最新河南中考数学模拟试题
2024年河南省南阳市第三中学中考三模数学试题(含答案)

2024年南阳市三中三模数学(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列四个数中,绝对值最大的是( )A .2B .C .0D .2.如图所示的几何体是由6个大小相同的小正方体组成的,从左面观察该几何体,看到的图形为()A .B .C .D .3.国家统计局公布了2023年社会消费品零售情况,社会消费品零售总额比上年增长,约为亿元.的原数为( )A .470B .47000C .470000D .47000004.下列运算中,正确的是( )A .B .C .D .5.如图,已知直线m ,n 被一组平行线所截,交点分别为A ,B ,C 和D ,E ,F ,若,则等于( )A .B .C .D .6.一元二次方程根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根13-3-7.2%54.710⨯54.710⨯3243-=a a a 222()+=+a b a b 321÷=a a ()2224=aba b 123,,l l l 3,2==AB BC DEDF2325353222430-+=x x7.如图,线段DE 交线段BC 于点E ,,若,则等于()A .B .C .D .8.小卢在一次用频率估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A .掷一枚正六面体的骰子,出现2点的概率B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率D .任意买一张电影票,座位号是偶数的概率9.如图,C ,D 是上直径AB 两侧的两点,设,则等于()A .B .C .D .10.如图,抛物线与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④对于任意实数n ,.∥AB CD 140,360∠=︒∠=︒2∠10︒20︒30︒40︒O 25∠=︒ABC ∠BDC 85︒75︒70︒65︒2(0)=++≠y ax bx c a (3,0)-1=-x 20+=b a 42+<a c b 0++=a b c 2-≤+a b an bn正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分)11.定义一种运算__________.12.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这4本著作中随机抽取2本(先随机抽取1本,不放回,再随机抽取另1本),则抽取的2本恰好是《论语》和《大学》的概率是__________.13.已知点均在二次函数的图象上,则,的大小关系是__________(用“>”连接)14.如图,在中,,射线AB 交y 轴于点D ,交双曲线于点B ,C ,连接OB ,OC ,当OB 平分时,AO 与AC 满足,若的面积为4,则__________.15.如图,在中,,点P (点P 不与点A 、B 重合)为斜边AB 上的一个动点,过点P 作,垂足分别为点D 和点E ,连接DE ,P C 交于点Q ,连接AQ ,当为直角三角形时,AP 的长是__________.=-a bad bc c d ()()()1232,,1,,1,--A y B y C y 2$3(1)7=+-y x 123,,y y y △AOB =AO AB (0,0)=>>ky k x x∠DOC 23=AO AC △OBD =k △Rt ABC 90,60,2∠=︒∠=︒=ACB B BC ,⊥⊥PD AC PE BC △APQ三、解答题(本大题共8个小题,共75分)16.(8分)(1)计算:.(2)化简:.17.(9分)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大背少年带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生的成绩进行统计,按成绩(满分100分)分为5组(A 组:;B 组:;C 组:;D 组:;E 组:),并绘制了如下不完整的统计图.(1)本次调查一共随机抽取了__________名学生的成绩,频数分布直方图(图1)中__________,扇形统计图中A 组占__________.(2)补全学生成绩频数分布直方图.学生成绩频数分布直方图学生成绩扇形统计图图1 图2(3)若将竞赛成绩在90分及以上的记为优秀,求优秀学生所在扇形(图2)对应圆心角的度数.18.(8分)如图,已知及圆外一点A ,连接线段OA ,请用无刻度直尺和圆规完成操作并解答.(1)过点A 作出的两条切线AP ,AQ ,切点分别为点P 、点Q .(保留作图痕迹,不写作法和证明)2301|4|(1)20232-⎛⎫--+-⨯ ⎪⎝⎭2()(2)+-+a b b a b 7580≤<x 8085≤<x 8590≤<x 9095≤<x 95100≤<x =m % O O(2)在(1)的条件下,若点E 为优弧上不与端点重合的一点,且,求的度数.19.(9分)在学校的数学周活动中,李老师指导学生测量学校旗杆AB 的高度如图所示,在旗杆附近有一个斜坡,坡长米,坡度,小华在C 处测得旗杆顶端A 的仰角为,在D 处测得旗杆顶端A 的仰角为.求旗杆AB 的高度,(点A ,B ,C ,D 在同一平面内,B ,C 在同一水平线上,结果保留根号)20.(10分)随着国家乡村振兴政策的推进,某村的农副产品越来越丰富.为增加该村村民收入,该村计划定价销售某种土特产,他们把该土特产(每袋的成本是10元)进行4天试销售,日销售量y (袋)和每袋销售价x (元)的记录如下:时间第一天第二天第三天第四天元15202530袋25201510若试销售和正常销售期间,日销售量y 与每袋销售价x 的一次函数关系相同,请回答下列问题.(1)求日销售量y 与每袋销售价x 的函数关系式.(2)请你帮村民设计,每袋销售价定为多少元时才能使这种土特产每日销售的利润最大?请求出最大利润.(利润=销售额-成本)21.(9分)如图,一次函数与反比例函数的图象交于点轴于点C ,轴于点D .(1)填空:__________,__________,__________.(2)在第二象限内,x 取何值时,一次函数的值大于反比例函数的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若,求点P 的坐标.22.(10分)如图所示是某景区步行街的一个横断面为抛物线的拱形大门,点M 为顶点,其高为9米,宽OE 为18米,以点O 为原点,OE 所在直线为x 轴建立平面直角坐标系.