三角形性质可求出113113,,,,,224444G m n E m n D m n ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可得直线DF 解析式为3n y x m =,直线GE 解析式为255n y x n m =-+,即可求出()3,,2,088m n M H m ⎛⎫ ⎪⎝⎭,根据四块图形恰好能拼成如图(2)的矩形,得222FM MH FH +=,即()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简整理有15n =,在Rt ABF 中,15tan AF n B BF m ===. 【详解】解:AB AC =,A ∴在BC 的垂直平分线上,点G F ,分别为AB BC ,的中点, AG BG BF CF ∴==,,22AG AD EC ==,1144AD EC AC AB ∴===, 以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,如图:设BF CF m AF n ===,,GN BC AF BC ⊥⊥,,90AFB GNB ∴∠=∠=︒,又ABF GBN ∠=∠,ABF GBN ∴∽,GN BN BG AF BF AB∴==,即12GN BN n m ==, 1122GN n BN m ∴==,, 12NF m ∴=, 1122G m n ⎛⎫∴- ⎪⎝⎭,, 同理CEP CAF ∽,14PE CP CE n m AC ∴===, 1144PE n CP m ∴==,, 34PF m ∴=, 3144E m n ⎛⎫∴ ⎪⎝⎭,, 同法可得1344D m n ⎛⎫ ⎪⎝⎭,, 设直线DF 解析式为1y k x =,把1344D m n ⎛⎫ ⎪⎝⎭,代入得:11344mk n =, 解得:13n k m=, ∠直线DF 解析式为3n y x m =, 设直线GE 解析式为22y k x b =+,把1131,,,2244G m n E m n ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭代入得: 222211223144mk b n mk b n ⎧-+=⎪⎪⎨⎪+=⎪⎩,解得:22525n k m b n ⎧=-⎪⎪⎨⎪=⎪⎩, ∠直线GE 解析式为255n y x n m =-+, 联立得3255n y x m n y x n m ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:838m x n y ⎧=⎪⎪⎨⎪=⎪⎩,388m n M ⎛⎫∴ ⎪⎝⎭,, 在255n y x n m =-+中,令0y =得2x m =, ()2,0H m ∴,四块图形恰好能拼成如图(2)的矩形,90FMH ∴∠=︒, 222FM MH FH ∴+=,()0,0F ,()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简整理可得2253n m =, 00m n >>,,15n ∴=, 在Rt ABF 中,15tan AF n B BF m === 15 【点睛】本题考查锐角三角函数,矩形的性质,解题的关键是读懂题意,建立直角坐标系,求出M 的坐标.19. 作图见解析,1O 和3O (答案不唯一) 作图见解析,13O O 与24O O 的交点O 和5O (答案不唯一)【分析】利用中心对称图形进行分析,对于图①,过13,O O 的直线即可满足题意;对于图②过13O O 和24O O 的交点O 和5O 的直线即可满足题意.【详解】解:图①既是轴对称图形,也是中心对称图形,则只需过它的对称中心任意画一条直线即可,如图所示:∴如过13,O O 的一条直线(答案不唯一),故答案为:1O 和3O ;图②它不是中心对称图形,图①中,直线过图形的对称中心即可;一个圆时,只要过圆心即可,则画一条过13O O 和24O O 的交点O 和5O 的直线即可,如图所示:故答案为:13O O 与24O O 的交点O 和5O .【点睛】本题考查利用对称性质作图,借助图形,准确分析图形的对称特征是解决问题的关键. 20.(1)6410⨯(2)22(1)n -(3)正确,理由见解析【分析】1()根据题意可得,()()22121A B n n n +=++=+,把1999n =代入计算应用科学记数法表示方法进行计算即可得出答案;2()把21A n =+,2B n =,代入22A B -中,可得()()22212n n +-,应用完全平方公式及因式分解的方法进行计算即可得出答案;3()先计算()()2222221B C n n +=+-,计算可得()221n +,应用勾股定理的逆定理即可得出答案.【详解】(1)解:()()22121A B n n n +=++=+, 当1999n =时,原式()219991=+22000=6410=⨯; 故答案为:6410⨯;(2)()()2222212A B n n -=+- ()2222214n n n =++- ()22221n n =-+ 22(1)n =-;(3)嘉淇的发现正确,理由如下:()()2222221B C n n +=+-()2222421n n n =+-+ ()221n =+,222B C A ∴+=,∴当n 取正整数时,整式A 、B 、C 满足一组勾股数.【点睛】本题主要考查了勾股定理及逆定理,科学记数法,熟练掌握勾股定理及逆定理,科学记数法的计算方法进行求解是解决本题的关键.21.(1)是(2)18(3)12或14(4)12【分析】(1)根据“和谐数”的定义,即可求解;(2)根据“和谐数”的定义,即可求解;(3)根据()222817x m n x x ++=-+,可得22228217x n m x m x x +=+++-,从而得到41m n =-⎧⎨=±⎩,再代入,即可求解;(4)根据992280x y xy +--=,可得()2928xy x y =+-,再代入把原式变形为()2241x y +-+,即可求解.【详解】(1)解:∠22143131=+++,∠14是“和谐数”;故答案为:是(2)解:∠22183232=+++,∠18是“和谐数”;故答案为:18(3)解:∠()222817x m n x x ++=-+,∠22228217x n m x m x x +=+++-, ∠222817m m n =-⎧⎨+=⎩,解得:41m n =-⎧⎨=±⎩, ∠当1n =时,()()2222414114m n m n +++=-++-+=,当1n =-时,()()()()2222414112m n m n +++=-+-+-+-=,综上所述,“和谐数”22m n m n +++的值为12或14;(4)解:∠992280x y xy +--=,∠()2928xy x y =+-,∠22x y x y +++2222y xy x y x y x =-++++ ()22x y x y xy -=+++()()2928y x x y x y -++=+++()()2828x y x y =+-++,()2241x y +-+=∠()204x y +-≥,∠()212124x y -≥++,即2212x y x y +++≥,∠22x y x y +++的最小值为12.【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式,理解“和谐数”的定义是解题的关键.22.(1)13; (2)①300张;条形图见解析;②小明;【分析】(1)根据概率公式解答即可;(2)①利用小红的票数和票数所占百分比求出总票数,便可得到小亮的票数;进而补全条形图;②根据答辩分数占50%,笔试分数占40%,投票分数占10%,分别计算三人的加权平均得分;分数最高的即为冠军.(1)解:∠三人抽到第一个答辩的概率相等,∠小红抽到第一个答辩的概率为13. (2)解:①由小红的得票数和百分比可得:总票数=102÷0.34=300(张);小亮的票数=300-102-108=90(张);∠完整条形图为:②由答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,可得:小红得分=92×0.5+85×0.4+102×0.1=90.2(分);小明得分=89×0.5+88×0.4+108×0.1=90.5(分);小亮得分=90×0.5+89×0.4+90×0.1=89.6(分);小明分数最高,故:小明是冠军.【点睛】本题考查了概率公式,条形统计图和扇形统计图的联系,利用加权平均数作决策;掌握加权平均数的计算方法是解题关键.23.(1)①()()02? 12,②, (2)413D ⎛⎫ ⎪⎝⎭,或()01D , (3)713t ≤≤或1133t -≤≤- 【分析】(1)根据旋转的性质,即可求解;(2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ⊥轴,即可求解;②当点D 在第二象限时,证明DHC COD '≌即可求解;(3)分点N 落在正方形右边一条边上、上边一条边上两种情况,分别求解即可.【详解】(1)点A 的坐标为()00,,即点A 是原点,根据旋转性质得:①点()02Q ,②点()12P ,, 故答案为()02,,()12, (2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ∴⊥轴,故点413D ⎛⎫ ⎪⎝⎭,; ②当点D 在第二象限时,如下图,设点1m 13D m ⎛⎫+ ⎪⎝⎭,,点D (0,n ),点D 的“垂链点”D 在y 轴上,过点D 作DH x ⊥轴于点H ,9090DCH HDC OCD DCH ∠∠∠+=︒+∠'=︒,,HDC OCD ∠∠∴=',90DHC COD ∠∠︒'==,DC D C '=,DHC COD '≌,则DH OC =,即1113m +=,解得:0m =, 故点()01D ,, 综上,点413D ⎛⎫ ⎪⎝⎭,或()01D , (3)图形G 所在的直线表达式为:22y x =-,设点()22M m m -,,其中01m ≤≤, 当N 落在正方形的右边的一条边上,①当T 在x 轴上方时,如下图:分别过M 、N 作y 轴的垂线交于点H '、G ',同理可证:NG T TH ''≌M ,TH NG '=',即()223t m --=,21t m =+,而01m ≤≤,且3N y ≤,则713t ≤≤; ②当T 在x 轴下方时,当3t =-时,点M 关于点T 的“垂链点”恰好为N 在正方形的边上,故3t =-;当点T 在3t =-下方时,且3N x ≥-,同理可得:3m t =--,解得:3t 且0t >,不符合题意舍去;当N 点落在正方形的上面的一条边上时,同理可得:3t m =-,而01m ≤≤,且3N y ≤,解得:1133t -≤≤-, 综上,t 的取值范围是:713t ≤≤或1133t -≤≤-. 【点睛】本题考查一次函数综合运用,正方形的性质,图形的旋转,解不等式等,这种新定义类的题目,通常按照题设顺序逐次求解,解题时注意分类讨论,避免遗漏.24.(1)支撑杆CD 的高度为9cm .(2)手机的宽度为8cm .【分析】(1)如图,连结OA ,由题意可得:O 的直径为10,6,AB = 由,OD AB ⊥ 先求解,OD 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明,AE CD BF AB 设,AD BD x ==则2,AE CD BF AB x 则25,OD x 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:O 的直径为10,6,AB =5,OA,CD AB ⊥ 即,OD AB ⊥ 3,AD BD ∴==22534,OD9.CD OC OD所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:,90,AB AE E EAB ABF∠四边形AEFB 为正方形,,CD EF,AE CD BFAB ,CD AB ⊥∴ 设,AD BD x ==则2,AE CD BF AB x5,OA OC25,OD x由勾股定理可得:2225=25,x x 解得120,4,x x ==经检验0x =不符合题意,舍去,取4,x = 8AB =(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.25.(1)①34a =-;②6个 (2)当3142a -<-时,“区域G ”内有4个整数点; (3)12a =或32a =【分析】(1)①将点(13),代入223y ax ax a =--,求出a 的值即可;。

