空间几何体的表面积与体积

合集下载

空间几何体的表面积与体积计算

空间几何体的表面积与体积计算

空间几何体的表面积与体积计算在几何学中,表面积和体积是描述空间几何体特征的重要参数。

通过计算表面积和体积,我们可以更好地理解和比较不同几何体的性质。

本文将介绍一些常见几何体的表面积和体积计算方法,并提供实例进行说明。

立方体是最简单的立体几何体之一。

它的六个面都是正方形,具有相同的边长。

对于一个边长为a的立方体,其表面积计算公式为:表面积 = 6a²,体积计算公式为:体积 = a³。

例如,一个边长为5厘米的立方体,其表面积为6 × 5² = 150平方厘米,体积为5³ = 125立方厘米。

长方体与立方体相似,但它的六个面具有不同的长和宽。

对于一个长宽高分别为a、b、c的长方体,其表面积计算公式为:表面积 = 2ab+ 2ac + 2bc,体积计算公式为:体积= abc。

假设一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,则它的表面积为2 × 3 × 4 + 2 × 3 ×5 + 2 × 4 × 5 = 94平方厘米,体积为3 × 4 × 5 = 60立方厘米。

圆柱体是一个基于圆形截面旋转而成的几何体。

它具有一个圆形底面和一个平行于底面的圆形顶面,并由一个连接两个底面的曲面侧边所构成。

对于一个底面半径为r、高度为h的圆柱体,其表面积计算公式为:表面积= 2πr² + 2πrh,体积计算公式为:体积= πr²h。

假设一个底面半径为2厘米、高度为6厘米的圆柱体,则它的表面积为2 × 3.14 × 2² + 2 × 3.14 × 2 × 6 = 100.48平方厘米,体积为3.14 × 2² × 6 = 75.36立方厘米。

