大学物理--机械振动 ppt课件

合集下载

大学物理——第4章-振动和波

大学物理——第4章-振动和波
A sin1 + A sin2 2 tan = 1 A cos1 + A cos2 1 2
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω

《大学物理》第14章 振动

《大学物理》第14章 振动
速度超前位移 /2 vmax = A = (k/m)1/2A
a = - 2A cos (t + ) = 2A cos (t + + )
加速度超前位移 amax = 2A = (k/m)A
上页 下页 返回 退出
相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
其中v为物体 m 距平衡位置 x 处的速度。 忽略摩擦,总机械能 E 保持不变。随着 物体来回振动,势能和动能交替变化。
上页 下页 返回 退出
§ 14-3简谐振动的能量
在x = A 和 x = - A处,v = 0,
E = m(0)2/2 + kA2/2 = kA2/2 (14-10a) 简谐振子的总机械能正比于振幅的平方。
dx/dt = - A sin (t + ) d2x/dt2 = - 2 A cos (t + ) = - 2 x
0 = d2x/dt2 + (k/m) x = - 2 x + (k/m) x
(k/m - 2) x = 0 只有当 (k/m - 2) = 0 时,x不为零。因此
a = - (410 m/s2) cos(1650t). (c) 在t = 1.0010-3 s 时刻
x = A cos t
= (1.510-4 m) cos[(1650 rad/s)(1.0010-3 s)]
= (1.510-4 m) cos(1.650 rad/s) = -1.210-5 m.
上页 下页 返回 退出
§ 14-1 弹簧的振动
例题 14-1 汽车弹簧。当一个质量为200公斤的 一家四口步入一辆总质量为1200公斤的汽车 里,汽车的弹簧压缩了3厘米。(a) 假设汽车 里的弹簧可视为单个弹簧,弹簧劲度系数为 多少? (b) 如果承载了300公斤而不是200公 斤,则汽车将下降多少厘米?

大学物理(简谐振动篇)ppt课件

大学物理(简谐振动篇)ppt课件
通过图表展示实验结果,如位移-时间 图、速度-时间图等,以便更直观地分 析振动特性。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。

大学物理(机械波篇)ppt课件

大学物理(机械波篇)ppt课件

液晶显示
利用偏振光的特性,实现液晶 屏幕对图像的显示和控制。
科学研究
在物理学、化学、生物学等领 域中,利用偏振光研究物质的 光学性质和结构特征。
06
总结回顾与拓展延伸
机械波篇重点知识点总结
机械波的基本概念
机械波是介质中质点间相互作用力引起的振动在介质中的传播。机械波的产生条件、传播方 式、波动方程等基本概念是学习的重点。
驻波形成条件 两列波的频率相同、振幅相等、相位差恒定。
3
驻波特点
波形固定不动,节点和腹点位置固定;相邻节点 间距离等于半波长;能量在节点和腹点之间来回 传递。
03
非线性振动和孤立子简介
非线性振动概念及特点
非线性振动定义
指振动系统恢复力与位移之间不满足线 性关系的振动现象。
振幅依赖性
振动频率和波形随振幅变化而变化。
当障碍物尺寸远大于波长时,衍射现象不 明显。
衍射规律
衍射角与波长成正比,与障碍物尺寸成反 比。
双缝干涉实验原理及结果分析
实验原理:通过双缝让 单色光发生干涉,形成 明暗相间的干涉条纹。
01
干涉条纹间距与光源波 长、双缝间距及屏幕到
双缝的距离有关。
03
05 通过测量干涉条纹间距,
可以计算出光源的波长。
天文学领域
通过测量恒星光谱中谱线的多普勒频移,可以推断出恒星相对于观察 者的径向速度,进而研究恒星的运动和宇宙的结构。
05
光的衍射、干涉和偏振现 象
光的衍射现象及规律总结
衍射现象:光在传播过程中遇到障碍物或 小孔时,会偏离直线传播路径,绕到障碍 物后面继续传播的现象。
当障碍物尺寸与波长相当或更小时,衍射 现象显著。
多个孤立子相互作用后,各自保持 原有形状和速度继续传播。

