高考数学(理)一轮复习题库:8.2空间几何体的表面积与体积

合集下载

高三高考数学复习练习82空间几何体的表面积与体积

高三高考数学复习练习82空间几何体的表面积与体积

821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE ­BCF =V ADE ­B ′CF -V F ­BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M ­DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM ­BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。

高考数学一轮复习第八章立体几何8.2空间几何体的表面

高考数学一轮复习第八章立体几何8.2空间几何体的表面

圆柱
圆锥
侧面展开图
圆台
侧面积公式 S圆柱侧= 2πrl
S圆锥侧= πrl S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称 几何体
表侧+2S底
锥体 (棱锥和圆锥)
S表面积=S侧+S底
体积
V=__S_h_ 1
V=_3_S_h_
台体 (棱台和圆台)
命题点1 求以三视图为背景的几何体的体积 例2 (2016·山东)一个由半球和四棱锥组成的几何体, 其三视图如图所示,则该几何体的体积为 答案 解析
A.13+23π
B.13+ 32π
C.13+ 62π
D.1+ 62π
由三视图知,半球的半径 R= 22,四棱锥为正四棱锥,它的底面边长为 1,
5.(2016·成都一诊)如图为一个半球挖去一个圆锥 后的几何体的三视图,则剩余部分与挖去部分 的体积之比为__1_∶__1___. 答案 解析
由三视图可知半球的半径为 2,圆锥底面圆的半径为 2,高为 2, 所以 V 圆锥=13×π×23=83π,V 半球=12×43π×23=136π, 所以 V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为 1∶1.
答案 解析
该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体 的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1, 所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+ 2×1×2+2×4×2-π×12-2×1+ 1×2π×1=26.
2
题型二 求空间几何体的体积
几何体的表面积是 答案 解析
A.90 cm2
B.129 cm2
C.132 cm2