2022年中考二模考试《数学试题》含答案解析

2022年中考二模考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各数中最大的数是( )A. 5B. 3C. πD. -82.随着”一带一路”建设不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×1073.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.5.下列计算正确是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y26.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPDA. 162°B. 152°C. 142°D. 128°9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x<2时,y随x增大而增大B. a-b+c<0C. 拋物线过点(-4,0)D. 4a+b=0二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA度数是_____度.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD =16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣227.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.S.(1)求抛物线的解析式; (2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件点N.答案与解析一.选择题(共10小题)1.下列各数中最大数是( )A. 5B. 3C. πD. -8【答案】A【解析】试题分析:因为-8<3<<5,所以最大的数是5,故选A.考点:实数的大小比较.2.随着”一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×107【答案】C【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| < 10|)的记数法. 【详解】8200000 用科学记数法表示为8.2×106.故选C【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法的定义.3.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.【答案】A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.5.下列计算正确的是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y2【答案】C【解析】试题分析:选项A,根据合并同类项法则可得x4+x4=2x4,故错误;选项B,根据同底数幂的乘法可得x3•x2=x5,故错误;选项C,根据积的乘方可得(x2y)3=x6y3,故正确;选项D,根据平方差公式(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故错误;故答案选C.考点:整式运算.6.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【详解】解:点P(4,3)关于y轴的对称点坐标为:(﹣4,3),则此点在第二象限.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确把握横纵坐标的关系是解题关键.7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定【答案】B【解析】【分析】直接利用反比例函数的增减性分析得出答案.【详解】解:∵反比例函数y=kx(k>0)中,k>0,∴在每个象限内,y随x的增大而减小,∵点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,且﹣2>﹣4∴y1<y2,故选:B.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD 为( )A. 162°B. 152°C. 142°D. 128°【答案】C【解析】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选C.9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分【答案】A【解析】【分析】 根据众数的定义即可解决问题.【详解】解:这组数据中90出现了两次,次数最多,所以这组数据的众数为90分.故选:A .【点睛】本题考查众数的定义,解题的关键是记住众数的定义.10.已知抛物线y =ax 2+bx +c (a≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x <2时,y 随x 增大而增大B. a -b +c <0C. 拋物线过点(-4,0)D. 4a +b =0【答案】D【解析】【分析】 根据二次函数的性质以及图象对各项进行判断即可.【详解】A. 对称轴为直线x =2,根据二次函数的增减性可得,当x <2时,y 随x 增大而减小,错误;B. 对称轴为直线x =2,与x 轴一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),故当x=-1,0y a b c =>-+,错误;C. 对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),且抛物线与x 轴有且只有两个交点,错误;D. 对称轴为直线x =2,可得22b a-=,即4a +b =0,正确; 故答案为:D .【点睛】本题考查了二次函数的问题,掌握二次函数的性质以及图象是解题的关键. 二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.【答案】(x+y)2(x﹣y)2【解析】【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【详解】x4−2x2y2+y4=(x2−y2)2=(x+y)2(x−y)2.故答案为(x+y)2(x−y)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】8 5【解析】【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【详解】解:根据勾股定理得:AC22345,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:85.【点睛】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.【答案】67.5.【解析】【分析】根据正方形的性质可得∠BAC=45°,由AE=AB根据等腰三角形的性质进行求解即可得. 【详解】∵四边形ABCD是正方形,∴∠BAD=90°,∵AC是对角线,∴∠BAC=12∠BAD=45°,∵AE=AB,∴∠BEA=(180°-∠BAC)÷2=67.5°,故答案为67.5.【点睛】本题考查了正方形的性质、等腰三角形的性质等,熟练掌握正方形的性质是解题的关键.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.【答案】0.3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD = _________0【答案】65【解析】根据直径所对圆周角是直角可得: ∠ACB=90°,∠ADB=90°,因为∠ABC = 40°,所以∠BAC=90°-40°=50°,因为AD平分∠BAC,所以∠BAD=50÷2=25°,所以∠ABD=90°-25°=65°,故答案为65°.16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.【答案】18 5【解析】【分析】由折叠的性质可得S△ABE=S△AB'E,BE=B'E,可证∠BB'C=90°,由勾股定理可求AE的长,由面积法可求BB'的长,由勾股定理可求解.【详解】解:∵将△ABE沿着AE折叠至△AB'E,∴S△ABE=S△AB'E,BE=B'E,∵BE=CE,∴BE=EC=B'E=3,∴∠BB'C=90°,在Rt△ABE中,AE22AB BE+916+5,∵12×AE×BB'=2×12×AB×BE,∴BB'=2435⨯⨯=245,∴B'C22BC B B'-5763625-=185,故答案为:185.【点睛】本题考查了矩形的性质,折叠的性质,求出BB'的长是本题的关键.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2+27.【答案】235-【解析】【分析】直接利用特殊角三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.【详解】解:原式═1+3﹣3933-+=235-.【点睛】本题考查了实数的运算:包含了零指数幂、负整数指数幂、特殊角的三角函数值和去绝对值.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【答案】(1)200(2)60(3)300【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,可求得这次被调查的学生数;(2)首先求得C项目对应人数,然后补全统计图即可;(3)用该校1000学生数×参加了羽毛球社团的人数所占的百分比即可得到结论.【详解】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人); 补充条形统计图如下图:(3)1000×60200=300(人),答:这1000名学生中有300人参加了羽毛球社团.【点睛】题考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.扇形统计图直接反映部分占总体的百分比大小.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.【答案】(1)证明见解析(2)四边形ABCD是矩形;理由见解析【解析】试题分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用”角角边”证明△AED和△CFB全等即可;(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.考点:全等三角形的判定与性质;矩形的判定.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【答案】慢车速度为50千米/小时,快车速度为60千米/小时【解析】【分析】设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意列方程即可得到结论.【详解】解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得150x﹣12=1501.2x,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.【点睛】本题考查了分式方程的应用,正确的理解题意是解题的关键.22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.【答案】(1)见解析;(2)MN=2.【解析】【分析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN=22=22.DM DN【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,0);(2)S=23(023)23(23)t tt t⎧<⎪⎨-⎪⎩;(3)存在,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0)【解析】【分析】(1)求出A,B两点的坐标,求出AB=2,则OC可求出,则点C的坐标可求出;(2)先求出∠ABC=90°,分两种情况考虑:当M在线段BC上;当M在线段BC延长线上;表示出BM,利用三角形面积公式分别表示出S与t的函数关系式即可;(3)点P是y轴上的点,在坐标平面内存在点Q,使以A、B、P、Q为顶点的四边形是菱形,如图所示,利用菱形的性质,根据AQ与y轴平行或垂直,求出满足题意Q得坐标即可.【详解】解:(1)对于直线y33当y=0 时,33x=0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y3∴B(03,∴OB3∵∠AOB=90°,∴AB2200A B+13+2,∵AB:AC=1:2,∴AC =4,∴OC =3,∴C (﹣3,0);(2)如图所示,∵1OA =,3OB =21AB OA ==,∴∠ABO =30°,同理:BC =3,∠OCB =30°,∴∠OBC =60°,∴∠ABC =90°,分两种情况考虑:①若M 在线段BC 上时,BC =3CM =t ,可得BM =BC ﹣CM =3﹣t ,此时S △ABM =12BM •AB =12×(3t )×2=3t (0≤t <3②若M 在BC 延长线上时,BC =3,CM =t ,可得BM =CM ﹣BC =t ﹣3,此时S △ABM =12BM •AB =12×(t ﹣3)×2=t ﹣3t 3); 综上所述,S =23(023)23(23)t t t t ⎧<⎪⎨-⎪⎩;(3)存在.若AB 是菱形的边,如下图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).【点睛】此题属于一次函数综合题,考查了含30度直角三角形的性质,勾股定理,坐标与图形性质,一次函数图象上点的坐标特征,三角形的面积,菱形的性质,利用了分类讨论的思想,熟练掌握一次函数的性质及菱形的性质是解本题的关键.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD 和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF 得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;S.(2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.【答案】(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S =梯形﹣﹣即可解决问题.(3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOB S S S S =梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15.(3)存在.如图2中,∵OC=OB=5,∴△BOC是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质。