矩形ABCD 是安装的一个“光带”,且点PQ64∠=︒PEQ ∠PAQ 10=CD 3:4=i 60︒45︒/x /y 12=+y x b (0)=<ky k x(4,),(1,2),--⊥A m B AC x ⊥BD y =m =b =k =△△PCA PDB S SA ,D 在抛物线上,点B ,C 在OE 上.(1)求该抛物线的函数表达式.(2)求所需的三根“光带”AB ,AD ,DC 的长度之和的最大值,并写出此时OB 的长.23.(12分)已知点E 是正方形ABCD 内部一点,且.①② 备用图【初步探究】(1)如图①,延长CE 交AD 于点P .求证:.【深入探究】(2)如图②,连接DB 并延长交BC 于点F ,当点F 是BC的中点时,求的值.【延伸探究】(3)连接DE 并延长交BC 于点F ,DF 把分成两个角,当这两个角的度数之比为时,请求出的值.参考答案一、选择题1.解:A .;B .;C .;D ..,∴四个数中绝对值最大的是.故选D .2.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.90∠=︒BEC △∽△BEC CDP CEBE∠BEC 1:2CE BE|2|2=1133-=|0|0=33-=∣∣10233<<< 3-故选B .3.解:,原数是470000.故选C .4.解:与不是同类项,不能合并,∴A 选项结论不正确,不符合题意;,∴B 选项结论不正确,不符合题意;,∴C 选项结论不正确,不符合题意;,∴D 选项结论正确,符合题意.故选D .5.解:,.,.故选C .6.解:,,∴方程没有实数根.故选D .7.解:,.,.故选B .8.解:A .掷一枚正六面体的骰子,出现2点的概率为,故此选项不符合题意;B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率为,故此选项不符合题意;54.710470000⨯=34a 2a 222()2ab a ab b +=++ 32a a a ÷= ()2224ab a b = 3,2AB BC == 325AC AB BC ∴=+=+=123,3,2l l l AB BC ==∥∥ DE ABDF AC∴=22430x x -+= 2(4)4230∴∆=--⨯⨯<,140AB CD ∠=︒∥ 140C ∴∠=∠=︒360∠=︒ 2604020∴∠=︒-︒=︒1613C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率为,故此选项符合题意;D .任意买一张电影票,座位号是偶数的概率为,故此选项不符合题意,故选C .9.解法一:连接OC ,如图,,,,,解法二:是直径,,.故选D .10.解:抛物线的对称轴为直线,,,即,故①错误:由图象可知,时,,,即,故②正确;抛物线与x 轴交于点,其对称轴为直线,∴抛物线与x 轴交于另一点,,故③正确;由题意可知时,二次函数有最小值,∴无论x 取何值,二次函数值都大于,,整理得,故④正确.故选C .二、填空题20.210=1225ABC ∠=︒ 222550AOC ABC ∴∠=∠=⨯︒=︒180********BOC AOC ∴∠=︒-∠=︒-︒=︒111306522BDC BOC ∴∠=∠=⨯︒=︒AB 90ACB ∴∠=︒9065BDC CAB ABC ∴∠=∠=︒-∠=︒ 2(0)y ax bx c a =++≠1x =-12bx a∴=-=-2b a ∴=20b a -=2x =-0y <420a b c ∴-+<42a c b +< 2(0)y ax bx c a =++≠(3,0)-1x =-2(0)y ax bx c a =++≠(1,0)0a b c ∴++=1x =-y a b c =-+a b c -+2a b c an bn c ∴-+≤++2a b an bn -≤+11.解:,故答案为:.12.解:把《论语》《孟子》《大学》《中庸》分别记为A ,B ,C ,D ,共有12种等可能的情况,其中抽取的2本恰好是《论语》和《大学》的结果有2种,即AC ,CA ,抽取的2本恰好是《论语》和《大学》的概率是故答案为:.13.解:二次函数的图象开口向上,对称轴是直线,点在对称轴上,最小.点距离对称轴有个单位,点距离对称轴有个单位,.故答案为.14.解:作轴于M ,轴于N ,,.,=-a bad bc c d2sin 60=-︒2===∴21126=1623(1)7y x =+-1=-x 2(1,)B y -2∴y ()12,-A y 1(2)1---=()31,C y 1(1)2--=312∴>>y y y 312>>y y y ⊥BM x ⊥CN x = AO AB .∴∠=∠AOB ABO∴∠+∠=∠+∠AOD BOD OCB BOC ∠=∠ BOD BOC.,,.,.的面积为4,的面积为12.,,的面积为6,的面积为10,.设,则,,,解得,故答案为:.15.解:当时,如图,∴∠=∠AOD ACO ∠=∠ OAD CAO ∴△∽△AOD ACO 23∴==AD AO OA AC = AB OA 23∴=AD AB △OBD ∴△AOB 23= AO AC 23∴=AD AB ∴△BOC ∴COD 42105∴==B c X X 2,2⎛⎫ ⎪⎝⎭k B x x 5,5⎛⎫ ⎪⎝⎭k C x x 1,||2=+-==△△△△△梯形BOC BOM CON BOM CON BMNC S S S S S S k 1(52)225⎛⎫∴==+⋅- ⎪⎝⎭△梯形BOC BMNC k k S S x x x x 407=k 40790∠=︒APQ在中,,,,,当时,如图,,四边形DPE C 是矩形,.,垂直平分CP ,,综上所述,当为直角三角形时,AP 的长或故答案为:3或三、解答题16.解:(1)原式.(2)原式.17.解:(1)本次调查一共随机抽取的学生总人数为:(名),组的人数为:(名),.△Rt ABC 90,602∠=︒∠=︒=ACB B 30∴∠=︒BAC 2224∴==⨯=AB BC ∴===AC 3∴=AP 90∠=︒AQP ,,90⊥⊥∠=︒ PD AC PE BC ACB ∴∴=CQ QP 90∠=︒ AQP ∴AQ ∴==AP AC △APQ 44(1)11=-+-⨯=-222222=++--=a ab b ab b a 9624%400÷=∴B 40015%60⨯=60∴=m组的人数为20人,扇形统计图中A组占的百分比为:.故答案为:400,60,5.(2)E 组的人数为(人)补全学生成绒频数分布直方图如下:学生成绩频数直方图(3).