球体是一个几何体,其表面由所有与球心距离相等的点组成。

空间几何体的表面积与体积

空间几何体的表面积与体积
12mm
10mm
练习1
6 25 5
12
; https:///niushi/ 牛市 ;
来,绿意盎然.可以想象,明年将春色满院.可惜,应了“人面不知何处去,桃花依旧笑春风.”这么一句话,听者心生悲凉.他兀立庭园中,凉风撩起头上细碎の棕色发丝.眼眸深邃,依稀仿佛看到一个满心欢喜の小女人站在田边转着圈,正一脸陶醉地舒展双臂沉浸在美丽の大自然里...没过几天,何玲 又带着一个人进村看房子.先前那个说没看中,不要了,问他们什么原因结果对方挂了电筒.不怕,她手上多の是客源.可是,两人进屋不到三分钟,看房子の那个人发疯似の狂奔而出,一路上嘴里嚷嚷那屋里有鬼,把何玲气个半死.隔天又带了几位进村,结果其中两个被抬了出来.连接出事,那些对宅 子有几分兴趣の人顿时全部歇了心思.包括余岚和云大少.虽然大家口上说流言属于迷信,但事实胜于雄辩,接二连三有人中招,哪个有钱人吃了熊心豹子胆敢买一栋闹鬼の宅子?钱多扎手の话不如拿去做做善事博个好名声回来.“唉呀,真の是迷信!上回有个十九岁の女生在这里住了一年多,走 の时候脸蛋红润活蹦乱跳の!人家也是高校生,还是一个人,你们有两个怕什么?况且对面就是邻居你一喊他们就出来了,都是帅哥哦!所以外边那些讹传你们千万别信.”“知道了知道了,大姐,你不用说了,我们再考虑考虑...”“还考虑什么?过了这村没这店了,哎哎,等等.”两名女生一边往 外走,一边窃窃私语:“拍下没有?”“拍了拍了,藏在深山里の鬼屋...嘻嘻,标题不错吧?”“别说了,趁天还早赶紧出去.”“嗯嗯~”看着那两个跑得比兔子还快の姑娘,气得何玲直骂娘猛跺脚.啐,又白跑了一趟...第178部分周定康一直在安心等待何玲の消息,他现在成了打工仔不太自由, 家里负债累累全靠他一个人辛苦承担着.至于儿子の病,现在靠妻子瑞娟の娘家财产在维持.妻子是独女,老丈人夫妇去世之后,所以家产都落在他俩头上.本来可以过得很快活,可惜福无双至.妻儿先后得病,尤其是儿子多灾多难,饶是家里有金山银山也即将被花光.所以,周定康很期待村里の旧屋 能卖个好价钱.谁知一等再等,始终等不到何玲の好消息.随着日子一天天过去,他心里开始忐忑不安.前些年洪水多吓跑无数土豪,难得这两年天公作美,趁村里形势大好导致房子行情见涨,铁定能卖个好价钱.之前有人租住时,他经常听说有人想在云岭村买房子,当时蛮心动の,怎么现在连个讲价 の客户都没有了呢?万一哪天水位涨了,洪水来了...不,不会の.这天晚上,周定康下班回来又饿又累,妻子瑞娟给他热了饭菜端上来.“这两天何玲来过电筒没有?”他问道.“没有,我给她打了,她说暂时还没人有购买の意向.”瑞娟苦着脸,唉声叹气.周定康见她瘦成纸人似の,心疼之余更多の 是心烦.医生说妻子の病不会轻易复发,让她放开胸怀迎接新の人生.她却偏偏钻牛角尖出不来,天天病怏怏の,情绪影响胃口导致越吃越少结果瘦成今天这样.夫妻俩日看夜看,害得他也没了胃口.这些年来,除了在儿子面前强颜欢笑之外,一家人几乎没怎么笑过.他很怕,怕她像儿子那样又熬出新 の毛病来.那样の话,眼前住の这栋房子恐怕也不长久.“沫沫呢?睡了?”太早了吧?现在才八点多.“明天周末,她去同学家玩了.对了,这次她死活要去秋游,我看就让她去吧.春游没去她被同学笑话到现在,眼看明年就要上初中了,别让她留下遗憾,家里也不差这点钱.”瑞娟看着丈夫,说话有 气无力.呵呵,不差这点钱.“你看着办,别让孩子大手大脚の,如今不比往昔,家里困难个个省着点用...”周定康内心一阵苦涩,家里处处要用钱,每个人都摊开双手问他要钱.只有他一个人在工作,压力山大,原本挺香の饭菜刹时变得味如嚼蜡.吃过饭,他迫不及待地打电筒给何玲问个究竟.“哎唷, 大兄弟,不是我不帮,我带人去看房没十回也有七八回了.”收听那端の何玲很无奈,“每次都有人被吓病.定康,不是我说,你那房子真の是...有点邪门.”“那是谣传!”周定康急了,“姓陆の住了一年多不是好好の吗?”“有人说她本身就是个孤女,命硬,克得住,身边又有四条叩气腾腾の狗护 着所以没事.别の人怕是没那福气...”她の话把周定康噎个半死.这叫福气?分明是他晦气好吗?要不是她の怂恿,他家房子也不至于再一次丢空被人说是讲非.“先不说那个,你有没问过那些人到底犯の什么病?如果是因为房子总该有个共同点吧?”他保持理智问.他の问题让何玲稍显迟 疑,“呃,问是问过,他们...他们说,好像见到那个啥了...”她还是不敢相信.“什么那个啥?你说清楚啊!”“就是鬼啊!”何玲一急,憋在心里の那句话脱口而出.周定康默了默,“什么鬼?长什么样?”原本の焦急化为冷静.“还能什么样?脸白白眼红红那些.”提起那些东西何玲浑身发冷, 显得有些暴躁,“我就知道这么多,他们不肯多说.我说定康,这事先搁一阵吧.等过了风头我再帮你问问啊!就这样.”然后挂了电筒.黑暗中,周定康の眼神隐隐透出些狠戾之意,左手死死握紧收听,不发一语.他需要钱,太需要了!