小学数学竞赛六、分解质因数
小学六年级数学竞赛试卷及答案_学科竞赛一

一、拓展提优试题1.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.若质数a,b满足5a+b=2027,则a+b=.4.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.5.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?9.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.10.若三个不同的质数的和是53,则这样的三个质数有组.11.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.已知A是B的,B是C的,若A+C=55,则A=.14.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.15.能被5和6整除,并且数字中至少有一个6的三位数有个.16.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.17.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.18.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.19.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.20.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.21.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.22.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.26.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.27.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.28.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.29.如图所示的“鱼”形图案中共有个三角形.30.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.22012的个位数字是.(其中,2n表示n个2相乘)33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.34.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.35.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.36.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.37.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.38.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.39.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.40.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.【参考答案】一、拓展提优试题1.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.4.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.5.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.7.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.9.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.10.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.11.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.14.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.15.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.16.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.17.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.18.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.19.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.20.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.21.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.22.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.26.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.27.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.28.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.29.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.30.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.33.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.34.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.35.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.36.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.37.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.38.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.39.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.40.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.。
小学六年级数学竞赛试卷(附答案)

小学六年级数学竞赛试卷(附答案)一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.4.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).5.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).6.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.7.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.8.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.13.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.14.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.4.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.5.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.6.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.7.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.8.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.13.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.14.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:915.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。