2020届九年级《新题速递·数学》5月第01期(考点10-12)

2020届九年级《新题速递·数学》5月第01期(考点10-12)

2020届九年级《新题速递·数学》考点10-12考点10四边形 P1 考点11圆 P13 考点12图形的变化 P33考点10 四边形 1.【2020年陕西省西安市益新中学中考数学二模试题】如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )B. 38C. 78D. 58【答案】C【解析】【分析】 如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB V ≌GED V,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG V 中依据勾股定理列方程求解即可.【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=Q ,AEB GED ∠∠=,AB GD 3==,AEB ∴V ≌GED V,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG V 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.2.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】33.【福建省漳州市双十学校2019_2020学年九年级线上教学阶段考试数学测试题】如图,平行四边形ABCD 的周长是22,△ABC 的周长是17,则AC 的长为___________.【答案】2【解析】【分析】根据平行四边形的性质,得出AD+DC=11,然后根据题意,即可得出AC 的长.【详解】解:∵平行四边形ABCD 的周长是22,∴AD+DC=11,∵△ABC 的周长是17,∴AC=17-11=6,故答案为:6.【点睛】本题主要考查了平行四边形的性质,关键是根据平行四边形的周长正确求出AD+DC 的长度.4.【2020年陕西省西安市益新中学中考数学二模试题】如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE ,CE ,且∠ABE =∠BCE ,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】4.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF∴EF=4,∴PD+PE的长度最小值为4,故答案为:4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.5.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1.若M、N 分别是线段AD、AE上的动点,则MN+MF的最小值为________.【解析】【分析】作点F关于AD的对称点G,过点G作GN⊥AE于点N,交AD于点M,可证得MG=MF,△MDG ≌△MDF,DF=DG=1 ,可推出MN+MF=NG,根据垂线段最短,可知此时MN+MF的最小值就是NG的长;利用正方形的性质,可求出BE的长,同时可以推出∠B=∠ANM=∠FDM,∠AMN=∠BAE=∠FMD,再利用有两组对应角相等的三角形相似,可证得△ABE∽△MNA∽△FMD,然后利用相似三角形的性质及勾股定理就可求出MN,MG的长,由此看求出NG的长.【详解】作点F关于AD的对称点G,过点G作GN⊥AE于点N,交AD于点M,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2 ∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD -MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴;在Rt △MDG 中,=∴=故答案为:5. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.6.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】7.【2020年河南省新乡市中考数学评价测试题】如图,在正方形ABCD 中,AB =E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG EF ⊥于点G ,连接DG ,则线段DG 的最小值为______.【答案】2【解析】【分析】连接AC ,BD 交于O ,得到EF 过点O ,推出点G 在以AO 为直径的半圆弧上,设AO 的中点为M ,连接DM 交半圆弧于G ,则此时,DG 最小,根据正方形的性质得到AC 8=,AC BD ⊥,根据勾股定理即可得到结论.【详解】解:连接AC ,BD 交于O ,Q 过点E 、F 的直线将正方形ABCD 的面积分为相等的两部分,EF ∴过点O ,AG EF ⊥Q ,AGO 90∠∴=︒,∴点G 在以AO 为直径的半圆弧上,则AM OM GM 2===设AO 的中点为M ,连接DM 交半圆弧于G ,则此时,DG 最小,Q四边形ABCD 是正方形,AB =AC 8∴=,AC BD ⊥,1AO OD AC 42∴===, 1AM OM AO 22∴===,DM ∴==,∴DG DM GM 2=-=故答案为:2.【点睛】本题考查了正方形的性质,勾股定理,圆周角定理,正确地作出辅助线是解题的关键. 8.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵BE =FC ,∴BC =EF ,在△ABC 和△DFE 中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.9.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.10.【2020年陕西省西安市益新中学中考数学二模试题】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.11.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:(1)△AEB≌△CFD;(2)当∠ABE= 度时,四边形BEDF是菱形.【解析】(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBA=∠FDC,又∵AD∥BC,∠A =∠C, AB=DC ∴△AEB≌△CFD;(2)当∠ABE=30°时,四边形BEDF是菱形. 12.【江苏省徐州市2020年中考模拟试卷数学试题A】【解析】13.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m ﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD 的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中.考点11圆1.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A .4B .6C .8D .12解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD 是直径∴∠BAD=90°∴BD=2AB=8.故选:C .2.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,半径为5的⊙O 中,CD 是⊙O 的直径,弦AB ⊥CD 于E ,AB =8,F 是»BD上一点,连接AF ,DF ,则tan ∠F 的值为( )A. 58B. 45C.D. 2【答案】D【解析】【分析】连接OB 、BD ,如图,根据垂径定理得到AE=BE=4,则利用勾股定理可计算出OE=3,接着在Rt△BDE 中根据正切的定义得到tan ∠DBE=2,然后根据圆周角定理即可得到tan ∠F 的值.【详解】连接OB 、BD ,如图,△CD 是△O 的直径,弦AB △CD ,△AE =BE =12AB =4,在Rt△OBE 中,OE 3,在Rt△BDE 中,tan△DBE =DE BE =354+=2, △△F =△ABD ,△tan△F =2.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和勾股定理.3.【2020年河南省新乡市中考数学评价测试题】如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A. 203π-B. 203π+C. 203πD. 203π 【答案】A【解析】【分析】如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC=CE =8,∠ECB =60°,OE =,所以由扇形面积公式、三角形面积公式进行解答即可. 详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB , ∴∠ACB =90°,OB =OC =OD =4,BC =CE =8.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE −S 扇形BOD −S △OCE=2260811-4-436042ππ⨯⨯⨯⨯=203π故选:A .【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.4.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】D5.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB 上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B的度数.【详解】连接OA,OB,∵弦AB垂直平分半径OC∴OD=12 OA,∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P在优弧AB上时∠APB=12∠AOB=12×120°=60°;当点P在劣弧上时,∠APB+∠AP1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.6.【2020年陕西省西安市益新中学中考数学二模试题】如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B【解析】【分析】 先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可.【详解】连接OA ,∵o OBA 20∠=,OB OA =∴o OAB=OBA 20∠∠=∵AC OC =且OC OA =∴AOC ∆是等边三角形∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒∴=2=80BOC BAC ∠∠︒故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅∆是等边三角形是解本题的关键.助线证出AOC7.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】8.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为__________.60【答案】π9.【2020年江苏省常州市中考数学5月模拟试题】如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC.若∠A=36°,则∠C=______.【答案】27o【解析】【详解】解:设AC与⊙O的另一交点为D,连接BD,则∠DBC=90°,设∠C=x,则∠ABD=x,∠BDC=∠A+∠DBA=36°+x;∵∠CDB+∠C=90°,∴36°+x+x=90°,解得x=27°10.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,在半径为2,圆心角为90°的扇形ACB内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为(结果保留π).解:在Rt△ACB中,∵AC=BC=2,∴AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,∵CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故答案为:π﹣1.11.【2020年吉林省长春市中考第一次(5月)模拟数学试题】解:(1)如图,连结OD.∵⊙O 与边BC 相切于点D ,∴OD ⊥BC ,∴∠ODB =90°.∵∠C =90°,∴∠C =∠ODB =90°.∴OD ∥AC .∴∠CAD =∠ODA .∵OA =OD ,∴∠OAD =∠ODA .∴∠OAD =∠CAD . ∴AD 平分∠BAC .(2)如图,连结OF .∵AD 平分∠BAC ,且∠CAD =25°,∴50CAB ∠=︒∴∠EOF =100°.∴»EF 的长为10051809⨯π=π.12.【四川省巴中市2020届九年级5月模拟考试数学试题】【解析】13.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】如图,四边形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心, OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.【解析】(1)过点O作OG⊥DC垂足为G ∴AD∥BC, AE⊥BC于E ∴AO⊥AD,∴∠OAD=∠OGD=90O, △AOD和△ODG中, DF平分∠BDC,∠OAD=∠OGD, ∠ADO=∠GDO, OD=OD,∴△AEB≌△CFD,∴OA=OG, ∴CD与Oe相切.