北师大版八年级勾股定理电子版教案

合集下载

1.3.2勾股定理的应用(教案) 2022—2023学年北师大版数学八年级上册

1.3.2勾股定理的应用(教案) 2022—2023学年北师大版数学八年级上册

# 1.3.2 勾股定理的应用(教案)一、教学目标•了解勾股定理的概念和应用•掌握勾股定理的运用方法•能够解决与勾股定理相关的问题二、教学内容•勾股定理的定义•勾股定理的应用实例•针对勾股定理的解题方法三、教学重难点重点: - 勾股定理的运用方法 - 针对勾股定理题目的解题思路难点: - 针对实际问题应用勾股定理的思考四、教学过程1.引入(5分钟)–老师通过导入相关理论知识概念,引起学生的兴趣和思考,例如:勾股定理的故事和历史背景等。

2.理论讲解(15分钟)–老师以PPT或黑板为媒介,讲解勾股定理的定义和相关公式推导过程,注重结论的解释和实例的导入。

3.应用实例分析(20分钟)–老师以实际应用问题为例,引导学生分析如何利用勾股定理解决问题,让学生思考和讨论解题思路。

4.解题方法讲解(15分钟)–老师总结出针对勾股定理题目的解题方法,并通过典型例题向学生展示具体的解题步骤和思路。

5.练习和巩固(20分钟)–学生个人或小组完成一系列勾股定理的练习题,巩固所学的知识和解题方法。

6.提问和讨论(10分钟)–老师针对难点和易错点进行提问和解答,鼓励学生积极参与讨论和答题,增强国际互动。

7.课堂总结(5分钟)–老师让学生回顾和总结本节课所学的重点和难点,帮助学生形成对勾股定理应用的深入理解。

五、课后作业1.完成课堂练习题2.思考如何将勾股定理应用到其他实际问题中,并写出解题思路六、教学反思本节课通过引入激发学生兴趣、理论讲解、应用实例分析、解题方法讲解、练习巩固和提问讨论等多种教学手段,全面提高学生对勾股定理的理解和应用能力。