答:优秀学生所在扇形对应圆心角的度数为.18.解:(1)如图所示,AP ,AQ 为所作.(2)连接PE ,QE ,如图所示,由圆周角定理可知:.,AQ 为的两条切线,,,.答:的度数为.A ∴20100%5%400⨯=44020609614480----=14480360201.6400+︒⨯=︒201.6︒2128∠=∠=︒POQ PEQ AP O ,∴⊥⊥OP AP OQ QA 90∴∠=∠=︒APO AQO 180********∴∠=︒-∠=︒-︒=︒PAQ POQ ∠PAQ 52︒19.解:过点D 作,垂足为E ,过点D 作,垂足为E .由题意得,坡长米,坡度,.设米,则米.在中,,,解得,米,米.设米,米.在中,,(米).在中,,米.,,解得:,米,旗杆AB 的高度为米.⊥DE BC ⊥DF AB ,==DF BE BF DE 10=CD 3:4=i 34∴=DECE 3=DE x 4=CE x △Rt CDE 5===CD x 510∴=x 2=x 8∴=CE 6==DE BF =BC y (8)∴==+=+DF BE BCCE y △Rt ABC 60∠=︒ACB tan 60∴=⋅︒=AB BC△Rt ADF 45∠=︒ADF tan 45(8)∴=⋅︒=+AF DF y=+ AB AF BF 86=++y 7=+y (21∴==+AB ∴(21+20.解:(1)依题意,根据表格中的数据,设日销售量y (袋)与销售价x (元)的函数关系式为,得解得故日销售量y (袋)与销售价x (元)的函数关系式为:.(2)依题意,设利润为w 元,得,得.,当时,w 取得最大值为225.故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.21.解:(1)一次函数与反比例函数图象交于点,,,故答案为:.(2)当时,一次函数的值大于反比例函数的值.(3)由(1)可知,一次函数.设P 点坐标为,和的面积相等,,解得,点坐标为.22.解:(1)由题意知,顶点,可设该抛物线的函数表达式为,=+y kx b 2515,2020,=+⎧⎨=+⎩k b k b 1,40,=-⎧⎨=⎩k b 40=-+y x 2(10)(40)50400=--+=-+-w x x x x 2(25)225=--+w x 10-< ∴25=x 12=+y x b (0)=<k y k x(4,),(1,2)--A m B 1412,2(1)2∴=-=-⨯=⨯-+k m b 15,2,22∴==-=m k b 15,,222-41-<<-x 1522=+y x 15,22⎛⎫+ ⎪⎝⎭t t △PCA △PDB 11115(4)1222222⎛⎫∴⨯⨯+=⨯⨯-- ⎪⎝⎭t t 52=-t ∴P 55,22⎛⎫- ⎪⎝⎭(9,9),(18,0)M E 2(9)9=-+y a x抛物线过原点,,解得,该抛物线的函数表达式为(2)设点A 的坐标为则,根据抛物线的轴对称性:质,可得,故,.,当米时,三根“光带”长度之和的最大值为米.23.(1)证明:四边形ABCD 是正方形,,.,,.(2)解:如图,作于G ,.四边形ABCD 是正方形,,,(0,0)O 2(09)90∴-+=a 19=-a ∴2211(9)9299=--+=-+y x x x 21,29⎛⎫-+ ⎪⎝⎭m m m 21,29===-+OB m AB DC m m ==OB CE m 182==-BC AD m 2222112294521822218999922⎛⎫∴++=-++--+=-++=--+ ⎪⎝⎭AB AD DC m m m m m m m m 209-< ∴92==OB m 452 90,∴∠=︒∥D AD BC ∴∠=∠CPD BCE 90∠=︒ BEC ∴∠=∠BEC D ∴△∽△BEC CDP ⊥EG BC 90∴∠=︒BGE 90,∴∠=︒=BCD CD BC ∴△∽△FGE FCD.,点F 是BC 的中点,.设,则,,,.,...,,(3)解:(方法一)如图,当时,即,.以BC 所在的直线为x 轴,CD 所在的直线为y 轴建立坐标系,设,,以BC 的中点W 为圆心,BC 为直径作圆W ,∴==EG FG EF CD FC DF90∠=︒ BEC 12∴===EF BF CF BC 1===EF BF CF 2,===CD BC DF 21∴==EG FG EG FG ∴==1CG CF FG ∴=-==90EGB EGC ∠=∠=︒ 90CEG ECG ∴∠+∠=︒90BEC ∠=︒ 90CEG BEG ∴∠+∠=︒BEG ECG ∴∠=∠BGE EGC ∴△∽△CE CG BE EG ===12BEF CEF ∠∠=::60CEF ∠=︒120DEC ∴∠=︒6BC CD ==(,)E x y,点E 在上,则,①.作等边三角形CDG ,作的外接圆V ,则点在上,则,②,由①②得,,.如图,当时,即,,则,同上作,作等边三角形CDV ,设,则,以V 为圆心、2为半径作,则点E 在上,同理可得90BEC ∠=︒ ∴W (3,0),(6,0)W B --222(3)3x y ∴++=CDG △V V CV =222((3)x y ∴+-=6x x y x =+=-CE BE ∴===:2:1BEF CEF ∠∠=60BEF ∠=︒30CEF ∠=︒150DEC ∠=︒W 2BC CD ==( 1.0),(2,0),W B V --V V 2222(1)1,((1)4,x y x y ⎧++=⎪⎨+-=⎪⎩222,x y x x ∴+=-=综上所述:.(方法二)如图,当时,即,设,分别延长CE ,BE ,分别交AD 于G ,交CD 于H ,,G ,D ,H ,E 共圆,,.,,.在中,,,,当时,即,同理可得:,,,CEBE ∴===CEBE =12BEF CEF ∠∠=::30BEF ∠=︒BC CD a ==180ADC HEG ∠+∠=︒ ∴30DGH DEH BEF ∴∠=∠=∠=︒DG ∴=BG BH ⊥ BCH CDG ∴≌△△CH DG ∴= Rt GDH △30DGH ∠=︒)CH a CH ∴=-CH ∴=tan CE CH CBH BE BC ∴∠===:2:1BEF CEF ∠∠=60BEF ∠=︒60DGH DEH ABE ∠=∠=∠=︒DH ∴=a CH ∴-=,综上所述:.CH∴=CEBE∴=CEBE=。
2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题