数学竞赛专项训练-整除、质数、合数、倍数、约数【精选】

数学竞赛专项训练-整除、质数、合数、倍数、约数数学竞赛专项训练第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征除 数能被整除的数的特征2或5末位数能被2或5整除 4或25末两位数能被4或25整除8或125末三位数能被8或125整除3或9各位上的数字和被3或9整除(如771,54324)11奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13末三位与末三位以前的数相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1已知两个三位数328和的和仍是三位数且能被9整除。
92x 75y 求x,y解:x,y 都是0到9的整数,∵能被9整除,∴y=6.75y ∵328+=567,∴x=392x 例2已知五位数能被12整除,求x 1234x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+能被3整除时,x=2,5,8x 当末两位能被4整除时,=0,4,84x x ∴=8x 例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,数学竞赛专项训练-整除、质数、合数、倍数、约数∴五位数字都不相同的最小五位数是10263。
上海市徐汇区上海小学六年级奥数竞赛数学竞赛试卷及答案

一、拓展提优试题1.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.4.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.5.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.6.根据图中的信息可知,这本故事书有页页.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.被11除余7,被7除余5,并且不大于200的所有自然数的和是.9.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.10.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.13.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.18.已知两位数与的比是5:6,则=.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.21.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.22.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.分子与分母的和是2013的最简真分数有个.25.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.26.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.27.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.28.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.29.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.30.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.33.图中的三角形的个数是.34.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.35.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.36.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.37.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.38.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.39.已知自然数N的个位数字是0,且有8个约数,则N最小是.40.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)【参考答案】一、拓展提优试题1.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.4.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.5.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:96.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.9.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.10.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.11.解:40÷2=20(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.13.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.体积为:10×100=1000(立方分米).故答案为:100017.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.21.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.22.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.25.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.26.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.27.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.28.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.29.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.30.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.33.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.34.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.35.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.36.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.37.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.38.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.39.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.40.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.。
遵义市红花岗区首届西西弗杯“明天数学家”小学数学竞赛决赛试卷(六年级组)

遵义市红花岗区首届西西弗杯“明天数学家”小学数学竞赛决赛试卷(六年级组)(2024•其他杯赛)填上符合数的排列规律的数:1、2、4、8、16、32、64、128。
答案:16;64。
解析:规律:后项等于前项乘2。