同时,在课后作业中引导学生思考拓展,进一步加深对勾股定理的理解。

针对学生的不同水平和能力,教师可以适当调整练习题的难度和复杂度,帮助学生达到巩固知识和拓展思维的目的。

八年级数学上册第一章勾股定理2一定是直角三角形吗教案(新版)北师大版

八年级数学上册第一章勾股定理2一定是直角三角形吗教案(新版)北师大版

2一定是直角三角形吗一、学生知识状况分析学生已经了解勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导.二、学习任务分析本节课是义务教育课程标准教科书北师大版数学八年级(上)第一章《勾股定理》第2节.教学任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验.本节课的教学目标是:1.理解勾股定理逆定理的具体内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形;3.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力;4.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.教学重点理解勾股定理逆定理的具体内容.三、教法学法1.教学方法:实验—猜想—归纳—论证本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探索,研究手段,通过思维深入,领悟教学过程.2.课前准备教具:教材、电脑、多媒体课件.学具:教材、笔记本、课堂练习本、文具.四、教学过程设计本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业.第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情.效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础.第二环节:合作探究内容1:探究下面有三组数,分别是一个三角形的三边长a,b,c①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:1.这三组数都满足222+=吗?a b c2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数.意图:通过学生的合作探究,得出“若一个三角形的三边长a,b,c,满足222+=,a b c则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足222+=,a b c可以构成直角三角形;②7,24,25满足222+=,可以构成直角三角形;③8,15,17a b c满足222+=,可以构成直角三角形.a b c从上面的分组实验很容易得出如下结论:如果一个三角形的三边长a,b,c,满足222+=,那么这个三角形是直角三角形.a b c内容2:说理提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长a ,b ,c ,满足222a b c +=,那么这个三角形是直角三角形. 满足222a b c +=的三个正整数,称为勾股数.注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识.活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? 意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:小试牛刀内容:1.下列哪几组数据能作为直角三角形的三边长?请说明理由.①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22解答:①②2.一个三角形的三边长分别是15 cm ,20 cm ,25 cm ,则这个三角形的面积是( )A.2250 cmB.2150 cmC.2200 cmD.不能确定解答:B3.如图,在△ABC 中,BC AD ⊥于点D ,20,12,9===AC AD BD ,则△ABC 是( )A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形解答:C4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解答:A意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用.效果:每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识.第四环节:登高望远内容:1.一个零件的形状如图2所示,按规定这个零件中DBC A ∠∠,都应是直角.工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗? C C 1312534DA B A D解答:符合要求.222543=+,︒=∠∴90DAB . 又22213125=+ ,∴︒=∠90DBC .2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形,AB =240海里,BC =70海里,AC =250海里.在△ABC 中,2222240250-=-AB AC =(250+240)(250-240)=4 900=270=2BC ,即222AC BC AB =+.∴△ABC 是直角三角形.答:船转弯后,是沿正西方向航行的.意图:利用勾股定理的逆定理解决实际问题,进一步巩固该定理.效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系E 222a b c +=判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222a b c +=作适当变形(222b a c =-),以便于计算.第五环节:巩固提高内容:1.如图4,在正方形ABCD 中,AB =4,AE =2,DF =1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流.解答:4个直角三角形,它们分别是△ABE 、△DEF 、△BCF 、△BEF .2.如图5,哪些是直角三角形,哪些不是,说说你的理由?图5解答:④⑤是直角三角形,①②③⑥不是直角三角形意图:第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题.效果:学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可.注意防漏解及网格的应用.第六环节:交流小结内容:师生相互交流总结出:1.今天所学内容①会利用三角形三边数量关系222a b c +=判断一个三角形是直角三角形;②满足222a b c +=的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系222a b c +=判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222a b c +=作适当变形,222c b a -=便于计算. ① ② ③⑥ ⑤ ④意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.效果:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系222+=a b c 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用.第七环节:布置作业课本习题1.3第1,2,4题.五、教学反思:1.充分尊重教材,以勾股定理的逆向思维模式引入“如果一个三角形的三边长a,b,c,满足222+=,是否能得到这个三角形是直角三角形”的问题;充分引用教材中出现a b c的例题和练习.2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算.4.注重对学习新知理解应用偏困难的学生的进一步关注.5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求.由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整.附:板书设计。

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。

我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。

教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。

1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。

2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

勾股定理全章教案北师大版

勾股定理全章教案北师大版
提出问题,检查学生对旧知的掌握情况,为勾股定理新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解勾股定理知识点,结合实例帮助学生理解。
突出勾股定理重点,强调勾股定理难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕勾股定理问题展开讨论,培养学生的合作精神和沟通能力。
教学内容与学生已有知识的联系:
1. 学生已掌握相似三角形的性质,能理解勾股定理中三角形相似的概念。
2. 学生已学习过一元二次方程,能理解并运用勾股定理解决实际问题。
3. 学生通过日常生活和前面的学习,已接触到一些勾股定理的应用,如测量身高、计算距离等,为深入学习勾股定理奠定了基础。
核心素养目标
本章节旨在培养学生的数学抽象、逻辑推理、数学建模等核心素养。通过学习勾股定理,学生能够:
1. 教学方法
(1)情境教学法:通过引入生活中的实际问题,创设情境,引导学生发现问题、提出问题,激发学生的学习兴趣和主动性。
(2)探究教学法:引导学生通过小组合作、讨论交流的方式,自主探究勾股定理的证明方法,培养学生的逻辑推理能力和合作精神。
(3)案例教学法:选取具有代表性的例题,分析解答过程,让学生体会勾股定理在实际问题中的应用,提高学生的数学建模能力。
2. 过程与方法:
学生能够在小组讨论中,培养合作精神和沟通能力,学会倾听和尊重他人的意见。
学生能够通过自主学习、合作学习和探究学习,提高学习勾股定理的积极性和主动性。
学生能够在解决实际问题的过程中,运用数学建模思想,将勾股定理知识应用于实际情境。
3. 情感态度与价值观:
学生能够体验到数学与实际生活的密切联系,增强对数学学科的兴趣和好奇心。