2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题一、单选题1.下列各数中最大的数是( )A .1B .CD .02.如下图所示的几何体的左视图为( )A .B .C .D .3.从河南省农业农村厅获悉,截至6月5日17时,我省已收获小麦7992万亩,约占全省种植面积的93.7%.当日投入联合收割机5.4万台,日收获小麦454万亩.“7992万”用科学记数法表示为( ) A .4799210⨯B .5799210⨯C .77.99210⨯D .87.99210⨯4.光线在不同介质中的传播速度不同,从一种介质射向另一种介质时会发生折射.如图是一块玻璃的a ,b 两面,且a b ∥,现有一束光线CD 从玻璃中射向空气时发生折射,光线变成DE ,F 为射线CD 延长线上一点,已知1135∠=︒,223∠=︒,则3∠的度数为( )A .20︒B .22︒C .32︒D .35︒5.《九章算术》有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”用现在的话说就是:“有几个人一起去买物品,每人出8元,多3元;每人出7元,少4元.问人数、物价各是多少?”设人数为x 人,物价是y 元,可列方程组( )A .8374y x y x -=⎧⎨-=⎩B .8374x y y x -=⎧⎨-=⎩C .8374x y x y -=⎧⎨-=⎩D .8374y x x y -=⎧⎨-=⎩6.如图,圆O 是ABC V 的外接圆,已知AB =45C ∠=︒,则圆O 的半径OA 的长为( )A B .1C D .27.数形结合是我们解决数学问题常用的思想方法.如图,一次函数=1y x --与y mx n =+ (m ,n 为常数,0m ≠)的图象相交于点(1)2-,,则不等式1x mx n --<+的解集在数轴上表示正确的是( )A .B .C .D .8.圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究,某学校进行校园文化建设,拟从以上4位数学家的画像中随机选用2幅,则其中至少有一幅是中国数学家的概率是( )A .16B .12C .56D .19.如图,在平面直角坐标系xOy 中,已知四边形OABC 为平行四边形,其中点()3,0A ,()1,4C ,M 为对角线OB 的中点.现将平行四边形OABC 绕原点O 顺时针旋转,每次转90︒,则第71次旋转结束时,点M 的坐标为( )A .32,2⎛⎫- ⎪⎝⎭B .()2,2-C .32,2⎛⎫- ⎪⎝⎭D .()2,2-10.某款纯电动汽车采取智能快速充电模式进行充电,当充电量达到电池容量的80%时,为保护电池,充电速度会明显降低.如图是该款电动汽车某次充电时,汽车电池含电率y (电池含电率=100%⨯电池中的电量电池的容量)随充电时间x (分钟)变化的函数图象,下列说法错误的是( )A .本次充电开始时汽车电池内仅剩10%的电量B .本次充电40分钟,汽车电池含电率达到80%C .本次充电持续时间是120分钟D .若汽车电池从无电状态到充满电需要耗电70千瓦时,则本次充电耗电63千瓦时二、填空题11.代数式3n 可表示的实际意义是.12.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为312a ,则a 的值为.13.某市中招体育考试规定:除耐力类的长跑为必考项目外,考生还需在“A .掷实心球”“B .立定跳远”“C .1分钟跳绳”“D .50米跑”这四个项目中选考两项.为了解学生选考项目的选择情况,随机抽取部分九年级学生进行调查,并将调查结果绘制成了统计图(部分信息不完整),请问在被调查的学生中选择“1分钟跳绳”的人数是.14.如图,在ABC V 中,1310AB AC BC ===,,以AB 为直径的O e 交BC 于点D ,O e 的切线DE 交AC 于点E ,则DE 的长为.15.在矩形ABCD 中,1AB =,E 为CD 的中点,取AE 的中点F ,连接BE BF ,,当BEF △为直角三角形时,BC 的长为.三、解答题16.(1)计算:112sin 452-⎛⎫︒ ⎪⎝⎭;(2)化简:()2(2)4x y x x y +-+.17.为了改进几何教学,张老师选择A ,B 两班进行教学实验研究,在实验班B 实施新的教学方法,在控制班A 采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2. 表1:前测数据表2:后测数据(1)A ,B 两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A ,B 两班的后测数据. (3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价. 18.如图,ABC 是一张锐角三角形纸片.(1)按下面的步骤完成尺规作图(保留作图痕迹,不写作法) ①作BAC ∠的平分线,交BC 于点D ;②作AD 的垂直平分线,分别交AB 、AC 于点E 和F . (2)连接DE ,若3AB =,4AC =,求DE 的长.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形ABCD 的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数ky x=的图象经过正方形的顶点()2,2A ,以点C 为圆心,CB 的长为半径作扇形»,BCD BD交AC 于点F ;以CF 为对角线作正方形CEFG ,再以点C 为圆心,CE 的长为半径作扇形ECG .(1)求反比例函数的解析式;(2)求¼EG 的长;(3)直接写出图中阴影部分面积之和.20.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15︒,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm 的小杜,头部高度为26cm ,他站在离摄像头水平距离130cm 的点C 处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm 的小若,头部高度为15cm ,踮起脚尖可以增高3cm ,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm ,参考数据sin150.26,cos150.97,tan150.27,sin 200.34,cos200.94,tan 200.36︒≈︒≈︒≈︒≈︒≈︒≈)21.水龙头关闭不严会造成滴水.为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每5min 记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表中的一组数据.