2021高考数学一轮复习统考第8章立体几何第2讲空间几何体的表面积和体积学案(含解析)北师大版

2021高考数学一轮复习统考第8章立体几何第2讲空间几何体的表面积和体积学案(含解析)北师大版

第2讲空间几何体的表面积和体积基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是01侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=022πrlS圆锥侧=03πrlS圆台侧=04π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=05Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=0613Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=074πr2V=0843πr31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)直棱柱的外接球半径可利用棱柱的上下底面平行,借助球的对称性,可知球心为上下底面外接圆圆心连线的中点,再根据勾股定理求球的半径.(4)设正四面体的棱长为a ,则它的高为63a ,内切球半径r =612a ,外接球半径R =64a .正四面体的外接球与内切球的半径之比为3∶1.1.(2019·福州二模)设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( )A .100π B.256π3 C.400π3 D.500π3答案 D解析 由题意知切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=500π3,即该西瓜的体积为500π3.2.(2019·安徽蚌埠质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .π+43B .π+2C .2π+43D .2π+2答案 A解析由三视图可知,该几何体由半个圆柱和一个三棱锥组合而成.故该几何体的体积为12×π×12×2+13×12×2×2×2=π+43.3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2 B.4C.6 D.8答案 C解析由三视图知该几何体是底面为直角梯形的直四棱柱,即如图所示四棱柱A1B1C1D1-ABCD.由三视图中的数据可知底面梯形的两底分别为1和2,高为2,所以S底面=12×(1+2)×2=3.因为直四棱柱的高为2,所以体积V=3×2=6.故选C.4.(2019·北京东城区模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5C.2+2 5 D.5答案 C解析该三棱锥的直观图如图所示,过点D作DE⊥BC,交BC于点E,连接AE,则BC=2,EC=1,AD=1,ED=2,S 表=S △BCD +S △ACD +S △ABD +S △ABC =12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.故选C.5.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的棱长为6,则球的表面积和体积分别为________,________.答案 36π 36π解析 底面中心与C ′的连线即为半径,设球的半径为R ,则R 2=(6)2+(3)2=9.所以R =3,所以S 球=4πR 2=36π,V 球=43πR 3=36π.6.如图所示,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________.答案9π2解析 由题意知,DC 边的中点就是球心O , ∵它到D ,A ,C ,B 四点的距离相等, ∴球的半径R =12CD ,又AB =BC =3,∴AC =6,∴CD =AC 2+AD 2=3, ∴R =32,∴V 球O =4π3⎝ ⎛⎭⎪⎫323=9π2.核心考向突破考向一 几何体的表面积例 1 (1)(2019·衡水模拟)如图是某个几何体的三视图,则这个几何体的表面积是( )A .π+42+4B .2π+42+4C .2π+42+2D .2π+22+4答案 B解析 由几何体的三视图可知,该几何体是由半圆柱与三棱柱组成的几何体,其直观图如图所示,其表面积S =2×12π×12+π×1×1+2×12×2×1+(2+2+2)×2-2×1=2π+42+4.故选B.(2)(2019·郑州二模)如图是某几何体的三视图,图中方格的单位长度为1,则该几何体的表面积为________.答案 8+4 5解析 由三视图,知该几何体为三棱锥,将该几何体放在长方体中如图所示,由题意可知长方体的长、宽、高分别为2,2,4,由BC =2,CD =2计算,得BD =22,AD =25,AB =25,所以S △BCD =12×2×2=2,S △ADC =12×2×25=25, S △ABC =12×2×25=25,因为△ABD 为等腰三角形,高为252-22=32,所以S △ABD =12×22×32=6,所以该几何体的表面积为2+25+25+6=8+4 5.几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.[即时训练] 1.(2019·山东潍坊模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π答案 C解析 由三视图可知该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥的底面半径为3,高为4,则该几何体的表面积S =π×32+π×3×5+2π×1×2=28π.故选C.2.(2019·河北承德模拟)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A.8+42+2 5 B.6+42+4 5C.6+22+2 5 D.8+22+2 5答案 C解析由三视图可知,该几何体为放在正方体内的四棱锥E-ABCD,如图,正方体的棱长为2,该四棱锥底面为正方形,面积为4,前后两个侧面为等腰三角形,面积分别为22,2,左右两个侧面为直角三角形,面积都为5,可得这个几何体的表面积为6+22+25,故选C.精准设计考向,多角度探究突破考向二几何体的体积角度1 补形法求体积例2 (1)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63πC.42π D.36π答案 B解析(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.(2)(2019·北京高考)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.答案 40解析 由题意知去掉的四棱柱的底面为直角梯形,底面积S =(2+4)×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方体的体积为43=64,所以该几何体的体积为64-24=40.角度2 分割法求体积例3 (1)(2019·山西五校联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺答案 A解析 该楔体的直观图如图中的几何体ABCDEF .取AB 的中点G ,CD 的中点H ,连接FG ,GH ,HF ,则该几何体的体积为四棱锥F -GBCH 与三棱柱ADE -GHF 的体积之和.又可以将三棱柱ADE -GHF 割补成高为EF ,底面积为S =12×3×1=32(平方丈)的一个直棱柱,故该楔体的体积V =32×2+13×2×3×1=5(立方丈)=5000(立方尺).故选A.(2)(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27,因此,该柱体的体积V =27×6=162.故选B.角度3 转化法求体积例4 (1)如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.