解答:解:1、2、4、8、16、32、64、128。
故答案为:16;64。
(2024•其他杯赛)7599除以一个质数,所得的余数是9,这个质数最小是 11。
答案:11。
解析:根据题意,要求这个质数最小,还要满足这个质数要大于9,因此设最小质数为x,得x×商+9=7599,即x×商=7590,然后把7590分解质因数,即可求出这个最小的质数。
解答:解:设最小质数为x,得:x×商+9=7599,即x×商=7590,因为7590=2×3×5×11×23,所以x=11>9。
答:这个质数最小是11。
故答案为:11。
(2024•其他杯赛)从11起至1111为止的所有整数中,各个数位上的数字相同的整数共有 19个。
答案:19。
解析:分类计数即可。
解答:解:11~99有:9个;111~999有:9个;1111有1个;9+9+1=19(个)答:各个数位上的数字相同的整数共有19个。
故答案为:19。
(2024•其他杯赛)一个数的1000倍是0.732,这个数的10倍和它本身的和是 0.008052。
答案:0.008052。
解析:先用0.732除以1000,求出这个数是多少,再用这个数乘10,最后加上这个数即可。
解答:解:0.732÷1000=0.0007320.000732×10+0.000732=0.00732+0.000732=0.008052答:这个数的10倍和它本身的和是0.008052。
故答案为:0.008052。
(2024•其他杯赛)做除法时,错把除数的小数点点错,结果比原来扩大了100倍,变成335.6,正确的商应该是 3.356。
苏教版五年级数学下册第三单元第6课时《分解质因数》教案(正式稿)

第6课时:分解质因数总第课时月日【教学内容】:教材P38页例7、8,练一练,练习六3-8题。
【教学目标】1.使学生认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分析质因数;2.使学生经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维活动,进一步提升数感。
3.使学生主动参加探究活动,在探索分解质因数的过程中获得成功,想念自己能学会数学,产生学好数学的信心。
【教学重点】学会分解质因数。
【教学难点】认识分解质因数的过程。
【教学前思】这部分内容是修订后教材中新增加的内容。
在教学过程中,要通过讲解让学生明晰质因数和分解质因数的概念,不要混为一谈;要让学生学会分解质因数的方法。
为了避免抽象的数学概念给学生学习造成困难,结合具体的例子学习数学概念是一个好的方法。
分解质因数可将数直接进行分解,也可用短除法。
由于用短除法来分解质因数,对学生来说是一个新知识,教科书通过“你知道吗”的形式进行叙述,并将分解过程完整地呈现出来。
提倡算法多样化时要注意,让学生用自己熟悉的方法去解决新的问题固然是好的,但在解决新问题时产生的新方法更需要学生去学习和掌握。
【教学过程】前置性作业:1.20以内的质数有哪些。
2.什么叫合数?什么叫质数?3.判断下面哪几个数是合数?5、6、23、28、31、60一、认识质因数出示本课学习目标:1.认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分析质因数;2.经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维活动,进一步提升数感。
1.写出算式要求:你能把5和28写成两个数相乘的形式吗?写完后交流。
指名说,教师填写:有几种写几种。
引导同学比较上面的等式,把质数和合数写成的两个数相乘的形式,有什么不同?同学回答后,教师归纳整理:明确:一个质数只能写成1和它自身相乘的形式,不能写成比它自身小的两个数相乘的形式;而合数除了可以写成1和它自身相乘的形式以外,还可以写成比它自身小的两个数相乘的形式。
六年级数学总复习:质数、合数与分解质因数专项练习(含答案)
六年级数学总复习:质数、合数与分解质因数专项练习(含答案)一、填空题。
1、一个数(),这样的数叫做质数;一个数(),这样的数叫做合数。
2、在自然数中,既不是质数,也不是偶数的最小数();既是质数,又是偶数的是();既是奇数又是质数的最小的数是();既是偶数,又是合数的最小数是()。
3、两个都是质数的连续自然数是()和()。
4、用三个一位质数组成能同时被3和5整除的三位数,其中最大的是(),最小的数是()。
5、一个合数至少有()个约数。
6、最小的合数是(),最小的质数是(),既是偶数又是质数的数(),既是奇数又是合数的数最小是()。
7、把一个合数(),叫做分解质因数。
8、在1、2、4、10、11这几个数中,()是整数,()是奇数,()是偶数,()是质数,()是合数。
9、10~20之间的质数有(),其中()个位上的数字与十位上的数字交换位置后,仍是一个质数。
10、两个质数和为18,积是65,这两个质数是()和()。
11、20以内的质数有()。
12、20以内差为4的两个质数是()和(),()和(),()和()。
13、三个连续奇数的和是45,这三个奇数分别是()、()和()。
14、用最小的质数,最小的奇数,最小的合数和0组成一个四位数,其中能够被2和5同时整除的最大四位数是(),只能被2整除的最小四位数是()。
15、把下面两个数写成几个质数和的形式:15=()+();20=()+()=()+()。
16、把下面各数分别填在指定的圈里。
9、23、31、39、41、51、69、79、81、89、91、9717、一个数既是18的约数,又是18的倍数,把它写成两个质数相加的形式是()或()。
18、10以内所有质数的积减去最小的三位数,差是()。
19、一个两位数的质数,它个位上的数与十位上的数交换位置后,仍是一个质数.这样的数有()。
20、一个数,既是12的倍数,又是12的因数,这个数是(),将它分解质因数是()。
小学数学分解质因数练习题
小学数学分解质因数练习题一、选择题1. 将24分解成质因数的结果是:A. 2 × 3B. 3 × 3 × 3C. 2 × 2 × 2 × 3D. 2 × 2 × 32. 一个数的质因数分解结果是3 × 5 × 5,这个数是:A. 15B. 75C. 125D. 2253. 若一个数的质因数分解结果是2 × 2 × 3 × 5 × 5,这个数是:A. 200B. 300C. 500D. 600二、填空题1. 将36分解成质因数的结果是 ______ × ______ × ______。
2. 用质因数的形式表示72: ______ × ______ × ______。
3. 一个数的质因数分解结果是2 × 2 × 2 × 3 × 5 × 7,这个数是______。
三、解答题1. 将48分解为质因数的乘积。
2. 用质因数的形式表示60,并计算其值。
3. 请列举一个有3个质因数的数,并将其质因数分解。
四、应用题1. 小明的书架上有40本数学书,32本语文书和24本英语书。
他想将这些书分成每层相同类型的书,并使每层的书数量最多,问他每层最多可以放多少本书。
2. 一个农场按照规律种植农作物,第一年种10亩地,每年比前一年多种2亩地,一共种到第10年。
这个农场一共种了多少亩地?3. 小明有32个苹果和48个橙子,他想将这些水果放在相同数量的篮子中,且篮子里只能放苹果或者橙子,每个篮子里的水果都必须相同。
每个篮子最多可以放多少个水果?以上是一份关于小学数学分解质因数的练习题。
你可以根据需要,适当调整题目的难易程度。
五年级数学思维《分解质因数》专题训练
五年级数学思维《分解质因数》专题训练
一、填空题(每小题6分,共60分)
1 有两个两位数的乘积是3927,这两个两位数的和是.
2 151200有不少约数是两位数,这些两位约数中最大的是.
3 有五个连续奇数,它们的积是328185,则最大的一个奇数是.
4 一个质数的3倍与另一个质数的2倍之和为100,这两个质数的乘积是.
5 甲、乙、丙三人打靶,每人打了三枪,三个人各自中靶的环数之积
都是60,按个人中靶的总环数由高到低排列,依次为甲、乙、丙,则靶上4环的那一枪是打的.(环数是不超过10的正整数)
6 126共有个约数.
7 要使四个数的乘积135×1925×486×( )结果的最后五位数字
都是零,括号中的数最小应填.
8 三个年龄不到10岁的儿童在一起玩耍,已知她们的年龄之积为
90,那么她们的年龄之和为.
9 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等,
这两组数分别为和.
10 200至220之间有唯一的质数,它是.
二、解答题(每小题20分,共60分)
11 将质数373拆开(不改变各数字间的顺序),所有可能只有3、
7、37、73这四种悄况,它们均是质数,请找出所有具有这样性
质的两位和两位以上的质数.
12 有三个自然数,最大的比最小的大6,另一个是它们的平均数,
且三数的乘积是42560,求这三个自然数.
13 有分别写有数字1、2、3、4、5、6、7、8、9的这9张纸牌中,
甲、乙、丙三人各拿3张.
甲说:“我的3张牌上数字的积是48.”
乙说:“我的3张牌上数字的和是15.”
丙说:“我的3张牌上数字的积是63.”