(2)如图所示:连接OF.∵OA⊥BC,∴BE=EF=12BF=12.在Rt△OEF中,OE=5,EF=12,∴.∴AE=OA+OE=13+5=18.∴tan∠ABC=AEBE=32.14.【福建省漳州市双十学校2019_2020学年九年级线上教学阶段考试数学测试题】如图,AB是⊙O的直径,C是⊙O上一点,D是»AC的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若DH=9,tan C=34,求直径AB的长.【答案】(1)AE是e O的切线.(2)AB=20.【解析】【分析】(1)根据题意可知OA=OC,然后根据三线合一,可得OE⊥AC,最后根据圆周角定理,进而作出证明即可.(2)根据锐角三角函数,求出HF的长,然后根据相似三角形的判定,证明△DFH∽△CFD,接着根据相似三角形的性质,可求出AF、CF的长,进而用勾股定理即可求解.【详解】(1)连接OC∵D是»AC的中点,∴∠AOD=∠COD∵OA=OC∴OE⊥AC∴∠AFE=90°∴∠E+∠EAF=90°∵∠AOE=2∠C,∠CAE=2∠C ∴∠CAE=∠AOE∴∠E+∠AOE=90°∴∠EAO=90°∴AE是e O的切线. (2)∵∠C=∠B∵OD=OB∴∠B=∠ODB∴∠ODB=∠C∴sinC=sin∠ODB=HF HF3== DH95∴HF=27 5由勾股定理得:DF=36 5∵∠C=∠FDH,∠DFH=∠CFD ∴△DFH∽△CFD∴DF FH= CF DF∴CF=48 5∴AF=CF=48 5设OA=OD=x∴OF=x-36 5∵AF2+OF2=OA2∴222 4836x=x 55⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭解得x=10∴OA=10∴AB=20.【点睛】本题主要考查了相似三角形的判定和性质以及锐角三角函数、圆的切线和基本性质,熟练掌握相关性质是解题的关键.15.【2020年陕西省西安市碑林区西北工业大学附属中学中考数学四模试题】如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.16.【2020年陕西省西安市益新中学中考数学二模试题】如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE,∴∠AOE=2∠ACE,∵∠B=2∠ACE,∴∠AOE=∠B,∵∠P=∠BAC,∴∠ACB=∠OEP,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OEP=90°,∴PE是⊙O的切线;(2)∵OA=OE,∴∠OAE=∠OEA,∵AE=EF,∴∠EAF=∠AFE,∴∠OAE=∠OEA=∠EAF=∠AFE,∴△AEF∽△AOE,∴AE AF OA AE,∵AF=2,AE=EF,∴OA=5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.17.【2020年福建省福州市一中中考数学一模试卷(5月)】如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cos C=时,求⊙O的半径.解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2 又OM=OB∴∠2=∠3∴OM∥BC∵AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线(2)∵AB=AC∴∠ABC=∠C,AE⊥BC,∴E是BC中点∴EC=BE=3∵cos C==∴AC=EC=∵OM∥BC,∠AOM=∠ABE ∴△AOM∽△ABE∴又∵∠ABC=∠C∴∠AOM=∠C在Rt△AOM中cos∠AOM=cos C=,∴∴AO=AB=+OB=而AB=AC=∴=∴OM=∴⊙O的半径是18.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E,与⊙O相交于点F,连接BF.(1)求证:BD=BE;(2)若DE=2,BD=AE的长.【答案】(1)见解析;(2)AE=18.【解析】【分析】(1)利用圆周角定理得到∠ACB=90°,再根据切线的性质得∠ABD=90°,则∠BAD+∠D=90°,然后利用等量代换证明∠BED=∠D,从而判断BD=BE;(2)利用圆周角定理得到∠AFB=90°,则根据等腰三角形的性质DF=EF=12DE=1,再证明△DFB∽△DBA,利用相似比求出AD的长,然后计算AD-DE即可.【详解】(1)证明:△AB是△O的直径,△△ACB=90°,△△CAE+△CEA=90°,而△BED=△CEA,△△CAE+△BED=90°,△BD是△O切线,△BD△AB,△△ABD=90°,△△BAD+△D=90°,又△AF平分△CAB,△△CAE=△BAD,△△BED=△D,△BD=BE;(2)解:△AB为直径,△△AFB=90°,且BE=BD,△DF=EF=12DE=1,△△FDB=△BDA,△△DFB△△DBA,△BDDA=DFBD,△DA=20,△AE=AD﹣DE=20﹣2=18.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理、等腰三角形的判定与性质、相似三角形的判定与性质,熟练掌握切线的性质、相似三角形的判定与性质是解答本题的关键.19.【2020年河南省新乡市中考数学评价测试题】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为52,BG的长为154,求tan∠CAB.【答案】(1)见解析;(2)见解析;(3)tan∠CAB=34.【解析】【分析】(1)由∠OEB=∠ACD,∠ACD=∠ABD知∠OEB=∠ABD,由OF⊥BD知∠BFE=90°,即∠OEB +∠EBF=90°,从而得∠ABD+∠EBF=90°,据此即可得证;(2)连接AD,证△DCG∽△ACD即可得;(3)先证△CDF∽△GCF得GF CGCF CD=,再证△DCG∽△ABG得CG BGCD AB=,据此知GF BGCF AB=,由r=52,BG=154知AB=2r=5,根据tan∠CAB=tan∠ACO=GF BGCF AB=可得答案.【详解】(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴»»CD BC=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴CD CG AC CD=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴GF CG CF CD=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴CG BG CD AB=,∴GF BG CF AB=,∵r=52,BG=154,∴AB=2r=5,∴tan∠CAB=tan∠ACO=GF BGCF AB==34.【点睛】本题是圆的综合问题,解题的关键是掌握圆的有关性质、相似三角形的判定与性质、圆的切线的判定等知识点.考点12 图形的变化1.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图是某个几何体的表面展开图,则这个几何体是( )A. 长方体B. 三棱柱C. 三棱锥D. 四棱锥【答案】B【解析】【分析】 侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】观察图形可知,展开图是由三个全等的矩形,和两个全等的三角形构成,符合三棱柱的展开图特征,△这个几何体三棱柱.故选:B .【点睛】本题考查的是三棱柱的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.【2020年福建省福州市一中中考数学一模试卷(5月)】如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )A .B .C .D .解:从上面看,下面一行第1列只有1个正方形,上面一行横排3个正方形.是故选:C.3.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】C4.【江苏省扬州中学教育集团树人学校2020届九年级5月模拟数学试题】下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.等腰直角三角形 D.正六边形【答案】D5.【2020年江苏省常州市中考数学5月模拟试题】下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C【解析】【详解】A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.考点:中心对称图形;轴对称图形.6.【2020年吉林省长春市中考第一次(5月)模拟数学试题】【答案】D7.【2020年河南省新乡市中考数学评价测试题】如图是某几何体的三视图,则该几何体的全面积等于()A. 112B. 136C. 124D. 84【答案】B【解析】试题解析:该几何体是三棱柱.如图:3=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.8.【2020年河南省新乡市中考数学评价测试题】如图,在▱ABCO中,A(1,2),B(5,2),将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,则点B′的坐标是()A. (﹣2,4)B. (﹣2,5)C. (﹣1,5)D. (﹣1,4)【答案】B【解析】【分析】根据旋转的性质证明△BOD≌△B’OD’得到OD=OD’,BD=B’D’即可求出B’坐标.【详解】∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,∴∠BOB’=90°∴∠BOD’+∠B’OD’=90°又∠BOD’+∠BOD=90°∴∠BOD=∠B’OD’作BD⊥x轴,B’D’⊥y轴,∴∠BDO=∠B’ D’O=90°又BO=B’O∴△BOD≌△B’OD’∴OD=OD’=5,BD=B’D’=2∴点B′的坐标是:(﹣2,5).故选:B.【点睛】此题主要考查了旋转的性质,正确掌握平全等三角形的判定是解题关键.9.【四川省巴中市2020届九年级5月模拟考试数学试题】【答案】A10.【江苏省徐州市2020年中考模拟试卷数学试题A】【答案】11.【江苏省盐城市建湖县2020届九年级第一次模拟考试数学试题】【答案】12.【2020年江苏省常州市中考数学5月模拟试题】如图,在ABC V 中,5,6AB AC BC ===,将ABC V 绕点B 逆时针旋转60︒得到',A BC 'V 连接'A C ,则'A C 的长为_______.【答案】4+【解析】【分析】连结CC′,A′C 交BC 于O 点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C 垂直平分BC',则1'32BO BC ==,然后利用勾股定理计算出A′O ,CO ,即可求解. 【详解】解:连结','CC A C 交BC 于点,如图ABC ∆Q 绕点B 逆时针旋转60︒得到'''A B C ∆'6BC BC ∴==,'60CBC ︒∠=,''5,A B AB AC A C ===='BCC ∴∆为等边三角形,'CB CB ∴=而''',A B A C ='A C ∴垂直平分',B C1'32BO BC ∴== 在'Rt A OB ∆中,'4A O ==在Rt OBC ∆中,sin sin 60OC t CBO BC ︒∠==Q62OC ∴=⨯=''4A C A O OC ∴=+=+故答案为:4+【点睛】此题考查旋转的性质,等边三角形的性质,解题的关键是证明△BCC′为等边三角形和A′C ⊥BC′.13.【2020年陕西省西安交通大学附属中学中考数学四模试题】如图,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH ,若EH =4,EF =5,那么线段AD 与AB 的比等于_____.【答案】4140. 【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,由“AAS”可证Rt△AHE≌Rt△CFG,可得AH=CF=FN,再由勾股定理及直角三角形的面积公式求出AD,AB的长,即可求解.【详解】如图:由折叠的性质可得:△1=△2,△3=△4,AE=EM=BE,DH=HN,CF=FN,△△2+△3=90°,△△HEF=90°,同理四边形EFGH的其它内角都是90°,△四边形EFGH是矩形.△EH=FG;又△△1+△4=90°,△4+△5=90°,△△1=△5,同理△5=△7=△8,△△1=△8,△Rt△AHE△Rt△CFG(AAS),△AH=CF=FN,又△HD=HN,△AD=HF,在Rt△HEF中,EH=4,EF=5,根据勾股定理得HF AD,△S△EFH=12×EF×EH=12×HF×EM,△EM=41,△AB=2AE=2EM=41,△AD:AB=41:40=41 40,故答案为:41 40.【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.14.【2020年江苏省常州市中考数学5月模拟试题】图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD (点C、D在小正方形的顶点上),使得四边形ABCD是中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF (点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据中心对称图形和轴对称图形的性质画出即可;(2)tan∠FAB=3只需把∠FAB放到直角三角形中,再根据中心对称图形的性质画出即可.【详解】(1)如图1所示:(2)如图2所示:考点:中心对称图形、轴对称图形、三角函数.。