答案 8 3解析 由正三棱柱的底面边长为4,得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则V 三棱锥A -A 1EF =V 三棱锥F -A 1AE =13S △A 1AE ×23=13×12×6×4×23=8 3.(2)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,三棱锥P -ABC 的体积为V 2,则V 1V 2=________.答案1 4解析如图所示,由于D,E分别是边PB与PC的中点,所以S△BDE=14S△PBC.又因为三棱锥A-BDE与三棱锥A-PBC的高相等,所以V1V2=14.(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体、不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体的体积,常用于求三棱锥的体积,即利用三棱锥的任何一个面可作为三棱锥的底面进行等体积变换[即时训练] 3.(2019·河北沧州质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( ) A.50 B.75C.25.5 D.37.5答案 D解析如图,由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥C 1-MNB 1A 1所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱A 1B 1C 1-ABC -V 四棱锥C 1-A 1B 1NM =12×5×5×5-13×3×5×5=37.5,故选D.4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.答案 16解析 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为线段AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V 三棱锥F -DD 1E =13×12×1=16.考向三 与球有关的切、接问题例5 (1)(2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26π D.6π 答案D 解析设PA =PB =PC =2a ,则EF =a ,FC =3,∴EC 2=3-a 2. 在△PEC 中,cos ∠PEC =a 2+3-a 2-2a22a 3-a2.在△AEC 中,cos ∠AEC =a 2+3-a 2-42a 3-a2. ∵∠PEC 与∠AEC 互补,∴3-4a 2=1,a =22, 故PA =PB =PC = 2.又AB =BC =AC =2,∴PA ⊥PB ⊥PC , ∴外接球的直径2R =22+22+22=6,∴R =62,∴V =43πR 3=43π×⎝ ⎛⎭⎪⎫623=6π.故选D. (2)(2019·沈阳市东北育才学校模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π答案 B解析 将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆的半径为R ,则有2πR =3×2π3,所以R =1,设圆锥的内切球的半径为r ,结合圆锥和球的特征,可知内切球的球心必在圆锥的高线上,设圆锥的高为h ,因为圆锥的母线长为3,所以h =9-1=22,所以rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B.“切”“接”问题的处理规律(1)“切”的处理解决与球有关的内切问题主要是指球内切于多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[即时训练] 5.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心, ∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=18 3.故选B.6.(2019·漳州模拟)在直三棱柱A 1B 1C 1-ABC 中,A 1B 1=3,B 1C 1=4,A 1C 1=5,AA 1=2,则其外接球与内切球的表面积之比为( )A.294B.192C.292D .29答案 A解析 由底面三角形的三边长可知,底面三角形为直角三角形,内切球半径r =AA 12=1,取AC ,A 1C 1的中点D ,E ,则外接球球心是DE 的中点O ,由A 1C 1=5,AA 1=2,得AC 1=29,所以外接球半径R =OA =292,所以S 外S 内=4πR 24πr 2=294,故选A.1.(2019·郑州二模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的体积为( )A.455π2B.1355π2C .1805πD .905π答案 A解析 构造底面边长为3,6,高为3的长方体,由三视图可知,该几何体是如图1中所示的三棱锥P -ABC .所以在该三棱锥中,PA ⊥底面ABC ,并且AB ⊥AC ,把该三棱锥放在如图2所示的底面边长为32,高为3的长方体中,则该三棱锥的外接球就是该长方体的外接球,设该三棱锥的外接球的半径为R ,则有(2R )2=32+(32)2+(32)2=45,解得R =352,所以该三棱锥的外接球的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫3523=455π2,故选A.2.(2019·宝鸡中学高三第一次模拟)已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.答案 2 2解析 由题意,知四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π·⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,解得x =y =2,∴a =x 2+y 2=2 2. 答题启示1.若四面体中有三条棱两两垂直,则方法是找到三条两两互相垂直的棱,借助墙角模型补成长方体(如图),用公式 a 2+b 2+c 2=2R 求解.2.若四面体的对棱相等,则解题步骤为第一步:画出一个长方形,标出三组互为异面直线的对棱;第二步:设长方体的长宽高分别为a ,b ,c ,列出方程⎩⎪⎨⎪⎧a 2+b 2=BC 2=α2,b 2+c 2=AC 2=β2,c 2+a 2=AB 2=γ2(其中α,β,γ为常数)⇒a 2+b 2+c 2=α2+β2+γ22;第三步:根据墙角模型,a 2+b 2+c 2=2R ⇒R =a 2+b 2+c 22.对点训练1.在△ABC 中,AB =AC =2,∠BAC =90°,将△ABC 沿BC 上的高AD 折成直二面角B ′-AD -C ,则三棱锥B ′-ACD 的外接球的表面积为( )A .π B.2π C .3πD .2π答案 C解析 如图,∵AB =AC =2,∠BAC =90°,∴BC =2,则BD =DC =AD =1,由题意,得AD ⊥底面B ′DC ,又二面角B ′-AD -C 为直二面角,∴B ′D ⊥DC ,把三棱锥B ′-ACD 补形为正方体,则正方体的体对角线长为3,则三棱锥B ′-ACD 的外接球的半径为32,则其外接球的表面积为S =4π×⎝⎛⎭⎪⎫322=3π.故选C. 2.(2019·漳州质量监测)已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.答案 16 3解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R = 6.因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =2 2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=16 3.。