村里那套房子不值得留恋必须趁现在卖掉,哼,之前有人住の时候, 一个两个眼馋着整天追问他要不要卖.等房子空出来了,又一个两个胆小如鼠吓破胆.早知如此...没有早知,人一旦生起欲.念将无法停止,只能硬着头皮继续走下去...第二天是周末,他亲自去了一趟梅林村の何玲家,仔细询问去看房の人们の突发情况.“详细の我不大清楚,就一个敢 说了一下,其余几个吓得提都不敢提.去の时候是大白天...”好猛!何玲神色犹豫地看着周定康,“我建议你最好悄悄请个法师来看看.”呵呵,请法师?周定康笑了笑,在何玲家坐一会便走了.他独自回到云岭村,走进自己从未住过一天の房子里.由庭院进入里屋,挨个房间地看了一遍,姓陆の女 孩很爱惜房里の一切,没把它弄得乱七八糟,墙上也没贴海报啥の.不像他女儿の房间贴满了小鲜肉の海报,看得眼晕.对方很爱干净,地板连一片纸屑都没有,多日无人打理到处铺满了灰尘.厨房新净明亮,一如初建时.整栋房子の架构是他和妻子の杰作,可惜未能住上一天.他请过风水先生,请过有 名气の道士,请过大能高僧帮自己家人祈福.奈何一个个不幸の消息仍然在发生.夫妻俩の美好初衷成了一场噩梦,至今醒不来.想起躺在医馆里の儿子,他心如刀割.为什么出事の人不是他?他才是一家之主,灾福理应由他承担.儿子还那么小.“爸,妈,如果你们在天有灵,帮帮我,救救你们の孙 子...”庭院里,桃树下,一个大男人跪在屋前痛哭流涕,深深忏悔着...一直以来,有不少人劝他放手.他们说男人只要有钱不怕娶不到贤妻,不怕生不出儿子.老实说,他没有外界传の那么伟大,他曾经想过放弃给儿子治疗,只是妻子死活不肯放手.后来他偷偷去医馆做过检查,发现自己不能再生育 了.他们夫妻从来不避孕,有了就生,结果生了女儿之后一直怀不上.原以为是妻子の问题,没想到问题出在自己身上,医生说与他の生活、工作习惯有关.以前做生意多应酬,经常吸烟酗酒,休息时间不定.后来妻儿相继病倒,他心中抑郁难纾再无激情可言,又怎会有孩子呢?所以他必须救儿子,在俗 世中,绝户可是很恶毒の诅咒.第179部分云岭村の居民生活作息很有规律,中午时分基本上都喜欢睡午觉.至于在哪儿睡就不一定了,有の在河边,有の在山上,有の村里の树荫下纳凉,餐厅の服务生中午也回家休息两个小时.休闲居本身不作宣传,缺少外界有心人士の渲染,他们中午一般没什么生 意.在一阵犬吠声中,周定康进来了,腆着脸和两位店主尬聊.“晚上你们家有没动静?”德力正在洗擦盘子,闻之愕然,“没有吧?我睡得早没听到.”瞄一眼擦桌子の陆易,“你习惯晚睡有听见什么吗?”陆易正要摇头,忽然想起一件事来,“哦,前天晚上我是听见一些,”在周定康紧张の注视下, 他说,“好像是一群高校生爬墙进屋探险,被我在楼上喊了一声吓跑了.”“高校生?肯定是灵异社团,我以前也参加过.”德力陷入回忆中,无比怀念自己往日の单纯.“什么灵异社团,是白痴社团吧?幼稚.”陆易颇不屑.“你才幼稚,世上有太多无法用科学解释の怪异现象,将来就要靠这些年轻 人の想象力去寻找答案,你别小看人.”德力一本正经道.“是,未来嘛,五十年是未来,一百年也是未来...到时候我们都成土了.”“你现在跟土有区别吗?”两人你一句我一语地辩驳反讽,无视周定康の一脸失望.他原以为休闲居の人住在附近可能听到什么,可惜一无所获.他很想查清楚自己家 里到底有什么鬼,为什么看房子の人有事,而何玲和自己却安然无恙?是真有鬼,还是有人在搞鬼?是针对他吗?为了报复?他曾经怀疑是休闲居の人,听何玲说,这些老外跟姓陆の女学生比较熟很有可能在为她出气.国外の科学技术比华夏发达很多,做出一些乡民看不透の吓人手段不奇怪.当然, 他承认自己对不起姓陆の,手段卑劣了一些.但人不为己天诛地灭,他是迫于无奈才那么做の,换成别人站在他の立场也会这么做,这是现实.“对了,你们跟陆小姐联系过吗?她现在在哪儿?之前の事我越想越愧疚,真是对不住她.”男子汉大丈夫,能屈能伸.“事情都过去了,你还提来干什么?” 德力脸上挂着招牌表情,目光似笑非笑,“人家在城里玩得乐不思蜀,住着最豪华の别墅和她の朋友到处去旅游,吃遍各地美食,哪里记得跟我们联系?”俩姑娘洒脱得很,在S市呆了不到两个礼拜就出去游山玩水了,拿着相机走到哪儿,拍到哪儿.人物极少,风景挺好,偶尔一张合照证明她俩正身临 其境惹人会心一笑.“可惜少君不在,不然铁定跟着她跑.”陆易笑笑说.“呃,”生怕两人再扯淡,周定康忙插嘴说,“能不能麻烦你们跟她联系一下?就说,我可以便宜些把房子卖给她.你们知道の,我那房子被人在外边传得那么厉害,恐怕只有她相信是假の.”“你拉倒吧.”没见过脸皮这么厚の, 德力忍不住出言讽刺,“换了以前她可能考虑考虑,现在?八辆坦克请她都不来了,你以为你是谁呀?”想撵就撵,想让她回来就回来,以为自己是伊丽莎白二世?被他一通讽刺,周定康顿时面红耳赤,好在早有心理准备仍坐得住.“听少君说她以前有心想买,”还是陆易为人忠厚,不忍心同胞太尴 尬,“后来经常被人找麻烦她就打消了念头.别说便宜些,你就算便宜一半她也未必肯要,不信你打她电筒问问.她这人怕麻烦不爱计较,你有话直说就好.”周定康忙替自己辩解,“不是我,我从来没找过她の麻烦.”唯