间:他们各拿了哪3张牌?。
分解质因数 小学数学 习题集
一、选择题1. 把60分解质因数是()。
A.60=1×2×3×2×5 B.2×3×2×5=60C.60=2×3×2×5 D.60=4×3×52. 甲、乙两名运动员参加射箭比赛,每一箭的环数是不超过10的自然数,甲、乙两名运动员各射了5箭,每人5箭的环数乘积均为1764,但乙的总环数比甲的少4环,则甲、乙两名运动员的总环数各是多少?()A.26、22 B.27、23 C.28、24 D.32、283. 把42分解质因数是()。
A.42=1×2×3×7 B.42=6×7 C.42=2×3×7 D.42=1×6×74. 下列各式是分解质因数的是()。
A.16=2×2×2×2 B.6=2×3×1 C.54=2×3×9 D.10=2+3+55. 下面分解质因数正确的是()。
A.12=3×4 B.15=3+5+7 C.21=1×3×7 D.20=2×2×5二、填空题6. 你知道吗?质数被称为自然数的“数根”,在数学领域中具有极其重要的地位。
任何一个大于1的整数,要么是一个质数,要么是若干个质数的乘积。
如:12=2×2×3像这样,每一个整数都分解到不能再分解为止。
请你按照上面的描述把下面各数分解成几个质数相乘的形式:30=( ),42=( )。
7. 在括号里填上合适的质数。
91=( )×( )8. 一个最简真分数,它的分子与分母的积是18,这个分数是( )或( )。
9. 填质数:30=( )+( ) 26=( )×( )。
10. 在括号里填上合适的质数。
48=( )×( )×( )×( )×( )18=( )+( )=( )×( )×( )51=( )×( )三、解答题11. 有一张长方形纸,长40厘米,宽32厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、分解质因数
小学数学课本第十册在质数、合数与分解质因数这节中,有这样的思
考题:60=2×2×3×5,你能从这个式子中知道60除了约数3以外,还有
哪些约数吗?另外,首届华罗庚金杯少年数学邀请赛初赛试题的第3题:
105的约数共有几个?这些问题都与分解质因数有关,下面来研究与它有
关的一些问题.
例1 将下面八个数分成两组(每组四个数),应该怎么分才能保证两组
四个数的乘积相等?
1.4,0.33,3.5,O.3,O.75,0.39,14.3,16.9.
分析与解 此题如果采用试验法做,肯定可以找出答案,但比较费事.下面
我们试看用上一讲例4提到的倒着想的方法来考虑这题应如何解.
如果分法找到了,那么上面八个数中的某四个数的积与另外四个数的
积一定相等.当这两个积是小数时,把它们同时都扩大相同的若干倍使它
们变成整数,这个等式仍然成立.把等式两边的积分别分解质因数,那么
两边的质因数肯定一样,而且相同质因数的个数两边也是相同的.
为此,先将上面的八个数同时都扩大100倍,得下面八个数:140,
33,350,30,75,39,1430,1690.
把这八个数分别分解质因数:
140=22×5×7 33=3×11
350=2×52×7 30=2×3×5
75=3×5239=3×13
1430=2×5×11×13 1690=2×5×132
这八个数分解质因数后一共有6个2,8个5,2个7,4个3,2个
11,4个13.为保证两组四个数的积彼此相等,每一组里应该有3个2,4
个5,1个7,2个3,1个11,2个13.根据这一要求适当搭配便可找到
答案.
现在按照上面分析的思路,可安排第一组里有1690,33,350,30
这四个数,其余四个数算第二组.
即
1690×33×350×30=1430×39×140×75
两边同时缩小相同的若干倍,于是得到下面的一种分法:
第一组里的四个数为:16.9,0.33,3.5,0.3;
第二组里的四个数为:14.3,0.39,1.4,0.75.
除了上面这种分法外,还有其他的分法吗?如果有的话,你能一一找
出来吗?
例2 有五个连续的奇数,它们的积为135135,求这五个奇数.
分析与解 相邻两个奇数相差为2,现在已知有五个连续的奇数,当我们
假定中间那个奇数为x时,那么从小到大这五个连续的奇数分别为x-4,
x-2,x,x+2,x+4.根据条件可得方程
(x—4)(x—2)x(x+2)(x+4)=135135
方程虽然列出来了,但我们不会解这个高次方程,只好另寻它途.
把135135分解质因数:135135=33×5×7×11×13,而11与13正好
是两个相邻的奇数,从这一事实出发,只要把33×5×7适当调配一下,
便有33×5×7=7×9×15,而7、9、11、13、15正好是相邻的五个奇数,
这样就找到了答案.所以这五个连续的奇数为7、9、11、13、15.
例3 问4500共有多少个约数?
分析与解 要想知道4500一共有多少个约数,最原始的办法就是设法将它
的约数逐一写出,然后再数一数有多少个就行了.为此,我们先将4500
分解质因数:4500=22×32×53.下面用列数阵的方法写出4500的所有约数
来.
首先写出4500的只含有2、3这样质因数的所有约数,添上1这些约
数可列成下面的数阵:
1 3 32
2 2×3 2×32
2222×3 22×32
这个数阵有三列,每列有三个数,所以共有3×3个约数.第二步再写
4500的只含有2、3、5这样质因数的所有约数,下面再列一个数阵:
1 5 5253
2 2×5 2×522×53
2222×5 22×5222×53
3 3×5 3×523×53
3232×5 32×5232×53
2×3 2×3×5 2×3×522×3×53
22×3 22×3×5 22×3×5222×3×53
2×322×32×5 2×32×522×32×53
22×322×32×5 22×32×5222×32×53
这个数阵共9行,每行都有4个约数,所以4500共有(9×4=)36
个约数,而36=3×3×4=(2+1)×(2+1)×(3+1).