超实用高考数学专题复习教学课件:8.2 空间几何体的表面积与体积

超实用高考数学专题复习教学课件:8.2 空间几何体的表面积与体积
求多面体的表面积
形面积的方法求多面体的表面积
可以从旋转体的形成过程及其几何特征入手,将其展开
求旋转体的表面积 后求表面积,但要搞清它们的底面半径、母线长与对应
侧面展开图中的边长关系
通常将所给几何体分割成基本的柱体、锥体、台体,先
求不规则几何体的
求出这些基本的柱体、锥体、台体的表面积,再通过求
表面积
和或作差,求出所给几何体的表面积
ABC-A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥
P-ABA1的体积为
.
(2)(2020陕西二模,文16)如图,圆锥形容器内盛有水,水深
3 dm,水面直径2 3 dm放入一个铁球后,水恰好把铁球淹
没,则该铁球的体积为
dm3.
答案
9 3
(1)
4
12
(2) π
5
解析 (1)由图可知,因为三棱锥 P-ABA1 的体积等于三棱锥 C-ABA1 的体积也
表面积为3πa2.( × )
(3)若一个球的体积为4 3 π,则它的表面积为12π.(
)
(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所
形成的几何体的体积为9π.( × )
2
(5)将圆心角为 ,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于
4π.(
3
)
【知识梳理】
1.多面体的表(侧)面积
因为多面体的各个面都是平面,所以多面体的侧面积就
是 所有侧面的面积之和
,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
S圆柱侧= 2πrl

高三数学一轮复习8.2空间几何体的表面积和体积精品名师课件人教版

高三数学一轮复习8.2空间几何体的表面积和体积精品名师课件人教版
8.2空间几何体的表面积和体积
中国人民大学附属中学
一.基本要求 了解球、棱柱、棱锥、台的表面积和体
积的计算公式(不要求记忆公式)。
二.基础知识
(一)多面体的面积和体积公式
1. 棱柱 侧面积: S侧=直截面周长×侧棱长
S侧=ch’.
体积: V=S直截面·l=S底·h
2. 棱锥
侧面积: S侧=各侧面面积之和
ah'

48
h'
2

a2 4
100
其中h’为斜高,a为底面边长 .
解之得
a 12 h' 8

a 16 h' 6
所以 V 1 3 12 2 2 13 24 39 或 128 11
34
3
例3.一个长方体共一顶点的三个面的面
积分别是 2, 3, 6 ,这个长方体对角线的长是( D )
A1B1 C1D1中,已知AB=5,AD=4,AA1=3, AB⊥AD,∠A1AB=∠A1AD=60°, (1)求证:顶点A1在底面ABCD上的射影O 在∠BAD的平分线上;
(2)求这个平行六面体的体积
3 4
5
(2) V 30 2
例9.已知过球面上A, B, C三点的截面和球 心的距离为球半径的一半,且AB=BC= CA=2,求球的表面积和体积.
A
C
V1 : V2 : V3=1 : 2 : 4
A1
B C1
B1
1
体积:
S正棱锥侧=
V=
1 3
S底·h
2
ch’.
3. 棱台
侧面积: S侧=各侧面面积之和
1
S正棱台侧= 2 (c+c’)h’.