2010年江苏中考数学试题(含答案)

2010年江苏中考数学试题(含答案)

二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。

考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。

2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。

3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题2分,共16分。

在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。

2010年河北省武邑县第二中学中考数学模拟试题及答案

2010年河北省武邑县第二中学中考数学模拟试题及答案

2010年武邑县第二中学中考模拟考试数学试题注意事项:1. 本试卷共8页,总分120分,考试时间120分钟。

2. 答题前请将密封线左侧的项目填写清楚。

一项是符合题目要求的) 1. 17-的绝对值是 ( )A .7B .7-C .17D .71-2. 下列计算正确的是 ( )A. 22x x x +=B. 2x x x +=C. 321xy xy -=D. 220xy x y -=3. 下列几何体的正视图与众不同的是 ( )4. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于 y 轴对称,那么点 A 的对应点 A' 的坐标为 ( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2) 5. 小明和爸爸一起做投篮游戏,两人商定:小明投中13分,爸爸投中1个得1分,结果两人一共投中20人的得分恰好相等.设小明投中x 个,爸爸投中y 个,根据题意列方程组为 ( ) A .20,3.x y x y +==⎧⎨⎩B. 20,3.x y x y +==⎧⎨⎩ C. 320,.x y x y +==⎧⎨⎩ D. 320,.x y x y +==⎧⎨⎩6. 三人同行,其中两个性别相同的概率是 ( )A .1B .0C .13D .237. 小红的衣服被铁钉划了一个呈直角三角形的洞,其中三角形的两边长分别为lcm 和2cm ,若用同色圆形布将此洞全部覆盖,那么这块圆布的直径最小应等于 ( )A B C Dx15题图下午5时早上10时A. 2cmB. 3cmC. 2cm 或3cmD. 2cm 或 5 cm8. 如图,将非等腰A B C △的纸片沿D E 折叠后,使点A 落在B C 边上的点F 处.若点D 为A B 边的中点,则下列结论:① BD F △是等腰三角形;②D FE C FE ∠=∠;③D E 是A B C △的中位线,成立的有 ( )A .①②B .①③C .②③D .①②③9. 边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋 转75o ,使点B 落在抛物线y = ax 2(a < 0)的图像上. 则抛物线y = ax 2的函数解析式为 ( ) A. y=232x -B. y=-232xC. y=-22xD. y=-221x10. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,P 点在AD 边上以每秒1 cm 的速度从A 向D运动,点Q 在BC 边上,以每秒4 cm 的速度从C 点出发,在CB 间往返运动,二点同时出发,待P 点到达D 点为止,在这段时间内,线段PQ 有 次平行于AB( )A .1 B. 2 C. 3 D. 4二、填空题(本大题共8个小题,每小题3分,共24分.请把答案写在题中横线上) 11. 已知不等式3x-a ≤0的解集为x ≤5,则a 的值为 . 12. 已知22125a b a b a b -=+=+,,的值为____________.13. 如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=125°, 则∠DBC的度数为_________.14. 如图,早上10点小东测得某树的影长为2m ,到了下午5时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度约为_____m.AC8题图9题图10题图16题图 15. 如图,AB 为⊙O 的直径,OE ⊥AB 交⊙O 于点E ,点D 是弧BE 上的一个动点(可与B 、E 重合),若弧AD 所对的圆周角∠C 的度数为α,则α的取值范围是 . 16. 若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为_________.17. 如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH 上,除D 点外,其他顶点均在矩形EFGH 的边上.AB=50cm ,BC=40cm ,55BAE ∠=︒,则EF 的长为 cm .(参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.43)18. 希希为了美化家园、迎接奥运,她准备把自己家的一块三角形荒地种上芙蓉花和菊花,并在中间开出一条小路把两种花隔开(如图),同时也方便浇水和观赏. 小路的宽度忽略不计,且两种花的种植面积相等(即S △AED =S 四边形DCBE ). 若小路DE 和边BC 平行,边BC 的长为8米,则小路DE 的长为 米(结果精确到0.1m).三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.DBAF CEH G17题图18题图18题图东 北20. (本题满分8分)一艘渔船正以30海里/小时的速度由西向东追赶鱼群,渔船在A 处看见小岛B 在船的北偏东60°. 40分钟后,渔船行至O 处,此时看见小岛B 在船的北偏东30°.在如图所示的坐标系中,点O 为坐标原点,点A 位于x 轴上.(1)根据上面的信息,请在图中画出表示北偏东60°、北偏东30°方向的射线,并标出小岛B 的位置;(2)点A 坐标为 ,点B 坐标为 ;(3)已知以小岛B 为中心,周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能?21. (本题满分8分)为积极响应市教育局倡导的“阳光体育运动”的号召,某校九年级全体同学参加了一分钟跳绳比赛.九年级共有600名同学(其中女同学320名),从中随机抽取部分同学的成绩,绘制频数分布直方图如下:男同学一分钟跳绳成绩频数分布直方女同学一分钟跳绳成绩频数分布直方129.5109.5119.5109.5149.5139.599.5149.5139.5129.5119.599.5159.51514131211109865432170159.5151413121110986543217人数成绩成绩人数21题图(1)共抽取了 名同学的成绩.(2)若规定男同学的成绩在130次以上(含130次)为合格,女同学的成绩在120次以上(含120次)为合格.①在被抽取的成绩中,男、女同学各有多少名成绩合格; ②估计该校九年级约有多少名同学成绩合格?22. (本题满分9分)如图,菱形ABCD 的边长为6,∠BAD=60°,AC 为对角线.将A C D ∆绕点A 逆时针旋转60°得到A C D ''∆,连结D C '. (1)求证:A D C ∆≌A D C '∆.(2)求在旋转过程中线段CD 扫过图形的面积.(结果保留π).ABCDC 'D '22题图24题图 图1 图223. (本题满分10分) 家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R(k Ω)随温度t (℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加154k Ω.(1)求当10≤t ≤30时,R 和t 之间的关系式;(2)求温度在30℃时电阻R 的值;并求出t ≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 k Ω?24. (本题满分10分)把两个正方形纸片在相同的顶点A 处钉上一个钉子,然后旋转小正方形AEFG. 