大学物理 振动

大学物理 振动

2

E Ek Ep
2
k /m
kA A (振幅的动力学意义)
2 2
1 2
x, v
简谐振动能量图
xt
0
x A cos t
o
T
能量
t
E
Ep
v t v A sin t
1 2
1 2 kA cos
2 2
kA
2
t
2
o
T
T
3T
4
2
4
T
t
Ek
1 2
4
常数 A 和 的确定(公式法)
x A cos( t ) v A sin( t )
初始条件 t 0
x x0
v v0
x 0 A cos
A
x
2 0
v0
2 2

v 0 A sin
tan
v0
x0
振动系统的三要素中,周期由系统本身性质决定, 振幅和初相由初始条件决定.
k ( x x 0 ) mgx c
2
mva I k ( x x 0 ) v mgv 0
mva I kxv 0 v a mva I kxv 0 R R
x k m I R
2
FT

R
FT

x0
O
FT
x
x 0
(
2

k m I R
例2 定滑轮半径为 R,转动惯量为 I ,一长度不变 的轻绳一端与固定的劲度系数为k的轻弹簧相连,另 一端与质量为 m 的物体相连,绳子与滑轮间无相对 滑动,忽略轮轴摩擦。现将物体从平衡位置拉下一小 段距离后释放,证明物体作谐振动并求其振动周期

中国矿业大学(北京)《大学物理》课件-第七章 机械波

中国矿业大学(北京)《大学物理》课件-第七章 机械波

y
Acos
t1
2
x
0
以y为纵坐标、x 为 横坐标,
y
u
波形方程
x
给出 t1 时刻空间各
点的位移分布。
给出:t1时刻 波线上各个质点偏离各自平衡位置 的位移所构成的波形曲线(波形图)。
y
u
y
Acos
t1
2
x
0
x
A,波形曲线为余弦曲线,其 “周期” 为 。
B,沿波线(x轴)方向,两个距离相隔的质点的 振动的相位差为:2。
Physics
第7章 机械波
Physics
§7-1 机械波的产生和 传播
§7-1 机械波的产生和传播
波动是振动的传播过程。
机械波:机械振动在介质中的传播过程。
eg,声波、水波、地震波
1、机械波产生的条件
波源 弹性介质
产生机械振动的振源 传播机械振动的介质
注:波动是波源的振动状态或振动能量在介质中 的传播,介质的质点并不随波前进。eg,裙摆
求:1)振幅,2)波长,3)波的周期,4)弦上任一质点的 最大速率,5)图中a、b两点的相位差,6) 3T/4时的波 形曲线。
y / cm
0.5 0.4 0.2 0 0.2 0.4 0.5
中国矿业大学(北京)
M1
a
10 20
M2
b
30 40
50 60
70 x / cm t =0
18/23
补充例题2
波前:在任何时刻,波面有无数多个,最前方的波 面即是波前。波前只有一个。
平面波:波阵面为平面的波动
球面波:波阵面为球面的波动
柱面波:波阵面为柱面的波动
中国矿业大学(北京)

大学物理(振动学)


)
(t 1
)
t
t
c) 利用位相差比较两个同方向、同频率简谐振动的步调
x1=A1cos(ωt+1) x2=A2cos(ωt+2)
2
1
当△ =±2kπ (k=0,1,2,…) 两振动步调一致,同相
当△ =±(2k+1)π (k=0,1,2,…) 两振动步调相反,反相
d) 位相也可以用来比较不同物理量的步调
转的矢量 A,在x 轴上的投 (或振动曲线)能画出振
影正好描述了一个简谐振动 幅矢量的位置,从而确定该 时刻位相
15
例1:
t
时刻
1
:
x1
A/
2 , 10t 方法:t时刻2
:
x2
0 , 2
0
(a) 取ox轴(沿振动方向)
1
1.
A 2
2
. o
3
2
3 2
Ax
(b)作参考圆:以o为圆心,振幅
A为半径作一圆周

判义

据式
式 x Acos(t )
6
二点说明
(1)特征方程成立的条件: 坐标原点取在平衡位置 (2)证明一种振动是简谐振动的一般步骤
a)确定研究对象,找平衡位置 b)建立以平衡位置为原点的坐标系 c)进行受力分析
d)利用牛顿定律或转动定律写出物体在任一位置 的动力学方程
e)根据判据判断该振动是否为简谐振动
m
T f
M
mg
sJddint22,Jgl mMl2,0lm gddt22
g 0 cos( t 0 )
l
f mg sin mg
a
l
l
d 2