(1)探究:根据上表中的数据,拟用下面三个函数模型模拟水量y 与时间t 的关系:①my t=,②y kt b =+,③2y pt qt r =++,你认为选用函数_______(填序号)模拟最合理(不必说明理由),并求出相应的函数表达式和漏记的a 值; (2)应用:①兴趣小组用100mL 量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水1600mL ,请估算这个水龙头一天的漏水量可供一位成年人饮用多少天?(结果保留一位小数)22.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为348m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案,现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度12m ON =,拱高4m PE =其中,点N 在x 轴上,PE ON ⊥,OE EN =.方案二,抛物线型拱门的跨度8m ON '=,拱高6m P E ''=其中,点N '在x 轴上,P E O N ''''⊥,O E E N ''''=.要在拱门中设置高为3m 的矩形框架,其面积越大越好(框架的粗细忽略不计),方案一中,矩形框架ABCD 的面积记为1S ,点A 、D 在抛物线上,边BC 在ON 上;方案二中,矩形框架A B C D ''''的面积记为2S ,点A ',D ¢在抛物线上,边B C ''在ON '上,现知,小华已正确求出方案二中,当3m A B ''=时,22S =,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较1S ,2S 的大小. 23.【综合与实践】综合实践课上,老师带领同学们研究“菱形背景下的旋转问题”. 问题情境:在菱形ABCD 中,60,ABC E ∠=︒为边AD 上一点(与A ,D 不重合),连接BE ,并将射线BE 绕点B 在平面内顺时针旋转,记旋转角为α 0°<α<360°.操作感知:(1)小华取60a =︒,如图1,射线BE 与射线AC 交于点F ,请你帮小华同学补全下面两个问题的答案:①线段BE 与BF 的数量关系是________________;②线段AB AE AF ,,的数量关系是________________.猜想论证:(2)小夏取120α=︒,如图1,射线BF 与射线DC 交于点F ,小夏在笔记本上记录了自己的思考过程:线段BE 与BF 的数量关系与(1)①相同…… 但线段AB AE AF ,,的数量关系好像不再成立……我发现线段AB AE CF ,,之间好像具有与(1)②类似的数量关系...... 请你帮小夏同学完成线段AB AE CF ,,之间数量关系的猜想并给出证明.拓展探究:(3)小梦测量得到2,3AB BE ==,如图2,在旋转过程中,设点E 的对应点为F ,当点F 落在菱形ABCD 的边或对角线所在直线上时,记点F 到直线BC 的距离为d ,请你帮d 的值.。
2024年河南省部分学校中考一模考试数学模拟试题(含答案)

2024河南中考仿真模拟试卷(一)数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分、共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中最小的数是( )A .B .0C .1D .2.记者从河南省文化和旅游厅获悉:2024年元旦假日期间,全省统计接待游客1613.7万人次,旅游收入78.7亿元.数据“78.7亿”用科学记数法表示为( )A .B .C .D .3.在学习数与代数领域知识时,小明对代数式做如图所示的分类,下列选项符合的是( )A.B .CD .4.由6个相同的正方体组成的立体图形如图所示,它的左视图是()A .B .C .D .5.图1是一位同学抖空竹时的一个四间,数学老师把它抽象成图2所示的数学问题:已知,,,则的度数是( )1-97.8710⨯87.8710⨯878.710⨯90.78710⨯3a b+3a b +2abAB CD ∥72A ∠=︒33E ∠=︒ECD ∠A .95°B .100°C .105°D .110°阅读下列信息,完成第6-8题:某中学积极落实国家“双减”教育政策,决定为九年级学生开设科技制作、厨艺交流、园艺设计、茶艺研修四项活动以提升课后服务质量.6.开展活动前,学校对学生的活动意向进行了调查(每人限选一项),得到的统计图如图所示.若九年级共有学生750人,则选择科技制作的人数比选择园艺设计的人数多()A .160B .210C .340D .4507.为培养青少年科技创新能力,科技制作实践活动设置了无人机、3D 动画、计算机编程三个项目组,若小明和小红都选择了科技制作活动,则他们被抽到同一个项目组的概率是( )A.B .C .D .8.小明同学设置了一个数值转换机,其原理如图所示,如果第一次输入x 的值为2,可以发现第一次输出的结果是1,第二次输出的结果是4,…,那么第2024次输出的结果是()A .1B .2C .3D .49.点,是抛物线上的两个点,且,则m 的值可以是( )A .4B .3C .2D .110.如图1,在中,,直线l 经过点A 且垂直于.现将直线l 以的速度向右匀速平移,直至到达点B 时停止运动,直线l 与边交于点M ,与边(或)交于点N .设直线l 移动的时间是,的面积为,若y 关于x 的函数图象如图2所示,则的周长为()12132349()12,A y ()24,B y 221y x mx =-+12y y >ABC △CA CB =AB 1cm/s AB AC CB ()s x AMN △()2cmy ABC △A .B ..C .D .二、填空题(每小题3分,共15分)11.已知x ,y 满足方程组则的值为______.12.请写出一个y 随x 的增大而减小的函数的表达式:______.13.如图,切于点A ,交于点C ,点D 在上,若,则的度数是______.14.如图,在扇形中,,点C ,D 分别在,上,连接,,点D ,O 关于直线对称,的长为,则图中阴影部分的面积为______.15.如图,在中,,,,的垂直平分线交于点E ,交于点D ,将线段绕点D 顺时针旋转,点C 的对应点为点F ,连接,.当为直角三角形时,的长为______.三、解答题(本大题共8个小题,共75分)16cm 17cm 18cm 20cm237,328,x y x y +=⎧⎨+=⎩x y +AB O BO O O 32ADC ∠=︒ABO ∠AOB 90AOB ∠=︒OAAB BC CD BC BD4πRt ABC △90ACB ∠=︒30A ∠=︒2BC =AB MN AB AC DC ()0180αα︒<<︒BF BD BDF △BF16.