已知大正方形的边长为4,小正方形的边长为a (2≤a ).(以下答案可以用含a 的代数式表示)(1)把小正方形AEFG 绕A 点旋转,让点F 落在正方形ABCD 的边AD 上得图1,求B DF ∆的面积BDF S ∆;(2)把小正方形AEFG 绕A 点按逆时针方向旋转45°得图2,求图中BDF ∆的面积BDF S ∆;(3)把小正方形AEFG 绕A 点旋转任意角度,在旋转过程中,设BDF ∆的面积为BDF S ∆,试求BDF S ∆的取值范围,并说明理由.23题图25. (本题满分12分)“清新特”花卉养护服务中心是一家专门从事花卉定期养护、花卉寄养的专业纯服务型企业. 此企业信息部进行市场调查时发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间的关系式为y A =0.4x ;信息二:如果单独投资B 种产品,所获利润y B (万元)与投资金额x (万元)之间的关系如图所示:(1)请求出y B 与x 的函数表达式;(2)如果单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在什么范围?(3)如果企业同时对A ,B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?26. (本题满分12分)如图,在矩形A B C D 中,9A B =,AD =P 是边B C 上的动点(点P 不与点B 、点C 重合),过点P 作直线PQ BD ∥,交C D 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,设C P 的长度为x ,PQR △与矩形x25题图A B C D 重叠部分的面积为y .(1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形A B C D 的A B 边上? (3)求y 与x 之间的函数关系式;参考答案一、1-5 CBDDA 6-10 AABBD二、11. 15 12.±7 13. 55O14. 4 15. 45O≤α≤90O16. b>a>c 17. 63.8 18. 5.7 三、19. 原式21(1)x x x x -=⨯-11x =-.当2x =-时,原式13=-20.(1)如图所示,所作射线为AM ,ON ,它们的交点即为所求小岛B 的位置;(2)(20-,0);(,103;(3)∵小岛B 到x 轴的最短距离为10, ∴渔船继续向东追赶鱼群,没有进入危险区的可能.DQC BP RA26题图 BADC(备用图1)BADC(备用图2)21.(1)60(2)①由统计图可知,男同学有21名成绩合格,女同学有27名成绩合格. ②21272803204843030⨯+⨯= (名) ∴估计该校九年级约有484名同学成绩合格.22.(1)由旋转可知:AC AC '=,60C AC '∠=︒.在菱形ABCD 中,∠BAD=60°∴1302D A C D A B ∠=∠=︒∴D AC D AC '∠=∠.又∵,AC AC AD AD '== ∴A D C ∆≌A D C '∆. (2)连结BD 交AC 于点O ,则BD ⊥AC ,2AC AO =. 在Rt A O D ∆中,30D AO ∠=︒,6A D =,∴AO =.∴2AC AO ==∴26018360AC C S ππ'⨯⨯==扇形.∵26066360ADD S ππ'⨯⨯==扇形,∴CD 扫过图形的面积为186ππ-=12π. 23.(1)当10≤t ≤30时,t60R =(2)温度在30℃时,电阻R =2(k Ω),当t ≥30时,R =2+6-t 154)30t (154=-(3)把R=6 (k Ω),代入R 6-t 154=得,t=45(℃),所以,温度在10℃~45℃时, 电阻不超过6 k Ω.24.(1)BDF S ∆=ABD S ∆-ABF S ∆ ∵小正方形的边长为a,∴AF =a 2 ∴BDF S ∆=ABD S ∆-ABF S ∆ =4×4×21-21×4×a 2=8-2a 2(2)如图1,BDF S ∆=ABD S ∆+AGFD S 梯形-BGFS ∆24题图1=21×4×4+21×a (4+a )-21×a (4+a )= 8(3)如图2,作FH ⊥BD 于H 点,连结AF. 则 BDF S ∆=21×BD ×FH因为小正方形AEFG 绕A 点旋转任意角度,所以点F 离线段 BD 的距离是变化的,即FH 的长度是变化的.由于BD 得长度是 定值,所以当FH 取得最大值时BDF S ∆最大,当FH 取得最小值时BDF S ∆最小.所以当点F 离BD 最远时,FH 取得最大值,此时点F 、A 、H 在同一条直线上(如图3所示); 当点F 离BD 最近时,FH 取得最小值,此时点F 、A 、H 也在同一条直线上(如图4所示). 在图3中,BDF S ∆=21BD ×FH=21×= 8 + 4a 在图4中, BDF S ∆=12BD ×FH=12×a)= 8-4a∴BDF S ∆的取值范围是: 8-4a ≤BDF S ∆≤ 8+4a 25.(1)设y B =a(x-4)2+3.2 ∴16a+3.2=0解之得a=-0.2∴y B =-0.2(x-4)2+3.2 (0 ≤x ≤ 8)(2)由题意得-0.2(x-4)2+3.2=3,解之得x 1=3,x 2=5 由图像可知当3≤x ≤5时y B ≥3∴单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在3≤x ≤5范围. (3)设投资B 种产品x 万元,则投资A 种产品(10-x )万元,获得利润W 万元, 根据题意可得W=-0.2x 2+1.6x+0.4(10-x )=-0.2x 2+1.2x+4, ∴W=-0.2(x -3)2+5.8,当投资B 种产品3万元时,可以获得最大利润5.8万元,所以投资A 种产品7万元,B 种产品3万元,这样投资可以获得最大利润5.8万元. 26.(1)如图, 四边形A B C D 是矩形,A B C D A D B C ∴==,.又9A B =,AD =90C ∠=,9C D ∴=,BC =tan 3BC C D B C D∴∠==,30CDB ∴∠=.PQ BD∥,30C Q P CD B ∴∠=∠=.(2)如图1,由轴对称的性质可知,RPQ CPQ△≌△,RPQ CPQ∴∠=∠,R P C P =.DQC BPRA26题图24题图424题图3由(1)知30C Q P ∠= ,60RPQ CPQ ∴∠=∠= , 60RPB ∴∠= ,2RP BP ∴=.C P x = ,P R x ∴=,PB x =.在R P B △中,根据题意得:)x x =,解这个方程得:x =(3)当点R 在矩形A B C D 的内部或A B 边上时,0x <≤21133222C PQ S C P C Q x x x=⨯⨯== △×x 3RPQ CPQ △≌△,∴当0x <≤22y x =当R 在矩形A B C D 的外部时(如图2),33x <<, 在R t PFB △中,60RPB ∠= ,2)P F B P x ∴==,又RP C P x == ,3RF RP PF x ∴=-=-在R t E R F △中,30EFR PFB∠=∠=,6ER ∴=-. 211822ERF S ER FR x x ∴=⨯=-+△,RP Q E R F y S S =- △△,∴当x <<时,218y x =+-.综上所述,y 与x 之间的函数解析式是:22(0218x x y x x <=⎨⎪+-<<⎩≤.D Q C B P A 26题图1 D Q C B P R A 26题图2 F E。

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考数学综合模拟测试题(附答案解析)

18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,Pn.若点P1的坐标为(2,0),则点P2 017的坐标为____________.
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,

湖南省永州市2022-2023学年九年级下学期第三次检测数学试题(含答案)