北师大版数学八年级上册1.1探索勾股定理教学设计

北师大版数学八年级上册1.1探索勾股定理教学设计
-运用探究式学习,鼓励学生通过实际操作、小组讨论等形式,探索勾股定理。
-结合多媒体教学,使用动画、图表等直观工具,帮助学生理解和记忆勾股定理及其证明过程。
-设计梯度性练习题,从简单到复杂,让学生在练习中逐步提高解题能力。
2.教学步骤:
-导入:通过实际问题,引导学生回顾直角三角形的定义和性质。
-探索:让学生通过剪纸、测量等实际活动,观察直角三角形三边关系,引导他们发现勾股定理。
2.引导学生通过观察、猜想、归纳等方法,发现勾股定理。
3.运用数学证明方法,如代数法、几何法等,证明勾股定理的正确性。
4.通过解决实际问题,培养学生运用勾股定理解决实际问题的能力。
(三)情感态度与价值观
本章节教学旨在培养学生以下情感态度与价值观:
1.培养学生对数学的兴趣和热情,激发他们探索数学问题的积极性。
五、作业布置
为了巩固学生对勾股定理的理解和应用能力,特布置以下作业:
1.基础练习题:
-完成课本第15页的练习题1、2、3,涉及勾股定理的基本应用。
-通过解答这些题目,学生可以进一步熟悉勾股定理的公式及其在直角三角形中的应用。
2.提高拓展题:
-选择课本第16页的拓展题1、2,让学生在解决实际问题的过程中,运用勾股定理。
2.培养学生的团队合作意识,让他们在探索勾股定理的过程中,学会与他人交流、分享、合作。
3.培养学生勇于尝试、敢于质疑的精神,让他们在解决问题的过程中,形成批判性思维。
4.增强学生的民族自豪感,了解我国古代数学家在勾股定理研究方面的贡献,激发他们为国家和民族作出贡献的愿望。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了直角三角形的基本概念和性质,能进行简单的几何图形计算。在此基础上,他们对勾股定理的学习具备以下特点:

初中数学北师大版八年级上册《13勾股定理的应用》教学设计

初中数学北师大版八年级上册《13勾股定理的应用》教学设计

北师大版数学八年级上册1.3勾股定理的应用教学设计师:1. 勾股定理的内容是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2. 勾股定理的逆定理是什么?a2+b2=c2三角形是直角三角形3.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.提出问题,学生探究热情高涨,为下一环节奠定了良好基础.合作探究蚂蚁爬行的最短(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?师:想一想为什么线段AB是最短的路线?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。

【总结提高】求圆柱侧面上两点间的最短路线长的方法:路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.生:两点之间,线段最短【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m,在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是( D )。

A.2 B.3 C.4 D.52.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是__5KM______;若A地在C地的正东方向,则B地在C地的____正北____方向.3.甲、乙两位探险者,到沙漠进行探险。

北师大版八年级上册第一章勾股定理1.1.2 探索勾股定理(教案)