高考数学一轮复习 第八章立体几何8.2空间几何体的表面积与体积教学案 理

高考数学一轮复习 第八章立体几何8.2空间几何体的表面积与体积教学案 理

8.2 空间几何体的表面积与体积考纲要求了解柱体、锥体、台体、球体的表面积和体积的计算公式.1.旋转体的表面积公式(1)圆柱的表面积公式S =________(其中r 为底面半径,l 为母线长). (2)圆锥的表面积S =________(其中r 为底面半径,l 为母线长).(3)圆台的表面积公式S =π(r ′2+r 2+r ′l +rl )(其中r ′,r 为上、下底面半径,l 为母线长).(4)球的表面积公式S =____(其中R 为球的半径). 2.几何体的体积公式(1)柱体的体积公式V =____(其中S 为底面面积,h 为高). (2)锥体的体积公式V =______(其中S 为底面面积,h 为高).(3)台体的体积公式V =13(S +SS ′+S ′)h (其中S ′,S 为上、下底面面积,h 为高).(4)球的体积公式V =______(其中R 为球的半径).1.一个正方体的体积是8,则这个正方体的内切球的表面积是( ).A.8π B.6π C.4π D.π2.某几何体的三视图如图所示,则该几何体的体积为( ).A.283π B.163π C.43π+8 D.12π3.(2012银川模拟)长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ).A.72π B.56π C.14π D.64π4.在△ABC中,AB=2,BC=3,∠ABC=120°,若使△ABC绕直线BC旋转一周,所形成的几何体的体积为__________.5.已知四棱锥P­ABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱锥的体积是__________.一、几何体的表面积【例1】(2012山东烟台模拟)如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是__________.方法提炼1.圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将曲面展为平面图形进行计算,而表面积是侧面积与底面积之和.2.以三视图为载体考查几何体的表面积,关键是对给定的三视图进行正确分析,把图中获取的信息转化成几何体各元素间的位置关系或数量关系.请做演练巩固提升1二、几何体的体积【例2】在三棱柱ABC­A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1将三棱柱分成体积为V1,V2的两部分,那么V1∶V2=__________.方法提炼1.解答与几何体的体积有关的问题时,根据相应的体积公式,从落实公式中的有关变量入手去解决问题,例如对于正棱锥,主要研究高、斜高和边心距组成的直角三角形以及高、侧棱和外接圆的半径组成的直角三角形;对于正棱台,主要研究高、斜高和边心距组成的直角梯形.2.求几何体的体积时,若给定的几何体是规则的柱体、锥体或台体,可直接利用公式求解;若给定的几何体不能直接利用公式得出,常用转换法、分割法、补形法等求解.请做演练巩固提升2三、几何体的展开图【例3】如图,在三棱柱ABC­A′B′C′中,△ABC为等边三角形,AA′⊥平面ABC,AB=3,AA′=4,M为AA′的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC′到M的最短路线长为29,设这条最短路线与CC′的交点为N,求:(1)该三棱柱的侧面展开图的对角线长;(2)PC与NC的长.方法提炼探究几何体表面上的最短距离,需要把几何体的侧面展开,有时候把空间问题转化为平面图形中的问题来解决会容易些.请做演练巩固提升3不能正确地转化组合体的原形而致误【典例】(2012广东高考)某几何体的三视图如图所示,它的体积为( ).A .72πB .48πC .30πD .24π 解析:由三视图知该几何体是由一个半球和一个圆锥构成的组合体,∴其体积为V =12×43π×33+13π×32×4=30π.答案:C答题指导:1.在解答本题时容易出错的主要原因有:(1)不能合理地画出图形、不能将所给条件转化到圆锥中;(2)不能将组合体的体积转化为一个半球和一个圆锥的体积之和来处理. 2.由于近几年的高考加强了对几何体体积、面积的考查,在备考中要注意:(1)加强对常见几何体的有关计算的训练,熟练掌握常见几何体的面积及体积的求法; (2)对于一些复杂的几何体,要善于将其转化为规则的几何体进行求解; (3)要重视对计算能力的训练与培养,以适应高考的需要.1.