大学物理AII_振动


x

0 A
t
T 2 /
例8:
根据下列振动方程求振动物体的振幅、角频率及初相位。
(A)
x A cos(t ) 振幅: A 角频率: x A sin(t ) 振幅: A 角频率:
( ) 初相位:
(B)
初相位:( )

2
(C)
x A cos (t ) 振幅: A 角频率:
x1 Acos1t
该质点实际的运动情况:
x2 Acos2t
x x1 x2
2 A cos(
2 1
2
t ) cos(
2 1
2
t)
振幅
相互垂直的同频率简谐振动的合成:
设一质点同时参与两个简谐振动:
x A1 cos( t 10 )
合振动的轨迹方程:
2 t ) T
振动方程。
y
y ( A1 A2 ) cos(A 1源自A2y1 (t )o
y2 (t )
T
t
A1
0
A2
y
例14:
已知两个简谐运动的振动表达式分别为
x1 2 cos(10t / 2) x2 2 sin(10t / 2)
( SI )
求:(1) 合振动的表达式;x 2 2 cos(10 t 3 / 4)
t
o
x
A
同频率简谐振动的相位差比较:
设两个简谐运动的表达式分别为:
x1 A1 cos(t 1 )
相位差:
x2 A2 cos(t 2 )
(t 2 ) (t 1)=2 1
1、2同相

天津理工大学大学物理机械振动


0
2
2
x A A/2 0
振动曲线
3
2
t
0x
A
36
① 起始时小球在振动正方向的端点 0
②起始时小球在振动负方向的端点
③起始时在平衡位置向负方向运动
④起始时在平衡位置向正方向运动 2
2
⑤起始时过x=A/2向x正方向运动(红虚线)
3
x
A
A/2
A/2
0
t
03 x
A
振动曲线
13
d2x dt2
ቤተ መጻሕፍቲ ባይዱ
2x
0
由三角学知
x Acos(t )
cos(t ) sin(t )
令 '
2
2
则有 cos(t ) sin(t ' )
此时有 x Asin(t ' ) 等效
此式与 x Acos(t )
上述两式都是微分方程的解,也就都可以作为简谐振动 的运动方程。为了初学的便利,一般采用余弦形式。
纸锥扬声器的振动模式 4
一 弹簧振子的谐振动
弹簧振子
一轻弹簧一端固定,另一端系一物体,放在光 滑的水平桌面上。将物体稍微移动后,物体就 在弹性力的作用下来回自由振动。
m
平衡位置
设物体在位置零
m
处时,没被拉长也未
被压缩,这时物体在
f
水平方向上不受力的
m
作用,此位置就叫做 平衡位置。
f
o x 平衡位置
d2x dt2
A 2
cos(t
)
x、 、a
a
2A
A
x
A
o
-A
- A
- 2A

大学物理12机械振动2

x = A cos(ωt + ϕ )
A
x x−t 图
T
ω v = − A ω sin( ω t + ϕ )
π = Aω cos(ωt +ϕ + ) 2 2 a = − A ω cos( ω t + ϕ )
= Aω cos(ωt +ϕ + π)
2
T=

取ϕ = 0
− Aω
v v −t图 Aω o T
l = l0 1− (v / c)2
在飞船B上测得飞船 相对于飞船 的速度: 在飞船 上测得飞船A相对于飞船 的速度: 上测得飞船 相对于飞船B的速度
v = l / ∆t = (l0 / ∆t) 1−(v / c)
解得:v = l0 / ∆t 1 + (l0 / c∆t )
2
2
= 2.68 ×10
8
∆φ > π 3π 称振动( )落后于振动( ) φ2 −φ1 > 0 例:φ2 −φ1= 2 称振动(2)落后于振动(1) 2π − ∆φ
分别作出四种情况的矢量图! 分别作出四种情况的矢量图!
2 4
∆ϕ21 = (ω t + ϕ2 ) - (ω t + ϕ1) = ϕ2 - ϕ1
φ2 −φ1 < 0 例:φ2 −φ1= − 3π称振动(2)超前振动(1) 2π + ∆φ 称振动( )超前振动( )
90
v am
ω
0
ω t+ϕ
·
x
1、用旋转矢量方法确定初相位ϕ: 、 要求条件: 的关系, 要求条件:已知 x0 与A的关系,初速度的方向。 的关系 初速度的方向。 例1: 已知一物体做简谐振动。1)x0=(1/2)A且向位移的 : 已知一物体做简谐振动。 ) 且向位移的 且向位移的正方向运动。 负方向运动; ) 且向位移的正方向运动 负方向运动; 2)x 0= 0且向位移的正方向运动。试求 两种情况下的初相。 两种情况下的初相。 ϕ = π/3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档