1.1.2 探索勾股定理1.掌握勾股定理,理解和利用拼图验证勾股定理的方法.2.能运用勾股定理解决一些简单的实际问题.通过拼图法验证勾股定理,使学生经历观察、猜测、验证的过程,进一步体会数形结合的思想.培养学生大胆探索,不怕失败的精神.【重点】经历勾股定理的验证过程,能利用勾股定理解决实际问题.【难点】用拼图法验证勾股定理.【教师准备】教材图1 - 4,1 - 5,1 - 6,1 - 7的图片.【学生准备】4个全等的直角三角形纸片.导入一:【提问】直角三角形的三边有怎样的关系?在研究直角三角形三边关系时,我们是通过测量、数格子的方法发现了勾股定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!导入二:上节课我们用什么方法探索发现了勾股定理?学生思考(测量、数格子).一、勾股定理的验证思路一【师生活动】师:投影教材P4图1 - 4,分别以直角三角形的三条边的长度为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.生:割补法进行验证.师:出示教材P5图1 - 5和图1 - 6,想一想:小明是怎样对大正方形进行割补的?生:讨论交流.师总结:图1 -5是在大正方形的四周补上四个边长为a,b,c的直角三角形;图1 -6是把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.图1 - 5采用的是“补〞的方法,而图1 - 6采用的是“割〞的方法,请同学们将所有三角形和正方形的面积用a,b,c的关系式表示出来.(1)动笔操作,独立完成.师:图1 - 5中正方形ABCD的面积是多少?你们有哪些方法求?与同伴进行交流. (2)分组讨论面积的不同表示方法.ab+c2两种方法.生:得出(a+b)2,4×12(3)板书学生讨论的结果.【提问】你能利用图1 - 5验证勾股定理吗?生:根据刚刚讨论的情况列出等式进行化简.师:化简之后能得到勾股定理吗?生:得到a2+b2=c2,即两直角边的平方和等于斜边的平方,验证了勾股定理.师:你能用图1 - 6也证明一下勾股定理吗?独立完成.师:(强调)割补法是几何证明中常用的方法,要注意这种方法的运用.思路二教师出示教材图1 - 4及“做一做〞,让学生观察图1 - 5和图1 - 6.【提问】小明是怎样拼的?你来试一试.(学生以小组为单位展开拼图尝试,同伴之间讨论、争辩、互相启发,将拼好的图形画下来)【思考】“做一做〞的三个问题.教师讲评验证勾股定理的方法.二、勾股定理的简单应用思路一:出示教材P5例题,教师分析并抽象出几何图形.【问题】(1)图中三角形的三边长是否满足AB2=AC2+BC2?(2)要想求敌方汽车的速度,应先求什么?你能利用勾股定理完成这道题吗?(学生独立完成,教师指名板演)出示教材P8图1 - 8.【提问】判断图中三角形的三边长是否满足a2+b2=c2.(学生以组为单位合作完成,分别计算出每个正方形的面积.独立完成,有困难的可以合作完成)思路二我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗?〔解析〕 根据题意,可以画出右图,其中点A 表示小王所在位置,点C ,点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB 2=BC 2+AC 2,也就是5002=BC 2+4002,所以BC =300. 敌方汽车10 s 行驶了300 m,那么它1 h 行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h .[知识拓展] 利用面积相等来验证勾股定理,关键是利用不同的方法表示图形的面积,一要注意局部面积和等于整体面积的思想,二要注意拼接时要做到不重不漏. 曾任美国总统的伽菲尔德在?新英格兰教育日志?上发表了他提出的一个勾股定理证明,如下图,这就是他拼出的图形.它的面积有两种表示方法,既可以表示为12(a +b )(a +b ),又可以表示为12(2ab +c 2),所以可得12(a +b )(a +b )=12(2ab +c 2),化简可得a 2+b 2=c 2.1.勾股定理的验证方法{测量法数格子法面积法2.在实际问题中,首先要找到直角三角形,然后再应用勾股定理解题. 1.以下选项中,不能用来证明勾股定理的是 ( )解析:A,B,C 都可以利用图形面积得出a ,b ,c 的关系,即可证明勾股定理,故A,B,C 选项不符合题意;D,不能利用图形面积证明勾股定理,故此选项正确.应选D .2.用四个边长均为a ,b ,c 的直角三角板,拼成如下图的图形,那么以下结论中正确的选项是 ( )A.c 2=a 2+b 2B.c 2=a 2+2ab +b 2C.c2=a2-2ab+b2D.c2=(a+b)2解析:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,ab×4+(b-a)2,整理得c2=a2+b2.里面的小四边形也为正方形,边长为b-a,那么有c2=12应选A.3.如下图,大正方形的面积是,另一种方法计算大正方形的面积是,两种结果相等,推得勾股定理是.ab+c2,即(a+b)2=4×解析:如下图,大正方形的面积是(a+b)2,另一种计算方法是4×121ab+c2,化简得a2+b2=c2.2ab+c2a2+b2=c2答案:(a+b)24×124.操作:剪假设干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c 之间有什么关系?解析:根据图形的形状得出面积关系,进一步证明勾股定理即可求解.解:分别用4张直角三角形纸片,拼成如图(2)(3)所示的形状,观察图(2)(3)可发现,图(2)中的两个小正方形的面积之和等于图(3)中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.1.1.21.勾股定理的验证.2.勾股定理的简单应用.一、教材作业【必做题】教材第6页随堂练习.【选做题】教材第7页习题1.2第3题.二、课后作业【根底稳固】1.我国古代数学家赵爽的?勾股圆方图?是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如下图).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是 ()A.1B.2C.12D.132.历史上对勾股定理的一种证法采用了如下图的图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等的关系是()A.SΔEDA =SΔCEBB.SΔEDA+SΔCEB=SΔCDEC.S四边形CDAE =S四边形CDEBD.SΔEDA+SΔCDE+SΔCEB=S四边形ABCD3.北京召开的第24届国际数学家大会会标的图案如下图.(1)它可以看做是由四个边长分别为a,b,c的直角三角形拼成的,请从面积关系出发,写出一个关于a,b,c的等式.(要有过程)(2)请用四个这样的直角三角形再拼出另一个几何图形,也能验证(1)中所写的等式.(不用写出验证过程)(3)如果a2+b2=100,a+b=14,求此直角三角形的面积.【能力提升】4.勾股定理是几何中的一个重要定理.在我国古算书?周髀算经?中就有“假设勾三,股四,那么弦五〞的记载.如图(1)所示的是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.5.在北京召开的国际数学家大会的会标如下图,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,假设大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,那么a4+b4的值为()A.35B.43C.89D.976.据传当年毕达哥拉斯借助如下图的两个图验证了勾股定理,你能说说其中的道理吗?7.如下图,在平面内,把矩形ABCD 绕点B 按顺时针方向旋转90°得到矩形A'BC'D'.设AB =a ,BC =b ,BD =c.请利用该图验证勾股定理.【拓展探究】8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图〞,后人称其为“赵爽弦图〞(如图(1)所示).