这里的2、2、3正好是4500分解质因数式子中质因数2、3、5的个
数(指数),从而可得到下面关于求约数个数的一个重要结论:
一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的
个数(指数)加1的连乘积.
利用这个结论便能求出结果来.
因为4500=22×32×53,而(2+1)×(2+1)×(3+1)=36,所以4500
一共有36个约数.
例4 求小于100的只有8个约数的一切自然数.
分析与解 这个问题可先将1至100之间的合数逐一写出,然后一个一个
地检验,看看这些合数中哪些数正好只有8个约数,记下这些数便可找出
满足要求的一切自然数来.但是当数从100变为其他更大的数时,这种逐
个检验的方法就显得十分麻烦,下面介绍更有效的一般方法.
例3指出:一个大于1的整数的约数的个数,等于它的质因数分解式
中每个质因数的个数(指数)加1的连乘积.这里约数个数为8,而8=2
×4=2×2×2=8×1.下面分别讨论.
当8=2×4=(1+1)×(3+1)时,说明所求的自然数分解质因数后,
只有两个不同的质因数,它们的个数(指数)分别为1和3.下面求这两
个不同的质因数各等于几时,对应的那个自然数不大于100.
如果这两个质因数中有一个为2,它的指数为1.
当另一个质因数为3时,这个自然数为:2×33=54,54小于100,是
满足要求的一个解.
当另一个质因数为5时,这个自然数为:2×53=250,250大于100,
不符合要求.
因为53=125>100,所以当1个质因数为2,它的指数为1,另一个质
因数为大于5的任一质因数时,对应的自然数一定大于100,均不符合要
求.
如果这两个质因数中有一个是3,它的指数为1.
当另一个质因数为2时,这个自然数为:31×23=24,24小于100,符
合要求.
因为2×53=250>100,所以其他情况对应的自然数一定大于100,不
符合要求.
如果这两个质因数中有一个是5,它的指数为1.
当另一个质因数为2时,这个自然数为:5×23=40,40小于100,符
合要求.
当另一个质因数为3时,这个自然数为:5×33=135,135大于100,
不符合要求.
如果这两个质因数中有一个是7,它的指数为1.此时另一个质因数只
能是2,这个自然数为:7×23=56<100,符合要求,而7×33=189>100,
不符合要求.
如果这两个质因数中有一个是11,它的指数为1,那么另一个质因数
只能是2,这时这个自然数为:11×23=88<100,符合要求.而11×33=297
>100,不符合要求.
如果这两个质因数中有一个是13,它的指数为1,那么另一个质因数
不论是几,所求出的自然数都不符合要求.这是因为13×23=104,104>
100,不符合要求.
当8=2×2×2=(1+1)×(1+1)×(1+1)时,此时所求的自然数分
解质因数后,只有三个不同的质因数,它们的指数都是1.下面从小到大
依次看看这三个不同的质因数分别为多少时,所求的自然数符合要求.
当三个不同的质因数分别为2、3、5时,这个自然数为:2×3×5=30,
30小于100,符合要求.
当三个不同的质因数分别为2、3、7时,这个自然数为:2×3×7=42,
42小于100,符合要求.
当三个不同的质因数分别为2、3、11时,这个自然数为:2×3×11=66,
66小于100,符合要求.
当三个不同的质因数分别为2、3、13时,这个自然数为:2×3×13=78,
78小于100,符合要求.
当三个不同的质因数分别为2、3、17时,这个自然数为:2×3×
17=102,102大于100,不符合要求.
当三个不同的质因数分别为2、5、7时,这个自然数为:2×5×7=70,
70小于100,符合要求.
当三个不同的质因数分别为2、5、11时,这个自然数为:2×5×
11=110,110大于100,不符合要求.
当三个不同的质因数分别为3、5、7时,这个自然数为:3×5×7=105,
105大于100,不符合要求.
其余情况下所求自然数均大于100,不符合要求.
当8=8×1=(7+1)×(0+1)时,这说明所求的自然数分解质因数后,
只有一个质因数,它的指数为7.而27=128,128大于100,不符合要求.
所以其余情况下所求的自然数也一定都大于100,不符合要求.
所有小于100只有八个约数的自然数共有十个,分别为:24,30,40,
42,54,56,66,70,78,88.