2023年中考数学模拟试题问卷考生注意:考试时量120分钟,满分150分;一、选择题(本大题共10个小题,每小题4分,满分40分.每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填涂在答题卡上的相应位置)1. 对于整数2023下列说法错误的是()A. 2023有平方根B. 2023有立方根C. 2023的绝对值是它本身D. 2023的相反数是它本身2. 永州市教育局高度重视校园安全教育,要求各级各类学校学生从认识安全警告标志入手开展安全教育,下列安全图标不是轴对称的是( )A. B. C. D.3. 据报道,2023年湖南省高考报名人数为65.5万,比2022年增加了近8万,将65.5万用科学记数法表示为()A. B. C. D. 4. “杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A. 23,24B. 23,23C. 23,25D. 24,255.如图,已知AC 是⊙O 的直径,过点C 的弦CD 平行于半径OB ,若∠C 的度数是40°,则∠B 的度数是( )A .15°B .20°C.30°D .40°6. 如图,,为等边三角形,,则等于() A. . B. C. D. 45°465.510⨯46.5510⨯56.5510⨯60.65510⨯cm AB CD ∥ACE △40DCE ∠=︒EAB ∠20︒30︒40︒(第5题) (第6题) (第10题)7. 一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-3.14,0,.从中随机地摸取一个小球,则这个小球所标数字是无理数的概率为( )A. B. C. D. 8. 不等式组的整数解的和为( ) A. 1 B. 0 C. -1D. -29. 对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( ) A. B. C. D.无解10.二次函数的图像的一部分如图所示,已知图像经过点,其对称轴为直线.下列结论:①;②;③;④点是抛物线上的两点,若,则;⑤ 若抛物线经过点,则关于的一元二次方程的两根分别为-3,5;其中正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8个小题,每小题4分,满分32分,请把答案填写在答题卡上的相应位置)11. 分解因式:______.12.已知x 1,x 2分别为一元二次方程x 2﹣2024x ﹣4=0的两个实数解,则的值为______.13. 已知点,,都在反比例函数(k 为常数,且)的图象上,则,,之间的大小关系是______.(用“<”连接)14.如图,是的内接三角形,,连接,,则(劣弧)的长是__________.π1413123451341233x x x x ->-⎧⎪⎨-≤-⎪⎩a b ⊗21a b a b ⊗=-21118133==--⊗2(2)14x x ⊗-=--5x =6x =7x =()20y ax bx c a =++≠()1,0-1x =0abc <240b ac -<80a c +<()()1122,,C x y D x y 12x x <12y y <()3,n -x ()200ax bx c n a ++-=≠33222m n m n mn ++=1211+x x ()11A y ,()23B y ,()34C y -,2k y x-=0k ≠1y 2y 3y ABC △O AB =60ACB ∠=︒OA OB AB15. 如图,点P为正六边形ABCDEF的边AF的中点,连接PC、PD,若,则的面积为______.16. 一个物体的三视图如下,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是___________.(第14题)(第15题)(第17题)(第18题)17.如图,在中,,以点A为圆心,AB长为半径作弧交BC于点D,交AC于点E.再分别以点C,D为圆心,大于的长为半径作弧,两弧相交于F,G两点.作直线FG.若直线FG经过点E,则的度数为________.18. 我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的最短距离为__________.最长距离为__________.三、解答题(本大题共8个小题,满分78分,请把必要的解答过程写在答题卡上的相应位置)2AB=PCDABCAC BC=12CDAEG∠()2,1A20.(8分)解方程:21.(8分)风筝起源于中国,最早的风筝是由古代哲学家墨翟制造的,中国风筝问世后,很快被用于传递信息,飞跃险阻等军事需要,唐宋以后传入民间,成为人们休闲娱乐的玩具.上周末,小伟和爸爸一起去野外放风筝,不慎,两个风筝在空中P 处缠绕在一起,如图,小伟在地面上的A 处测得点P 的仰角为30°,爸爸在距地面2米高的C 处(即米)测得点P 的仰角为60°,已知A 、B 、D 在一条直线上,,,米,求此时风筝P 处距地面的高度PD .(结果保留根号)22. (10分)从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下5组(满分为100分):组:,组:,组:,组:,组:,分别制成频数分布直方图和扇形统计图如图.(1)根据图中数据,补充完整频数分布直方图;(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;(3)若甲、乙两班参加测试的学生成绩统计如下:甲班:62,64,66,76,76,77,82,83,83,91;乙班:51,52,69,70,71,71,88,89,99,100.则可计算得两班学生的样本平均成绩为,;样本方差为,.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.23. (10分)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶型消毒液和3瓶型清毒液共需41元,5瓶型消毒液和2瓶型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且型消毒液的数量不少于型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24. (10分) 如图,、为的直径,弦于点,点在延长线上,交弦于点,为的中点,.(1)求证:为的切线;(2)当 11222x x x-=---2BC =PD AD ⊥CB AD ⊥160AB =A 5060x ≤<B 6070x ≤<C 7080x ≤<D 8090x ≤<E 90100x ≤≤76x =甲76x =乙280S =甲2275.4S =乙A B A B B A 13AB CN O CD OB ⊥E F AB CN AD M B OF 1sin 2ADO ∠=CF O CE =25. (12分)如图1,在矩形中,点,分别在,边上,,于点.(1)求证:四边形是正方形;(2)延长到点,使得.判断的形状,并说明理由.(3)如图2,在菱形中,点,分别在,边上,与相交于点,,,,,请类比(2),求的长.26. (12分)如图,抛物线与轴交于点,,与轴交于点,已知,两点坐标分别是,,连接,.(1)求抛物线的表达式和所在直线的表达式;(2)将沿所在直线折叠,得到,点的对应点是否落在抛物线的对称轴上,若点在对称轴上,请求出点的坐标;若点不在对称轴上,请说明理由;(3)若点是抛物线位于第三象限图象上的一动点,连接交于点,连接,的面积记为,的面积记为,求的值最大时点的坐标.ABCD E F AB BC DE AF =DE AF ⊥G ABCD CB H BH AE =AHF △ABCD E F AB BC DE AF G DE AF =60AED ∠=︒6AE =2BF =DE 232y ax x c =++x A B y C A C ()1,0A ()0,2C -AC BC AC ABC △BC DBC △A D D D D P AP BC Q BP BPQ △1S ABQ △2S 12S S P2023年中考数学模拟试题参考答案一、选择题号12345678910答案D D C A B A C B A B二、填空题11. mn(mn+1) 212. -506 13. <<, 14.15. 2√3 16.3 17.126度 18.√5-1 √5+1三、解答题19. 解:-420. 解:x=2 经检验x=2 是增根,原方程无解21. 解:( 80√3 -1)米22. 解:(1)组人数为:(人),组人数为:(人),补充完整频数分布直方图如下:(2)把4个不同的考场分别记为:1、2、3、4,画树状图如图:共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,∴小亮、小刚两名同学被分在不同考场的概率为;(3)∵样本方差为,,∴,∴甲班的成绩稳定,∴甲班的数学素养总体水平好.23. 解:(1)设种消毒液的单价是元,型消毒液的单价是元.由题意得:,解之得,,答:种消毒液的单价是7元,型消毒液的单价是9元.1y 2y 3y 43ππD 2025%5⨯=C ()2024536-+++=123164=280S =甲2275.4S =乙22S S <甲乙A xB y 23415253x y x y +=⎧⎨+=⎩79x y =⎧⎨=⎩A B(2)设购进种消毒液瓶,则购进种瓶,购买费用为元.则,∴随着的增大而减小,最大时,有最小值.又,∴.由于是整数,最大值为67,即当时,最省钱,最少费用为元.此时,.最省钱的购买方案是购进种消毒液67瓶,购进种23瓶.24.(1)(2)2/3-√3 /225. 解:(1)证明:∵是的直径,∴(直径所对的圆周角是直角)即,∵,∴(等边对等角)∵,∴(同弧或等弧所对的圆周角相等)∴,∵,∴,∴,即,∴,又∵是的直径,∴是的切线.(2)解:∵,,∴,∵,,∴(两个角分别相等的两个三角形相似)∴,∴,∴六、综合探究题(本大题共2个小题,每小题10分,满分20分)25. 解:(1)证明:如图,∵四边形是矩形,∴,∴,∵,∴,∴.又∵,∴,∴.∴矩形是正方形.(2)是等腰三角形.理由如下:∵,,,∴,∴.又∵,∴,即是等腰三角形.(3)如图,延长到点,使得,连接.∵四边形是菱形,∴,,∴.∵,∴,∴,.又∵,∴,∵,∴是等边三角形,A aB ()90a -W 79(90)2810W a a a =+-=-+W a a W 1903a a -≥67.5a ≤a a 67a =810267676-⨯=906723-=A B πAD O 90ABD ∠=︒90ABC CBD ∠+∠=︒AB AC =ABC C ∠=∠AB AB =ADB C ∠=∠ABC ADB ∠=∠BC DF ∥CBD FDB ∠=∠90ADB FDB ∠+∠=︒90ADF ∠=︒AD DF ⊥AD O DF O 12AB AC ==15AF =3BF AF AB =-=F F ∠=∠90FBD FDA ∠=∠=︒~FBD FDA △△FB FD FD FA=231545FD FB FA =⋅=⨯=DF =ABCD 90ABC DAB ∠=∠=︒90BAF GAD ∠+∠=︒DE AF ⊥90ADG GAD ∠+∠=︒BAF ADG ∠=∠AF DE =ABF DAE ≅△△AB AD =ABCD AHF △AB AD =90ABH DAE ∠=∠=︒BH AE =ABH DAE ≅△△AH DE =DE AF =AH AF =AHF △CB H 6BH AE ==AH ABCD AD BC ∥AB AD =ABH BAD ∠=∠BH AE =ABH DAE ≅△△AH DE =60AHB DEA ∠=∠=︒DE AF =AH AF =60AHB ∠=︒AHF △∴,∴.26. 解:(1)∵抛物线过,,∴,解得:,∴抛物线的表达式为.设所在直线的表达式为,∴,解得,∴所在直线的表达式为;(2)点不在抛物线的对称轴上,理由是:∵抛物线的表达式是,∴令,则,解得,,∴点坐标为.∵,,∴.又∵,∴.∴.∴,∴.∴将沿折叠,点的对应点一定在直线上.如下图,延长到点,使 ,过点作轴,垂足为点.又∵,∴,∴,∴点的横坐标为-1,∵抛物线的对称轴是直线,∴点不在抛物线的对称轴上;(3)设过点,的直线表达式为,∵点坐标是,点坐标是,∴过点,的直线表达式为.AH HF =628DE AH HF HB BF ===+=+=232y ax x c =++()1,0A ()0,2C -3022a c c ⎧++=⎪⎨⎪=-⎩122a c ⎧=⎪⎨⎪=-⎩213222y x x =+-AC y kxb =+02k b b +=⎧⎨=-⎩22k b =⎧⎨=-⎩AC 22y x =-D 213222y x x =+-0y =2132022x x +-=14x =-21x =B ()4,0-1OA =2OC =OA OC OC OB=90AOC COB ∠=∠=︒~AOC COB △△ACO CBO ∠=∠90ACO BCO CBO BCO ∠+∠=∠+∠=︒AC BC ⊥ABC △BC A D AC AC D DC AC =D DE y ⊥E ACO DCE ∠=∠()ACO DCE AAS ≅△△1DE OA ==D 32x =-D B C 11y k x b =+C ()0,2-B ()4,0-B C 122y x =--过点作轴的垂线交的延长线于点,则点坐标为,如下图,过点作轴的垂线交于点,垂足为点,设点坐标为,则点坐标为,∴,∵,∴,∵若分别以,为底计算与的面积,则与的面积的比为,即.∴,∵,∴当时,的最大值为,将代入,得,∴当取得最大值时,点坐标为.A x BC M M 51,2⎛⎫-⎪⎝⎭P x BC N H P 213,222m m m ⎛⎫+- ⎪⎝⎭N 1,22m m ⎛⎫-- ⎪⎝⎭2211312222222PN m m m m m ⎛⎫=---+-=-- ⎪⎝⎭~AQM PQN △△PQ PN AQ AM=PQ AQ BPQ △BAQ △BPQ △BAQ △PQ AQ12S PQ S AQ=22212124142(2)555552m m S PN m m m S AM ---===-=-++105-<2m =-12S S 452m =-213222y x x =+-3y =-12S S P ()2,3--。