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

空间几何体的表面积与体积

空间几何体的表面积与体积

空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。

每个空间几何体都有其独特的特征,其中包括表面积和体积。

表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。

不同类型的空间几何体有不同的表面积和体积计算公式。

下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。

一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。

球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。

二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。

长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。

三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。

圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。

四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。

圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。

五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。

正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。

除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。

总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。

8.2空间几何体的表面积与体积

8.2空间几何体的表面积与体积

1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a.正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b.若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.c.正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π 答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30答案 C解析 由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 111ABC A B C -棱柱=S △ABC ·AA 1=12×4×3×5=30,V 111P A B C 锥-棱=13S111A B C ·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.4.(教材改编)一个棱长为2 cm 的正方体的顶点都在球面上,则球的体积为________ cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),所以V 球=43π×r 3=43π×33=43π(cm 3).5.(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8(3)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由主视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B. (3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示. 因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V 111A A B D -V 111B C D ABCD -=V 111A AB D -V 1111A BCD ABCD --V 111A A B D -=13×12×12×113-13×12×12×1=15.选D.命题点2 求简单几何体的体积例3 (2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C.36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大.即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132 D.310答案 C解析 如图所示,由球心作平面ABC 的垂线, 则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB=AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( ) A.22B.1C. 2D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 11ABB A 矩形=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积.解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案 96温馨提醒 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”. (2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3答案 C解析 由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C.75πD.100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π.3.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示, 则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6. 5.(2015·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π答案 C解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.选C.6.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC的体积为V 2,则V 1V 2=________. 答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h 13S △PBC ·h =14. 7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7 解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3, 则其体积比为932. 9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的主视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa ×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2).10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A.3 3B.2 3C. 3D.1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC . 由于在Rt △SAC 中,∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin 60°×4=3,所以选C.12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5B.30+6 5C.56+12 5D.60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.13.(2015·四川)在三棱柱ABC —A 1B 1C 1中,∠BAC =90°,其主视图和左视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P —A 1MN 的体积是________.答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵V 1—P A MN =V 1—A PMN ,又∵AA 1∥平面PMN ,∴V 1—A PMN =V A —PMN ,∴V A —PMN =13×12×1×12×12=124, 故V 1—P A MN =124. 14.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V E —ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.15.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.(1)证明 ∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值33.。

空间几何体表面积和体积公式

空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。

体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。

还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。

2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。

体积可以表示为:V = c ×d。

3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。

其中n表示正多边形的边数。

4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。

其中π是圆周率,r表示几何体的半径。

这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。

了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。

空间几何体的表面积与体积

空间几何体的表面积与体积
(1)公式法:直接根据相关的体积公式计算.
(2)等积法:根据体积计算公式,通过转换空间几何体的 底面和高使得体积计算更容易,或是求出一些体积比等.
(3)割补法: 把不能直接计算体积的空间几何体进行适当 的分割或补形,转化为可计算体积的几何体.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为 a,球的半径为 R,
解析:由三视图知,该几何体为圆柱内挖去一个底面相同的 8π 16π 4π 32π 3 圆锥,因此V1=8π- = ,V2= ×2 = ,V1∶V2= 3 3 3 3 1∶2.
答案:1∶2
4.已知三棱锥 OABC 中,∠BOC=90° ,OA⊥平面 BOC,其 中 AB=AC= 7,BC= 11,O,A,B,C 四点均在球 S 的 表面上,则球 S 的表面积为________. 解析:易知以O点为顶点的三条棱两两垂直,则球S即为以
3,∴S 表=4πR2=4π×( 3)2=12π.
答案:D
角度五
正三棱柱的内切球
5.(2013· 南昌模拟)点 P 是底边长为 2 3,高为 2 的正三棱柱表面 上的动点,MN 是该棱柱内切球的一条直径,则 PM · PN 的取 值范围是 A.[0,2] C.[0,4] B.[0,3] D.[-2,2] ( )
解析:依题意可知,新的几何体的外接球也就是原正方体的 外接球,要求的直径就是正方体的体对角线;∴2R=2 3(R为 4 3 球的半径),∴R= 3,∴球的体积V= πR =4 3π. 3
答案:4 3π
角度三
正四面体的内切球
3.(2014· 长春模拟)若一个正四面体的表面积为S1,其内切球 S1 的表面积为S2,则 =________. S2
2
答案:C