图(2)是由弦图变化得到的,它是用八个全等的直角三角形拼接而成的.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.假设S 1+S 2+S 3=16,那么S 2的值是.9.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法〞给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图(1)或图(2)摆放时,都可以用“面积法〞来证明,下面是小聪利用图(1)证明勾股定理的过程.将两个全等的直角三角形按图(1)所示摆放,连接DC ,其中∠DAB =90°,求证a 2+b 2=c 2.证明:连接DB ,过点D 作BC 边上的高DF ,那么DF =EC =b-a. ∵S 四边形ADCB=S ΔACD+S ΔABC=12b 2+12ab ,又∵S 四边形ADCB =S ΔADB+S ΔDCB=12c 2+12a (b-a ),∴12b 2+12ab =12c 2+12a (b-a ),∴a 2+b 2=c 2.请参照上述证法,利用图(2)完成下面的验证过程.将两个全等的直角三角形按图(2)所示摆放,其中∠DAB =90°,连接BE. 验证a 2+b 2=c 2.证明:连接 , ∵S 五边形ACBED= , 又∵S 五边形ACBED= ,∴a 2+b 2=c 2. 【答案与解析】1.A(解析:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积和是12ab ×4=13-1=12,即2ab =12,那么(a-b )2=a 2-2ab +b 2=13-12=1.应选A.) 2.D(解析:由S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD,可知12ab +12c 2+12ab =12(a +b )2,∴c 2+2ab =a 2+2ab +b 2,整理得a 2+b 2=c 2,∴证明中用到的面积相等的关系是S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD.应选D .)3.解:(1)大正方形的面积=4个三角形的面积+小正方形的面积,即c 2=4×12ab +(a-b )2=a 2+b 2. (2)如下图. (3)∵2ab =(a +b )2-(a 2+b 2)=196-100=96,∴ab =48,∴S =12ab =12×48=24.4.440(解析:如下图,延长AB 交KL 于P ,延长AC 交LM 于Q ,那么ΔABC ≌ΔPFB ≌ΔQCG ,∴PB =AC =8,CQ =AB =6,∵图(2)是由图(1)放入矩形内得到的,∴IP =8+6+8=22,DQ =6+8+6=20,∴矩形KLMJ 的面积=22×20=440.故答案为440.)5.D(解析:依题意有:a 2+b 2=大正方形的面积=13,2ab =四个直角三角形的面积和=13-1=12,ab =6,那么a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab )2=132-2×62=169-72=97.应选D .)6.解:根据题意,第一个图形中间空白小正方形的面积是c 2;第二个图形中空白的两个小正方形的面积的和是a 2+b 2,∵它们的面积都等于边长为a +b 的正方形的面积-4个直角边分别为a ,b 的直角三角形的面积和,∴a 2+b 2=c 2,即在直角三角形中斜边的平方等于两直角边的平方和.7.解:连接D'D ,依题意,图中的四边形DAC'D'为直角梯形,ΔDBD'为等腰直角三角形,Rt ΔDAB 和Rt ΔBC'D'的形状和大小完全一样,设梯形DAC'D'的面积为S ,那么S =12(a +b )(a +b )=12(a 2+b 2)+ab ,又S =S Rt ΔDBD'+2S Rt ΔABD =12c 2+2×12ab =12c 2+ab ,∴12(a 2+b 2)+ab =12c 2+ab ,因此a 2+b 2=c 2.8.163(解析:∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,∴CG =NG ,CF =DG =NF =GK ,∴S 1=(CG +DG )2=CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,S 2=GF 2,S 3=(NG-NF )2=NG 2+NF 2-2NG ·NF ,∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+NG 2+NF 2-2NG ·NF =3GF 2=16,∴GF 2=163,∴S 2=163.故答案为163.)9.证明:连接BD ,过点B 作DE 边上的高BF ,那么BF =b-a ,∵S 五边形ACBED =S ΔACB +S ΔABE +S ΔADE =12ab +12b 2+12ab ,又∵S 五边形ACBED =S ΔACB +S ΔABD +S ΔBDE =12ab +12c 2+12a (b-a ),∴12ab +12b 2+12ab =12ab +12c 2+12a (b-a ),∴a 2+b 2=c 2.在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回忆,都注意去调动学生,让学生满怀激情地投入到活动中.勾股定理作为“千古第一定理〞,其魅力在于其历史价值和应用价值,因此充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生的积极性,既加深了对勾股定理文化的理解,又培养了学生收集、整理资料的能力.在教学过程中,过于让学生发散思维,而导致课堂秩序略有松散.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可以设计拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究,最后由学生独立探究,这样学生较容易突破本节课的难点.随堂练习(教材第6页)解:因为OM 2=MN 2+NO 2=302+402=502,所以OM =50 km .因为OQ 2=OP 2+PQ 2=502+1202=1302,所以OQ =130 km .所以该沿江高速公路的造价预计是(50+130)×5000=900000(万元).答:该沿江高速公路的造价预计是900000万元.习题1.2(教材第6页)1.解:因为42+32=52,所以旗杆折断之前的高为5+3=8(m).2.解:因为S 梯形=12(a +b )·(a +b )=12(a 2+2ab +b 2)=12a 2+ab +12b 2,S 梯形=12ab +12ab +12c 2=ab +12c 2,所以12a 2+ab +12b 2=ab +12c 2,所以a 2+b 2=c 2.(这个方法与本节探索的方法思路一样,都是构造一个图形,利用两种方法计算该图形的面积,从而得到a 2+b 2=c 2)3.解:箱子能放进储藏室,因为0.82+0.52<1.22.古诗中的数学题请你先欣赏下面一首诗:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位两尺远;能算诸君请解题,湖水如何知深浅?你能用所学的数学知识解决上述诗中的问题吗?〔解析〕 要解决诗中提出的问题,关键是将实际问题转化为数学问题,画出符合题意的图形,如下图.在Rt ΔBCD 中,由勾股定理建立方程求线段的长.解:如下图,AD 表示莲花的高度,CD 是水的深度,CB 是莲花吹倒后离原位的距离.设CD =x 尺,那么AD =BD =(x +12)尺. 在Rt ΔBCD 中,∠BCD =90°,由勾股定理得BD 2=CD 2+BC 2,即(x +12)2=22+x 2. 解得x =3.75.所以所求的湖水深度为3.75尺.[方法总结]建立数学模型是解决实际问题的常用方法.本例是利用莲花无风时与水面垂直构造直角三角形这一几何模型.在直角三角形中常用勾股定理建立方程求线段的长.。