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二0一0年中考数学模拟试题(十一) 一.选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共24分) 1. P是⊙O外一点,PA、 PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β , 则α与β的关系是( ) A.α=β B.α+β=90° C.α+2β=180° D.2α+β=180° 2.下列各式运算结果为8x的是( ) A. x4·x4 B. (x4)4 C.x16÷x2 D.x4+x4 3.圆的最大的弦长为12 cm,如果直线与圆相交,且直线与圆心的距离为d,那么( ) A.d<6 cm B.6 cm12 cm

4.某几何体的三视图如左图所示,则此几何体是( ) A.正三棱柱 B.圆柱 C.长方体 D.圆锥 5.在Rt△ABC中,∠C=90°,sinA=41,则tanB的值是 ( )

A.415 B.1515 C.15 D.41 6.在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1000个成年人,结果其中有150个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( ) A.调查的方式是普查 B.本地区约有15%的成年人吸烟 C.样本是150个吸烟的成年人 D.本地区只有850个成年人不吸烟 7.已知⊙O1的半径r为3cm,⊙O2的半径R为4cm,两圆的圆心距O1O2为1cm,则这两圆的位置关系是( ) A.相交 B.内含 C.内切 D.外切

8.如图,点A是函数y=x1的图象上的点,点B、C的坐标分别为B(-2,-2)、C(2,2).试利

用性质:“函数y=x1的图象上任意一点A都满足|AB-AC|=22”求解下面问题:“作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=x1的图象上运动时,点F总在一条曲线上运动,则这条曲线为( ) A.抛物线 B.圆 C.反比例函数的曲线 D.以上都不对 二.填空题(每空3分,共30分)

9.在函数52xxy中,自变量x的取值范围是_____________. 10.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向

第4题图 第8题图 右跳3个单位,第4次向左跳4个单位,„„,依此规律跳下去,当它跳第100次落下时,落点处离 O点的距离是 个单位. 11.一个圆锥形的圣诞帽高为10cm,母线长为15cm,则圣诞帽的侧面积为_______cm2(结果保留π).

12.如图1,割线PAB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,PA∶AB=1∶2,则AB=______. 13.如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为______ 14.如图3,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC∶DB=1∶2,则PA=______.

. 图1 图2 图3 15.已知二次函数2(0)yaxbxca的图像向左平移2个单位,向下平移1个单位后得到二次函数22yxx的图像,则二次函数2(0)yaxbxca的解析式为______________.

16. 已知关于x的方程322xmx的解是正数,则m的取值范围为______________ . 17.一个定滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升20cm时,滑轮的一条半径OA绕轴心按逆时针方向旋转的角度(假设绳索之间没有滑动,结果精确到1°)约为_______. 18. 如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过ΔABC

的内切圆圆心O,且点E在半圆弧上 .①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是 ______________;②若正方形DEFG的面积为100,且ΔABC的内切圆半径r=4,则半圆的直径AB = __________ .

三.解答题 19.(本题共8分)

(1)计算:102006)21()23(1 (2) 解方程:xxx212112

第17题图 6 2 O x(时) y(米) 30 60 乙 甲 50 第15题图

AO20.(本题共8分) 先化简分式23111xxxxxx,再从-1、0、1、2、3这五个数据中选一个合适的数作为x的值代入求值.

21.(本题共8分) 某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.请你回答: (1)本次活动共有 件作品参赛;上交作 品最多的组有作品 件; (2)经评比,第四组和第六组分别有10件和2件 作品获奖,那么你认为这两组中哪个组获奖率 较高?为什么?

22.(本题共8分) 如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30;接着他向大楼前进14米站在点B处,测得广告牌顶端点C的仰角为45.(计算结果保留一位小数) (1)求这幢大楼的高DH; (2)求这块广告牌CD的高度.

12 23.(本题共10分) ABC△中,2120ABBCABC,°,将ABC△绕点B顺时针旋转角

(0°

90)°

得ABCAB111△,交AC于点E,11AC分别交ACBC、于DF、两点. (1)如图1,观察并猜想,在旋转过程中,线段1EA与FC有怎样的数量关系?并证明你的结论;

(2)如图2,当30°时,试判断四边形1BCDA的形状,并说明理由; (3)在(2)的情况下,求ED的长.

24.(本题共8分) 某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券,至多可得到 元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

25.(本题共10分) 如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,

BD与⊙O交于点 E. (1) 求∠AEC的度数; (2)求证:四边形OBEC是菱形.

26.(本题共10分)

A D B E

C F 1A 1

C

A D

B E

C

F 1

A

1C

A C D E

B O

l 某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆. (1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积; (2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数; (3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.

27.(本题共12分) 如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动。 (1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ; (2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由。 (3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.

A(Q) A Q B B E E F F(P) P

E A B G N D M

C 28.(本题共12分) 如图所示,已知在直角梯形OABC中,ABOCBCx∥,⊥轴于点(11)(31)CAB,,、,.动点P从O点

出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线..OA,垂足为Q.设P点移

动的时间为t秒(04t),OPQ△与直角梯形OABC重叠部分的面积为S. (1)求经过OAB、、三点的抛物线解析式; (2)求S与t的函数关系式;

(3)将OPQ△绕着点P顺时针旋转90°,是否存在t,使得OPQ△的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

29.如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于A、B两点,其中A点坐标为(―l,0)。

点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点。 (1)求抛物线的解析式;(2)求△MCB的面积。

2 O A B C x y 1 1 3 P Q

相关文档
最新文档