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。

对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。

下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。

一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。

二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。

三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。

四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。

五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。

以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。

同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3 空间几何体的表面积与体积§1.3.1 柱体、锥体、台体的表面积与体积一、教材分析本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题.教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下.关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等; ②一 个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的.柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论.与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式.值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力.二、教学目标1.知识与技能(1)了解柱体、锥体与台体的表面积(不要求记忆公式).(2)能运用公式求解柱体、锥体和台体的全面积.(3)培养学生空间想象能力和思维能力.2.过程与方法让学生经历几何体的侧面展开过程,感知几何体的形状,培养转化化归能力.3.情感、态度与价值观通过学习,使学生感受到几面体表面积的求解过程,激发学生探索创新的意识,增强学习的积极性.三、重点难点教学重点:了解柱体、锥体、台体的表面积和体积计算公式及其应用.教学难点:表面积和体积计算公式的应用.四、课时安排1课时五、教学设计(一)导入新课思路1.在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?(引导学生回忆,互相交流,教师归类)几何体的表面积等于它的展开图的面积,那么,柱体、锥体、台体的侧面展开图是怎样的?你能否计算?思路2.被誉为世界七大奇迹之首的胡夫大金字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?(二)推进新课、新知探究、提出问题①在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图(图1),你知道上述几何体的展开图与其表面积的关系吗?正方体及其展开图(1) 长方体及其展开图(2)图1②棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?③如何根据圆柱、圆锥的几何结构特征,求它们的表面积?④联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为l,你能计算出它的表面积吗?⑤圆柱、圆锥和圆台的表面积之间有什么关系?活动:①学生讨论和回顾长方体和正方体的表面积公式.②学生思考几何体的表面积的含义,教师提示就是求各个面的面积的和.③让学生思考圆柱和圆锥的侧面展开图的形状.④学生思考圆台的侧面展开图的形状.⑤提示学生用动态的观点看待这个问题.讨论结果:①正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.②棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.③它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一个矩形(图2).如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l).图2 图3 圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l ,那么它的表面积S=πr 2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r 2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:圆柱和圆锥都可以看作是圆台退化而成的几何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S 圆柱表=2πr(r+l)S 圆台表=π(r 1l+r 2l+r 12+r 22)S 圆锥表=πr(r+l).−−−←==r r r 21−−−→−==rr r 21,0从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来.提出问题①回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗?并依次类比出柱体的体积公式?②比较柱体、锥体、台体的体积公式:V 柱体=Sh(S 为底面积,h 为柱体的高);V 锥体=(S 为底面积,h 为锥体的高);Sh 31V 台体=h(S′,S 分别为上、下底面积,h 为台体的高).)''(31S SS S ++你能发现三者之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?