(10分)(1(2)下图是小航同学化简分式的解题过程,他的解答正确吗?如果正确,请予以评价;如果不正确,请写出正确的解题步骤.解:.17.(9分)为了解双减政策实施以来学生的作业时长,某学校数学兴趣小组调查了七、八年级部分学生完成作业的时间情况,并对其调查数据进行整理和分析,共分四个时段(x 表示作业完成时间,单位:min ,x 取整数):A .;B .;C .;D ..完成作业时间不超过的学生为时间管理优秀者.现将调查数据绘制成统计表和如图所示的不完整的统计图.时间/min频数/人百分比510%12a b 54%612%合计c100%(1)表中______,______,______,补全频数分布直方图;(2)此次调查中,大多数学生完成作业的时间段是______;(3)这所学校七、八年级共有2200人,试估算七、八年级时间管理优秀的学生共有多少人?18.(8分)在如图所示的网格中,每个小正方形的边长均为1.(1)在图1中作等腰,满足条件的格点C 有______个,请在图中画出其中一个.(2)在图2中,只用一把无刻度直尺,在线段上求作一点D ,使得,并保留作图痕迹。
2024年河南省中考数学模拟卷 含答案

2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
河南省中考数学模拟测试卷-附参考答案与解析

河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
河南省郑州市2024年中考模拟数学试题(含答案)

郑州市名校中考模拟数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个正确的.1.在0、3-、13-、3这四个数中,最小的数是………………………………()A .0B .3-C .13-D .32.如图是由长方体和圆柱体组成的几何体,则它的左视图是……………()A B C D 3.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯4.如图,已知AB CD ,将一块直角三角板按如图的位置放置,使直角顶点E 在直线CD 上,若130∠=︒,则2∠的度数为…………………………………………()第4题图第6题图A .60︒B .50︒C .40︒D .30︒5.化简2111m m m -⋅+的结果为…………………………………………………()A .1m m +B .11m m -+C .1m m -D .1m m +6.如图,四边形ABCD 内接于O ,AB 是O 的直径,点E 在O 上,且125ADC ∠=︒,则BEC ∠的度数是……………………………………………………………()A .25︒B .55︒C .45︒D .35︒7.已知关于x 的一元二次方程21202402024x mx --=,则该一元二次方程的根的情况是………………………………………………………………………………()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.“花花牛”和“生生”是河南两大牛奶品牌.现有4盒两种品牌的牛奶,其中2盒“花花牛”,2盒“生生”,随机抽取2盒,至少有一盒是“花花牛”的概率是…()A .12B .23C .34D .569.如图,等边ABC 的边长为2cm ,点P 从点A 出发,以1cm /s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm /s 的速度沿AB BC-向点C 运动,到达点C 停止,设APQ △的面积为()2cm y ,运动时间为()s x ,则下列最能反映y 与x 之间函数关系的图象是……………………………………………………………()A B C D 10.如图,点E 是边长为8的正方形ABCD 的边CD 上一动点,连接AE ,将线段AE 绕点E 逆时针旋转90︒到线段EF ,连接AF ,BF ,AF 交边BC 于点G ,连接EG ,当AF BF+取最小值时,线段EG 的长为…………………………………………………()A .B .7C .9D .203二、填空题(每小题3分,共15分)11.学校购买了一批文具,共a 套,每套有b 本笔记本,将这批文具的一半捐给贫困地区的学生,捐出的笔记本有本.12.已知二元一次方程组325234a b a b +=⎧⎨+=⎩,则a b -=.13.为了调查某校5000名学生对“中国梦”的了解程度,随机抽取部分学生进行调查,并结合数据作出如图的扇形统计图.根据统计图提供的信息,估计该校“不太了解”的学生共有名.第14题图第15题图14.如图所示,点P 为O 外一点,过点P 作O 的切线PA ,PB ,点A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,过点C 作CD PO ⊥,交PO 的延长线于点.D 已知6PA =,8AC =,则OC 的长为.15.如图,正方形ABCD 的边长为8,点E 为BC 边上一点,且2BE =,点F 为AB 边上的中点,连接EF ,以EF 为一条直角边向右侧作等腰Rt EGF ,且使90EFG ∠=︒,连接CG ,则CG 的长是.三、解答题(本大题共8小题,共75分)16.(1)(5分)计算:1113-⎛⎫--+-- ⎪⎝⎭(2)(5分)化简:211x x x -++17.(9分)在2023年国际数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛.为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息.【信息1】两校学生得分的数据的频数分布直方图如下图所示:(数据分成4组:2040x ≤<,4060x ≤<,6080x ≤<,80100x ≤≤)【信息2】其中乙校学生得分在6080x ≤<这一组的数据如下:6868707373747676777879【信息3】两组样本数据的平均数、中位数如上表所示:根据所给信息,解答下列问题:(1)写出表中m 的值:m =______.(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是哪所学校的学生?请说明理由;(3)在这次数学知识竞赛中,你认为哪所学校的学生表现较好,为什么?18.(9分)如图,在Rt ABC △中,90ACB CD AB ∠=︒⊥,于点D .