(2012北京高考)某三棱锥的三视图如图所示,该三棱锥的表面积是( ).A .28+6 5B .30+6 5C .56+12 5D .60+12 52.(2012江西高考)若一个几何体的三视图如图所示,则此几何体的体积为( ).A .112B .5C .92D .43.日常生活中,许多饮料是用易拉罐盛装的,易拉罐是近似的圆柱体.现有一个高为12 cm ,底面半径为4 cm 的空易拉罐,被切割成如图所示的形状相同的两个几何体,如果将其中一个几何体的侧面展开,那么展平后的形状是( ).4.一个空间几何体的三视图如图所示,则该几何体的表面积为( ).A.48 B.32+817C.48+817 D.805.一个正三棱柱(底面为等边三角形,侧棱与底面垂直)的三视图如图所示,求这个三棱柱的表面积和体积.参考答案基础梳理自测知识梳理1.(1)2πr 2+2πrl (2)πr 2+πrl (4)4πR 22.(1)Sh (2)13Sh (4)43πR 3基础自测1.C 解析:设正方体的棱长为a ,则a 3=8. 而此内切球直径为2,∴S 表=4πr 2=4π.2.A 解析:由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,分别计算其体积相加得π×22×2+43π=283π.3.C 解析:设长方体长、宽、高分别为a ,b ,c ,不妨取ab =2,bc =3,ac =6,长方体的体对角线长为a 2+b 2+c 2.而由⎩⎪⎨⎪⎧ ab =2,bc =3,ac =6,得⎩⎪⎨⎪⎧a =2,b =1,c =3.∴球的直径d =22+12+32=14.∴r =d 2=142.∴S 球=4πr 2=4π×144=14π.4.3π 解析:形成的几何体为圆锥中挖去一小圆锥后的剩余部分,作AD ⊥BC , ∴AD = 3.∴V =13πAD 2·(BC +BD )-13πAD 2·BD =3π.5.96 解析:底面正方形的面积S =62=36, 又∵PA ⊥底面ABCD ,PA =8,∴V P ­ABCD =13×S ×PA =13×36×8=96.考点探究突破【例1】 12π 解析:此几何体的上部分为球,球的直径为2,下部分为一圆柱,圆柱的高为3,底面圆的直径为2,所以S 表=4π+π+π+2π×3=12π.【例2】 7∶5或5∶7 解析:设三棱柱的高为h ,上、下底的面积均为S ,体积为V ,则V =V 1+V 2=Sh .∵E ,F 分别为AB ,AC 的中点,∴S △AEF =14S .V 1=13h ⎝⎛⎭⎪⎫S +14S +S ·14S =712Sh ,V 2=Sh -V 1=512Sh ,∴V 1∶V 2=7∶5.【例3】 解:(1)该三棱柱的侧面展开图为边长分别为4和9的矩形,故对角线长为42+92=97.(2)将该三棱柱的侧面沿棱BB ′展开,如下图,设PC =x ,则MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3, ∴x =2,即PC =2. 又NC ∥AM , 故PC PA =NC AM ,即25=NC 2. ∴NC =45.演练巩固提升1.B 解析:根据三棱锥的三视图可还原此几何体的直观图为:此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S =12×(2+3)×4+12×4×5+12×4×(2+3)+12×25×41-5=30+6 5.2.D 解析:由三视图可判断该几何体为直六棱柱,其底面积为4,高为1,所以体积为4,故选D.3.A 解析:圆柱的展开图是矩形,故此几何体展开后的图形应为三角形.4.C 解析:由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形; 上底面是长为4、宽为2的矩形;两个侧面是垂直于底面,上底长为2,下底长为4,高为4的梯形;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817. 5.解:由三视图易知,该正三棱柱的形状如图所示,且AA ′=BB ′=CC ′=4 cm ,正三角形ABC 和正三角形A ′B ′C ′的高为2 3 cm.∴正三角形ABC 的边长为AB =23sin 60°=4(cm).∴该三棱柱的表面积为S =3×4×4+2×12×42sin 60°=48+83(cm 2).体积为V =S 底·AA ′=12×42sin 60°×4=163(cm 3).故这个三棱柱的表面积为(48+83)cm 2,体积为16 3 cm 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.多面体的表面积、侧面积 因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台