初二数学第三讲勾股定理(教案)2019北师大八年级数学上册勾股定理

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(Байду номын сангаас)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的勾股定理教学中,我发现学生们对于这个定理的概念和计算方法掌握得还不错,但在实际应用上还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重培养学生的实际应用能力。
在导入新课环节,通过提问学生们在日常生活中遇到的直角三角形问题,成功引起了他们的兴趣。但在新课讲授过程中,我发现有些学生对于勾股定理的证明过程理解不够深入。因此,我决定在接下来的课程中,增加一些几何图形的演示和实际例题,以便让学生更直观地理解勾股定理的内涵。
4.加强语言表达能力的训练,提高学生们的沟通能力。
5.巩固勾股数的辨识方法,降低学生在实际应用中的错误率。
初二数学第三讲勾股定理(教案)2019北师大八年级数学上册勾股定理
一、教学内容
《初二数学第三讲勾股定理》基于2019北师大八年级数学上册教材,主要包括以下内容:勾股定理的概念与证明,勾股数的特点与应用,以及实际问题中勾股定理的应用。具体教学内容如下:
1.理解并掌握勾股定理,即直角三角形两条直角边的平方和等于斜边的平方。
在实践活动环节,分组讨论和实验操作让学生们积极参与,课堂氛围较为活跃。但我也注意到,部分学生在讨论过程中过于依赖同伴,缺乏独立思考。为了解决这个问题,我计划在后续教学中,多设计一些开放性的问题,鼓励学生独立思考,培养他们的自主学习能力。