(1)尺规作图:作ACD ∠的平分线交AB 边于点E .(保留作图痕迹,不写作法,标明字母)(2)试猜想线段BE 与BC 之间的数量关系,并加以证明.19.(9分)如图,已知直线:4l y x =+与反比例函数(0)k y x x =<的图象交于点(1,)A n -,直线l '经过点A ,且与l 关于直线=1x -对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.(3)已知直线:4l y x =+与反比例函数(0)k y x x=<的图象交于点另一点B ,P 在在平面内,若以点A ,B ,P ,O 为顶点的四边形是平行四边形,请直接写出所有符合条件点P 的坐标.20.(9分)城市规划期间,欲拆除一电线杆AB ,如图,已知距电线杆AB 的水平距离14m 的D 处有一大坝,背水坡CD 的坡度1:0.5i =,坝高CF 为2m ,在坝顶点C 处测得电线杆顶点A 的仰角为30︒,DE 之间是宽为2m 的行人道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?(提示:在地面上,以点B 为圆心,以AB 为半径的圆形区域为危险区域)(参考数据:3 1.73≈)学校平均数中位数甲校68.3571乙校68.35m21.(9分)“洛阳地脉花最宜,牡丹尤为天下奇.”河南洛阳被称为牡丹之乡,每年,月份吸引着数万名游客前来观赏.洛阳市政府组织园林科技人员改良栽培技术,开展新品种培育,其中有A ,B 两种新品种牡丹,培育5棵A 品种牡丹,6棵B 品种牡丹需要900元,已知培育一棵A 品种牡丹比培育一棵B 品种牡丹少用40元.(1)培育每棵A 品种牡丹和每棵B 品种牡丹各需要多少元?(2)今年计划培育A ,B 两种牡丹共600棵,A 品种牡丹的数量不超过B 品种牡丹数量的3倍,其中培育A 品种牡丹x 棵,培育A ,B 两品种牡丹的总费用为y 元,求y 与x 的函数关系式及总费用的最值.(3)园林科技人员在培育过程中,A ,B 两种牡丹的成活率分别为80%和90%.今年计划培育A ,B 两种牡丹共600棵;要使这两种牡丹的总成活率不低于85%,至少应投入多少钱?请说明.22.(10分)随着社会的进步,科技的力量已融入到我们生活的方方面面.为提高校学生足球队的技术水平,数学兴趣小组对某一主力球员的射门能力进行了大量的测试,并对采集的数据进行汇总分析,得出如下结论:如图所示,该球员在离球门O 点18米远的B 处时将球踢出,球在离他10米远的A 处上升到最大高度为4米.据实验测算,足球在空中运行的路线是一条抛物线.(1)求该抛物线的解析式;(2)已知球门的高为2.44米(球门的上沿离地面的距离),请你帮忙计算一下,该球员要想一次性射门成功,他应该在离球门多远的范围内将球踢出.(答案精确到0.1米,6.2≈)23.(10分)综合与实践(1)【问题提出】如图1,在Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为斜边AB 上一点,连接CD 并延长到点E ,使得DE DC =,过点E 作EF AB ⊥于点F .则AC 与EF 的数量关系为______.(2)【拓展应用】如图2,在ABC 中,5AC BC k ==,8AB k =,点D 为AB 边上一点,连接CD 并延长到点E ,使得12DE CD =,过点E 作EF AB ⊥,交直线AB 于点F①当点D ,F 位于点A 异侧时,写出AC ,AD ,DF 之间的数量关系,并说明理由;②当点D ,F 位于点A 同侧时,若6AD =,1DF =,请直接写出AC 的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2011年高级中等学校招生统一考试模拟试卷 数学(冲刺一)一、选择题(每小题3分,共18分)1的平方根是【 】A .2±B . 1.414± C. D .2-2.甲型H1N1流感病毒的直径约为0.08微米至0.12微米,普通纱布或棉布口罩不能阻挡甲型H1N1流感病毒的侵袭,只有配戴阻隔直径低于0.075微米的标准口罩才能有效.0.075微米用科学记数法表示正确的是【 】A .37.510⨯微米B .37.510-⨯微米C .27.510⨯微米D .27.510-⨯微米 3.如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a b >),则这两个图形能验证的式子是【 】A .22()()4a b a b ab +--= B .222()()2a b a b ab +--=C .222()2ab ab a b +-=+ D .22()()a b a b a b +-=-4.如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是【 】A .6、7或8 D .85.如图,以原点为圆心的圆与反比例函数3y x=的图象交于A 、B 、C 、D 四点,(第3题)(第4题)(第5题)ABCO(第6题)·已知点A 的横坐标为1,则点C 的横坐标【 】A .1-B .2-C .3-D .4-6.如图,圆锥的轴截面ABC △是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC = 4 cm ,母线AB = 6 cm ,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是【 】Acm B .6cm C. D .4cm 二、填空题(每小题3分,共27分)7_________. 8.图象经过点(cos60,sin30)P ︒-︒的正比例函数的表达式为____________.9.如图,直线12l l ∥,则三个角的度数x 、y 、z 之间的等量关系是____________.10.分解因式:3228x xy -=_____________________________.11.如图,在平面直角坐标系中,矩形ABCD 的边与坐标轴平行或垂直,顶点A 、C 分别在函数2y x=的图象的两支上,则图中两块阴影部分的面积的乘积等于__________. 12.如图,点C 、D 在以AB 为直径的半圆上,120BCD ∠=︒,若AB =2,则弦BD 的长为________________.13.某著名篮球运动员在一次比赛中20投16中得28分(罚球命中一次得1分),其中3分球2个,则他投中2分球的频率是__________.14.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的xl 1 x(第9题)l 2zy(第11题)AB CO (第12题)· D的值为_____________________.15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是AB的中点,若扇形的半径为2,则图中阴影部分的面积等于____________________.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:32322xx x-=+-.(第14题)(第15题)17.(9分)国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》,从2008年6月1日起,在全国范围内禁止生产销售使用超薄塑料袋,并实行塑料袋有偿使用制度,“禁塑令”有效的减少了“白色污染”的来源。