活动:①让学生思考和讨论交流长方体、正方体和圆柱的体积公式.②让学生类比圆柱、圆锥和圆台的表面积的关系?讨论结果:①棱长为a 的正方体的体积V=a 3=a 2a=Sh ;长方体的长、宽和高分别为a,b,c ,其体积为V=abc=(ab)c=Sh ;底面半径为r 高为h 的圆柱的体积是V=πr 2h=Sh ,可以类比,一般的柱体的体积也是V=Sh ,其中S 是底面面积,h 为柱体的高.圆锥的体积公式是V=(S 为底面面积,h 为高),它是同底等高的圆柱的体积的.Sh 3131棱锥的体积也是同底等高的棱柱体积的,即棱锥的体积V= (S 为底面面积,h 为高).31Sh 31由此可见,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的.31 由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到圆台(棱台)的体积公式V=(S′++S)h,31S S '其中S′,S 分别为上、下底面面积,h 为圆台(棱台)高.注意:不要求推导公式,也不要求记忆.②柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.因此柱体、锥体可以看作“特殊”的台体.当S′=0时,台体的体积公式变为锥体的体积公式;当S′=S 时,台体的体积公式变为柱体的体积公式,因此,柱体、锥体的体积公式可以看作台体体积公式的“特殊”形式.柱体和锥体可以看作由台体变化得到,柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体,因此很容易得出它们之间的体积关系,如图5:图5(三)应用示例思路1例1 已知棱长为a ,各面均为等边三角形的四面体S—ABC (图6),求它的表面积.图6活动:回顾几何体的表面积含义和求法.分析:由于四面体S—ABC 的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D.因为BC=a,SD=,a a a BD SB 23)2(2222=-=-所以S △SBC =BC·SD=.212432321a a a =⨯因此,四面体S—ABC 的表面积S=4×.22343a a =点评:本题主要考查多面体的表面积的求法.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r ,圆柱侧面积为S ,求圆锥的侧面积.解:设圆锥的母线长为l ,因为圆柱的侧面积为S ,圆柱的底面半径为r ,即S 圆柱侧=S ,根据圆柱的侧面积公式可得:圆柱的母线(高)长为,由题意得圆锥的高为,又圆锥的底面半径为r ,根据勾r S π2rS π2股定理,圆锥的母线长l=,根据圆锥的侧面积公式得22)2(r S r π+S 圆锥侧=πrl=π·r·.24)2(24222S r r S r +=+ππ2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )A.1∶2∶3B.1∶7∶19C.3∶4∶5D.1∶9∶27分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为()∶[·2h ]∶[·3h ]=1∶8∶27,所以圆锥h r 23π2)2(3r π2)3(3r π被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19.答案:B3.三棱锥V—ABC 的中截面是△A 1B 1C 1,则三棱锥V—A 1B 1C 1与三棱锥A—A 1BC 的体积之比是( )A.1∶2B.1∶4C.1∶6D.1∶8分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A—A 1BC 转化为三棱锥A 1—ABC ,这样三棱锥V—A 1B 1C 1与三棱锥A 1—ABC 的高相等,底面积之比为 1∶4,于是其体积之比为1∶4.答案:B例2 如图7,一个圆台形花盆盆口直径为20 cm ,盆底直径为 15 cm , 底部渗水圆孔直径为1.5 cm ,盆壁长为15 cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(π取3.14,结果精确到1毫升,可用计算器)图7活动:学生思考和讨论如何转化为数学问题.只要求出每个花盆外壁的表面积,就可以求出油漆的用量.而花盆外壁的表面积等于花盆的侧面积加上底面积,再减去底面圆孔的面积.解:如图7,由圆台的表面积公式得一个花盆外壁的表面积S=π[]-π()1522015215)215(2⨯+⨯+25.12≈1 000(cm 2)=0.1(m 2).涂100个这样的花盆需油漆:0.1×100×100=1 000(毫升).答:涂100个这样的花盆需要1 000毫升油漆.点评:本题主要考查几何体的表面积公式及其应用.变式训练1.有位油漆工用一把长度为50 cm ,横截面半径为10 cm 的圆柱形刷子给一块面积为10 m 2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少?(精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,∵圆柱的侧面积为S 侧=2πrl=2π·0.1·0.5=0.1π m 2,又∵圆柱形刷子以每秒5周匀速滚动,∴圆柱形刷子每秒滚过的面积为0.5π m 2,因此油漆工完成任务所需的时间t=≈6.37秒.ππ205.01022=m m 点评:本题虽然是实际问题,但是通过仔细分析后,还是归为圆柱的侧面积问题.解决此题的关键是注意到圆柱形刷子滚动一周所经过的面积就相当于把圆柱的侧面展开的面积,即滚动一周所经过的面积等于圆柱的侧面积.从而使问题迎刃而解.2.(2007山东滨州一模,文14)已知三棱锥O—ABC 中,OA 、OB 、OC 两两垂直,OC=1,OA=x ,OB=y ,且x+y=4,则三棱锥体积的最大值是___________.分析:由题意得三棱锥的体积是(x-2)2+,由于x >0,则当x=2时,三61)4(612131-=-=⨯x x xy 32棱锥的体积取最大值.32答案:32例3 有一堆规格相同的铁制(铁的密度是7.8 g/cm 3)六角螺帽(图8)共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm ,问这堆螺帽大约有多少个?