侧面展开图 侧面积公式 S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l 3.柱、锥、台和球的表面积和体积 名称 几何体 表面积 体积 柱体 (棱柱和圆柱) S表面积=S侧+2S底 V=Sh

锥体 (棱锥和圆锥) S表面积=S侧+S底 V=13Sh

台体 (棱台和圆台) S表面积=S侧+S上+S下 V=13(S上+S下+

S上S下)h 球 S=4πR2 V=43πR3

【知识拓展】 1.与体积有关的几个结论 (1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a. (2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. (3)正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × ) (4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × ) (6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × )

1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( ) A.1 cm B.2 cm

C.3 cm D.32 cm 答案 B 解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π, ∴r2=4,∴r=2 cm. 2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )

A.90 cm2 B.129 cm2 C.132 cm2 D.138 cm2 答案 D 解析 该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S=[2×(4×6+4×3)+3×6+3×3]+

(5×3+4×3+2×12×4×3)=99+39=138(cm2).

3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A.12π B.323π

C.8π D.4π 答案 A 解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.

4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( ) A.1丈3尺 B.5丈4尺 C.9丈2尺 D.48丈6尺 答案 B 解析 设圆柱底面半径为r尺,高为h尺,依题意,圆柱体积为V=πr2h=2 000×1.62≈3×r2×13.33,所以r2≈81,即r≈9,所以圆柱底面圆周长为2πr≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B. 5.(2016·成都一诊)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.

答案 1∶1 解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V圆锥=13×π×23=83π,V半球=12×43π×23=163π,所以V剩余=V半球-V圆锥=83π,故剩余部分与挖去部分的体积之

比为1∶1.

题型一 求空间几何体的表面积 例1 (1)(2017·淮北月考)一个多面体的三视图如图所示,则该多面体的表面积为( )

A.21+3 B.18+3 C.21 D.18 (2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)A (2)12 解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为

6×(4-12)+2×34×(2)2=21+3.故选A.

(2)设正六棱锥的高为h,侧面的斜高为h′. 由题意,得13×6×12×2×3×h=23, ∴h=1, ∴斜高h′=12+(3)2=2, ∴S侧=6×12×2×2=12. 思维升华 空间几何体表面积的求法 (1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量. (2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用. (2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.

答案 26 解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴

截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.

题型二 求空间几何体的体积 命题点1 求以三视图为背景的几何体的体积 例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )

A.13+23π B.13+23π

C.13+26π D.1+26π 答案 C 解析 由三视图知,半球的半径R=22,四棱锥为正四棱锥,它的底面边长为1,高为1,

∴V=13×1×1×1+12×43π×223=13+26π,故选C.

命题点2 求简单几何体的体积 例3 (2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案 7

解析 设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7. 思维升华 空间几何体体积问题的常见类型及解题策略 (1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. (1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.

(2)如图,在多面体ABCDEF中,

已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )

A.23B.33 C.43D.32 答案 (1)33 (2)A 解析 (1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h=1,则体积V=13Sh=13×(12×23×1)×1=33. (2)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG, CH,容易求得EG=HF=12,AG

=GD=BH=HC=32, ∴S△AGD=S△BHC=12×22×1=24, ∴V=VE-ADG+VF-BCH+VAGD-BHC=2VE-ADG+VAGD-BHC=13×24×12×2+24×1=23.故选A.

题型三 与球有关的切、接问题 例4 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )

A.3172 B.210 C.132 D.310 答案 C 解析 如图所示,由球心作平面ABC的垂线,

则垂足为BC的中点M. 又AM=12BC=52,

OM=12AA1=6,所以球O的半径R=OA=(52)2+62=132. 引申探究 1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R,内切球的半径为r. 又正方体的棱长为4,故其体对角线长为43,

从而V外接球=43πR3=43π×(23)3=323π,

V内切球=43πr3=43π×23=32π3. 2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?

解 正四面体的表面积为S1=4·34·a2=3a2,其内切球半径r为正四面体高的14,即r=14·63

a=612a,因此内切球表面积为S2=4πr2=πa26,则S1S2=3a2πa26=63π.

3.已知侧棱和底面边长都是32的正四棱锥,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3. 思维升华 空间几何体与球接、切问题的求解方法 (1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解. (2016·全国丙卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )

A.4π B.9π2 C.6π D.32π3 答案 B 解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V

的最大值为9π2.

15.巧用补形法解决立体几何问题 典例 (2016·青岛模拟)如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________.

相关文档
最新文档