1.1 探索勾股定理(第1课时) 教案 2023-2024学年北师大版八年级数学上册

1.1 探索勾股定理 (第1课时) 教案 教材版本: 2023-2024学年北师大版八年级数学上册 一、教学目标 1. 理解勾股定理的概念和应用; 2. 利用勾股定理解决直角三角形的长度问题; 3. 发展学生的逻辑思维和问题解决能力。 二、教学内容 本节课的主要内容是勾股定理的探索,通过示例和练习,让学生理解并掌握勾股定理的原理和应用。

三、教学重点 1. 勾股定理的原理和表述; 2. 利用勾股定理解决实际问题。 四、教学过程 1. 导入新知识 通过简单的问题引导学生思考,例如:如果一条直角边长为3cm的直角三角形,另外两边长分别是多少?请同学们讨论并思考解决方法。

2. 引入勾股定理 引导学生根据前面的讨论,总结出勾股定理的规律和表述方式。在黑板上写下勾股定理的表达式 a^2 + b^2 = c^2,并解释每个符号的含义。 3. 示例讲解 通过一个具体的直角三角形示例,讲解如何利用勾股定理求解三角形的边长。给出一个已知直角边长为3cm,斜边长为5cm的三角形,让学生用勾股定理求解另一条直角边的长度。

4. 学生练习 让学生在小组内互相讨论,解决几个类似的勾股定理问题,如给出两条直角边的长度求解斜边的长度等。

5. 拓展应用 通过习题训练,引导学生将勾股定理应用于实际问题的解决,如求解船的速度、建筑物的高度等。

6. 总结归纳 让学生总结勾股定理的应用场景和解决问题的方法,并与同学分享自己的思考和学习经验。

五、教学评估 1. 练习题测试:设计几道符合教学内容的选择题或计算题,检验学生对勾股定理的理解和应用能力。

2. 学生的参与度和表现评估:观察学生在课堂讨论和练习中的参与度和表现,给予积极的鼓励和指导。

六、教学反思 通过本节课的教学,学生对勾股定理的概念和应用有了初步的了解,能够通过勾股定理解决简单的直角三角形问题。但在教学过程中,有些学生对勾股定理的掌握还不够牢固,需要加强巩固训练。在以后的教学中,可以通过更多的实例和练习,帮助学生进一步理解和应用勾股定理。

北师大-八年级-数学-上勾股定理1、2、3-教案三篇

课题勾股定理(1)学习目标1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

3、感受勾股定理的文化价值,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

重点难点教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理的发现。

教法选择探索讨论、归纳总结课型新授课课前准备多媒体课件是否采用多媒体是教学时数3 课时教学时数第1课时备课总数第 1 课时课堂教学过程设计教学内容教师活动学生活动一、创设问题的情境,激发学生的学习热情:我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。

那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是本节要研究的问题:勾股定理。

1、观察图1一2,正方形A 中有个小方格,即A的面积为个面积单位。

正方形 B 中有个小方格.即B的面积为个面积单位。

正方形 C 中有个小方格,即C的面积为个面积单位。

2、你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问。

3、图l一2 中,A、B、C之间的面积之间有什么关系?二、做一做提问:1、图1一3中,A 、对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。

出示投影1(章前的图文P1 )出示投影2。

(书中P2 图1一2)并提问:在学生交流后形成共识老师板书。

A + B=C ,出示投影3(书中P3 图1在教师的指导下回忆等腰三角形和等边三角形的边的关系。

认真观察图片并思考。

讨论交流教师所提的问题,并得出结论。

认真观察图片并思考。

学生讨论、交流并形成共B 、C 之间有什么关系?2、图1 一 4中,A 、 B 、C 之间有什么关系?3、从四图中你发现了什么? 三、议一议1、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗? 2、你能发现直角三角形三边长度之间的关系吗?3、我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这就是勾股定理的由来.四、巩固练习,掌握应用: 练习1(填空题) 已知在Rt △ABC 中,∠C=90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 (此文档为word格式,下载后您可任意编辑修改!) 年级:初二 学科:数学 第 二 学期 第 1 周 第 1 课时 教师: 课题: 探索勾股定理(一)