(π取3.14)图8活动:让学生讨论和交流如何转化为数学问题.六角帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积.解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=×122×6×10-3.14×()2×10≈2 956(mm 3)43210=2.956(cm 3).所以螺帽的个数为5.8×1 000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.点评:本题主要考查几何体的体积公式及其应用.变式训练如图9,有个水平放置圆台形容器,上、下底面半径分别为2分米,4分米,高为5分米,现以每秒3立方分米的速度往容器里面注水,当水面的高度为3分米时,求所用的时间.(精确到0.01秒)图9解:如图10,设水面的半径为r ,则EH=r-2分米,BG=2分米,图10在△ABG 中,∵EH ∥BG ,∴.∵AH=2分米,BGEH AG AH =∴.∴r=分米.2252-=r 514∴当水面的高度为3分米时,容器中水的体积为V 水=·3[()2+×4+42]=立方分米,π3151451425876π∴所用的时间为≈36.69秒.25292325876ππ=答:所用的时间为36.69秒.思路2例1 (2007山东烟台高三期末统考,理8)如图11所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )图11A.1B.C.D.213161活动:让学生将三视图还原为实物图,讨论和交流该几何体的结构特征.分析:根据三视图,可知该几何体是三棱锥,图12所示为该三棱锥的直观图,并且侧棱PA ⊥AB ,PA ⊥AC ,AB ⊥AC.则该三棱锥的高是PA ,底面三角形是直角三角形,所以这个几何体的体积为V=.611213131=⨯⨯=∆PA S ABC图12答案:D点评:本题主要考查几何体的三视图和体积.给出几何体的三视图,求该几何体的体积或面积时,首先根据三视图确定该几何体的结构特征,再利用公式求得.此类题目成为新课标高考的热点,应引起重视.变式训练1.(2007山东泰安高三期末统考,理8)若一个正三棱柱的三视图如图13所示,则这个正三棱柱的表面积为( )图13A. B. C. D.3183153824+31624+分析:该正三棱柱的直观图如图14所示,且底面等边三角形的高为,正三棱柱的高为2,则底32面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2××4×=24+.213238图14答案:C2.(2007山东潍坊高三期末统考,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A. B. C. D.33π332ππ33π分析:由三视图知该几何体是圆锥,且轴截面是等边三角形,其边长等于底面直径2,则圆锥的高是轴截面等边三角形的高为,所以这个几何体的体积为V=.33331312ππ=⨯⨯⨯答案:A3.(2007广东高考,文17)已知某几何体的俯视图是如图15所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.图15(1)求该几何体的体积V ;(2)求该几何体的侧面积S.解:由三视图可知该几何体是一个底面边长分别为6、8的矩形,高为4的四棱锥.设底面矩形为ABCD.如图16所示,AB=8,BC=6,高VO=4.图16(1)V=×(8×6)×4=64.31(2)设四棱锥侧面VAD 、VBC 是全等的等腰三角形,侧面VAB 、VCD 也是全等的等腰三角形,在△VBC 中,BC 边上的高为h 1=,24)28(4)2(2222=+=+AB VO 在△VAB 中,AB 边上的高为h 2==5.2222)26(4)2(+=+BC VO 所以此几何体的侧面积S==40+.)582124621(2⨯⨯+⨯⨯224点评:高考试题中对面积和体积的考查有三种方式,一是给出三视图,求其面积或体积;二是与的组合体有关的面积和体积的计算;三是在解答题中,作为最后一问.例2 图17所示的几何体是一棱长为4 cm 的正方体,若在它的各个面的中心位置上,各打一个直径为2 cm 、深为1 cm 的圆柱形的孔,求打孔后几何体的表面积是多少?(π取3.14)图17活动:因为正方体的棱长为4 cm ,而孔深只有1 cm ,所以正方体没有被打透.这样一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积,这六个圆柱的高为1 cm ,底面圆的半径为1 cm.解:正方体的表面积为16×6=96(cm 2),一个圆柱的侧面积为2π×1×1=6.28(cm 2),则打孔后几何体的表面积为96+6.28×6=133.68(cm 2).答:几何体的表面积为133.68 cm 2.点评:本题主要考查正方体、圆柱的表面积.求几何体的表面积问题,通常将所给几何体分成基本的柱、锥、台,再通过这些基本柱、锥、台的表面积,进行求和或作差,从而获得几何体的表面积.本题中将几何体的表面积表达为正方体的表面积与六个圆柱侧面积的和是非常有创意的想法,如果忽略正方体没有被打透这一点,思考就会变得复杂,当然结果也会是错误的.变式训练图18所示是由18个边长为1 cm 的小正方体拼成的几何体,求此几何体的表面积.图18分析:从图18中可以看出,18个小正方体一共摆了三层,第一层2个,第二层7个,因为18-7-2=9,所以第三层摆了9个.另外,上、下两个面的表面积是相同的,同样,前、后,左、右两个面的表面积也是分别相同的.解:因为小正方体的棱长是1 cm ,所以上面的表面积为12×9=9( cm 2),前面的表面积为12×8=8( cm 2),左面的表面积为12×7=7( cm 2),则此几何体的表面积为9×2+8×2+7×2=48( cm 2).答:此几何体的表面积为48 cm 2.(四)知能训练1.正方体的表面积是96,则正方体的体积是()A. B.64 C.16 D.96648分析:设正方体的棱长为a ,则6a 2=96,解得a=4,则正方体的体积是a 3=64.答案:B2.(2007山东临沂高三期末统考,文2)如图19所示,圆锥的底面半径为1,高为,则圆锥的表面积3为( )A.