某校“环保小组”在“禁塑令”颁布实施前期,到居民小区随机调查了20户居民一天丢弃废塑料袋的情况,统计结果如下表:每户一天丢弃废塑料袋的个数 2 3 4 5户数8 6 4 2请根据表中信息回答:⑴这20户居民一天丢弃废塑料袋的众数和中位数分别是多少个?⑵若该小区有居民500户,如果严格执行“禁塑令”不再丢弃塑料袋,你估计该小区一年来(按365天计算)共减少丢弃的废塑料袋多少个?18.(9分)如图,正方形ABCD中,E点在边BC上,F点在边CD上,AF ED⊥.⑴线段AF和DE相等吗?说明理由;⑵求证:222EF BE FD=+.(第18题)DAEF19.(9分)如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下.⑴分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率;⑵设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少?(第19题)20.(9分)如图,Rt ABC △的斜边AB =10,3sin 5A . ⑴ 用尺规作图作线段AB 的垂直平分线l (保留作图痕迹,不要写作法、证明); ⑵ 求直线l 被Rt ABC △截得的线段长.21.(9分)小明同学周日帮妈妈到超市采购食品,要购买的A 、B 、C 三种食品的价格分别是2元、4元和10元,每种食品至少要买一件,共买了16件,恰好用了50元,若A 种食品购买m 件.⑴ 用含有m 的代数式表示另外两种食品的件数; ⑵ 请你帮助设计购买方案,并说明理由.(第20题)22.(10分)如图,在平面直角坐标系中,直线483y x=-+分别与x轴交于点A,与y轴交于点B,OAB∠的平分线交y轴于点E,点C在线段AB上,以CA 为直径的D经过点E.⑴判断D与y轴的位置关系,并说明理由;⑵求点C的坐标.(第22题)__________________________________________________23.(12分)如图,已知关于x 的一元二次函数2y x bx c =-++(0c >)的图象与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且3OB OC ==,顶点为M .⑴ 求出一元二次函数的关系式;⑵ 点P 为线段MB 上的一个动点,过点P 作x 轴的垂线PD ,垂足为D .若OD m =,PCD △的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;⑶ 探索线段MB 上是否存在点P ,使得PCD △为直角三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.(第23题)参考答案一、选择题:⑴C ⑵D ⑶B ⑷A ⑸C ⑹C .二、填空题:⑺2.⑻y x =-.⑼180y x z -+=︒.⑽2(2)(2)x x y x y +-.⑾4.⒀0.4.⒁6,29.⒂24π-.三、解答题:16.略解:同乘(2)(2)x x +-,得1x =,检验(12)(12)0+-≠,所以方程的解是1.17.略解:⑴众数和中位数分别是2和3;⑵ 8263442538642x ⨯+⨯+⨯+⨯==+++,3653500547500n =⨯⨯=.答.18.略证:⑴ AF DE =,ADF DCE △≌△(AAS ); ⑵222EF FC EC =+22BE FD =+19.略解:⑴ A 、B 、C 、D 位置的概率分别为:12、38、14、516; ⑵2nn 20.⑴ 略; ⑵ 求出6BC =,8AC =,3tan 4A =.截线长为 1535tan 344A ⨯==. 21.略解:⑴ 设B 、C 两种食品的件数分别为x 、y ,则16,241050m x y m x y ++=⎧⎨++=⎩.解得5543m x -=,73m y -=; ⑵联立55413m -≥、713m -≥、1m ≥.解得1013m ≤≤.则正整数10,11,12,13m =.只有当10m =时,5x =,1y =;当13m =时,1x =,2y =这两种方案符合题意.答.22.⑴相切,连结ED ,DEA DAE EAO ∠=∠=∠,所以ED OA ∥,所以ED OB ⊥;⑵ 易得10AB =.设(,)C m n ,ED R =,则解直角三角形得53BD R =.因为5103R R +=,则154R =.cos m R R CAF =-⨯∠15331452⎛⎫=-= ⎪⎝⎭.2sin n R CAF =⨯∠1542645=⨯⨯=.所以3,62C ⎛⎫ ⎪⎝⎭. 23.⑴(3,0)B 、(0,3)C .3,930.c b c =⎧⎨-++=⎩得2,3.b c =⎧⎨=⎩,所以223y x x =-++;⑵ 易得(1,4)M .设MB :y kx d =+,则30,4.k d k d +=⎧⎨+=⎩得2,6.k d =-⎧⎨=⎩所以26y x =-+.所以(,26)P m m -+,21(26)32S m m m m =-+=-+(13m ≤<).⑶ 存在.在PCD △中,PDC ∠是锐角,当90DPC ∠=︒时,CDO DCP ∠=∠,得矩形CODP .由263m -+=,解得32m =,所以3,32P ⎛⎫ ⎪⎝⎭; 当90PCD ∠=︒时,COD DCP △∽△,此时2CD CO PD=⋅,即293(26)m m +=-+.2690m m +-=.解得3m =-±因为13m ≤<,所以1)m =,所以()3,6(2P .__________________________________________________(5) [u:] ___[ ] ___[ ] ___[ ](6) [e] ___[ ] ___[ ] ___[ ] ___[ ] ___[ ] ___[ ](7) [B:] ___[ ]收集于网络,如有侵权请联系管理员删除。