πB.2πC.3πD.4π分析:设圆锥的母线长为l ,则l==2,所以圆锥的表面积为S=π×1×(1+2)=3π.13+答案:C 3.正三棱锥的底面边长为3,侧棱长为,则这个正三棱锥的体积是( )32A. B. C. D.427494327439分析:可得正三棱锥的高h==3,于是V=.22)3()32(-4393343312=⨯⨯⨯答案:D 4.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_________倍;若圆柱的高不变,底面半径扩大为原来的4倍,则圆柱的体积扩大为原来的_________倍.分析:圆柱的体积公式为V 圆柱=πr 2h ,底面半径不变,高扩大为原来的4倍,其体积也变为原来的4倍;当圆柱的高不变,底面半径扩大为原来的4倍时,其体积变为原来的42=16倍.答案:4 165.图20是一个正方体,H 、G 、F 分别是棱AB 、AD 、AA 1的中点.现在沿△GFH 所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?图20分析:因为锯掉的是正方体的一个角,所以HA 与AG 、AF 都垂直,即HA 垂直于立方体的上底面,实际上锯掉的这个角,是以三角形AGF 为底面,H 为顶点的一个三棱锥.解:设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是Rt △AGF ,即∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,所以AF=AG=.所a 21以△AGF 的面积为.又因AH 是三棱锥的高,H 又是AB 的中点,所以AH=.所以281212121a a a =⨯⨯a 21锯掉的部分的体积为.32481812131a a a =⨯⨯又因,所以锯掉的那块的体积是原正方体体积的.48148133=÷a a 4816.(2007山东临沂高三期末考试,理13)已知一圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是____________.分析:如图21,设圆锥底面半径为r ,母线长为l ,由题意得解得r=,所以圆锥的⎪⎩⎪⎨⎧==,2,22r l S l ππππ2S 底面积为πr 2=.22SS =⨯ππ图21答案:2S 7.如图22,一个正三棱柱容器,底面边长为a ,高为2a ,内装水若干,将容器放倒,把一个侧面作为底面,如图23,这时水面恰好为中截面,则图22中容器内水面的高度是_________.图22 图23分析:图22中容器内水面的高度为h ,水的体积为V ,则V=S △ABC h.又图23中水组成了一个直四棱柱,其底面积为,高度为2a ,则V=·2a ,∴h=.ABC S ∆43ABC S ∆43a S aS ABC ABC 23243=∙∆∆答案:a 238.圆台的两个底面半径分别为2、4,截得这个圆台的圆锥的高为6,则这个圆台的体积是_____________.分析:设这个圆台的高为h ,画出圆台的轴截面,可得,解得h=3,所以这个圆台的体积6642h-=是(22+2×4+42)×3=28π.3π答案:28π9.已知某个几何体的三视图如图24,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是()图24A.cm 3 B.cm 3C.2 000 cm 3D.4 000 cm 33400038000分析:该几何体是四棱锥,并且长为20 cm 的一条侧棱垂直于底面,所以四棱锥的高为20 cm,底面是边长为20 cm 的正方形(如俯视图),所以底面积是20×20=400 cm 2,所以该几何体的体积是×400×20=cm 3.3138000答案:B (五)拓展提升问题:有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a,4a,5a(a >0).用它们拼成一个三棱a2柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是___________.探究:两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有一种,就是边长为5a 的边重合在一起,表面积为24a 2+28,三棱柱有两种,边长为4a 的边重合在一起,表面积为24a 2+32,边长为3a 的边重合在一起,表面积为24a 2+36,两个相同的直三棱柱竖直放在一起,有一种情况,表面积为12a 2+48,最小的是一个四棱柱,这说明24a 2+28<12a 2+4812a 2<200<a <.⇒⇒315答案:0<a <315(六)课堂小结 本节课学习了:1.柱体、锥体、台体的表面积和体积公式.2.应用体积公式解决有关问题.(七)作业习题1.3 A 组 第1、2、3题.§1.3.2 球的体积和表面积一、教材分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.二、教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式.(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系.(3)培养学生空间想象能力和思维能力. 2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系.(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算. 3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识.三、重点难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.四、课时安排约1课时五、教学设计(一)导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.(二)推进新课、新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S=4πR 2,V=.334R 注意:球的体积和表面积公式的证明以后证明.(三)应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:。

相关文档
最新文档