教 学 目 标

知识与能力:用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。 过程与方法:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形

结合和特殊到一般的思想方法。 情感态度价值观:在探索勾股定理的过程中,体验获得成功的快乐;通过介

绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。 教学重、 难点 重点:进一步发展学生的说理和简单推理的意识及能力 难点:进一步发展学生的说理和简单推理的意识及能力

学情分析

八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”。此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强。

课前准备 多媒体

教学 过程 教师活动 学生活动 设计意图

创设情境引入新课

探索

2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,

认真聆听,激发起学生的求知欲和爱国热情 学生通过观察,归纳发现: 结论1 以等腰直角三角形两直角边为边长的小正方紧扣课题,自然引入,同时渗透爱国主义教育 从观察实际 生活中常见的2

发现勾股定理

数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理。 探究活动一:1.内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗? 2.探究活动二: 内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图: (3)你是怎样得到正方形C的面积的?与同伴交流。(学生可能会做出多种方法,教师应给予充分肯定。) (4)分析数据,你发现了什么? 形的面积的和,等于以斜边为边长的正方形的面积。 学生的方法可能有: 方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,。 方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, 方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。 学生通过分析数据,归纳出: 结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积 学生独立完成 地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环。 巩固复习 书3页练习1,2 课后作业 书4页练习1,2,4

板书设计 勾股定理1 一结论1:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。 二结论2:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积

课后 3

反思 年级:初二 学科:数学 第 二 学期 第 1 周 第 2 课时 课题: 探索勾股定理2

教 学 目 标

知识与能力:进一步体会数学与现实生活的紧密联系。 过程与方法:体会数形结合和特殊到一般的思想方法。 情感态度价值观:激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

教学重、 难点 重点:运用勾股定理进行简单的计算和实际运用 难点:运用勾股定理进行简单的计算和实际运用

学情分析

勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

课前准备 多媒体

教学 过程 教师活动 学生活动 设计意图

勾股定理的简(1)你能用直角三角形的边长、、来表示上图中正方形的面积吗? 学生尝试总结:勾股定理(gou-gu theorem): 如果直角三角形两直1.让学生归纳表述结论,可培养学生的抽象概括能力及语4

单应用 课堂小结 布置作业 (2)你能发现直角三角形三边长度之间存在什么关系吗? (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗? 例 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下, 树顶落在离树根24m处. 大树在折断之前高多少? 练习:1基础巩固练习求下列图形中未知正方形的面积或未知边的长度: 2、生活中的应用: 小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流。 作业:1.教科书习题17.1第1题; 2.阅读《读一读》——角边长分别为、,斜边长为,那么 即直角三角形两直角边的平方和等于斜边的平方。 数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的 直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名。 (在西方称为毕达哥拉斯定理) 学生独立完成 学生口答完成 在学生自由发言的基础上,师生共同总结: 1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么。 2.方法:① 观察—探索—猜想—验证—归纳—应用;② 面积法;③ “割、补、拼、接”法. 3.思想:① 特殊—一般—特殊;② 数形结合思想。 言表达能力。 2.通过作图培养学生的动手实践能力。 练习第1题是勾股定理的直接运用,意在巩固基础知识。

例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容 鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动。 效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识。 课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究5

勾股世界; 3.观察下图,探究图中三角形的三边长是否满足. 而设计,通过此题可让学生进一步认识勾股定理的前提条件。

板书设计 勾股定理2 一勾股定理 例1如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下, 树顶落在离树根24m处. 大树在折断之前高多少? 练习书6页练习1, 作业练习书7页练习,2,3 课后反思

年级:初二 学科:数学 第 二 学期 第 1 周 第 3 课时 课题: 探索勾股定理3

教 学 目 标

知识与能力:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题 过程与方法:在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程 情感态度价值观:在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感

教学重、 难点 重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题 难点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题

学情分析

学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证。 6

课前准备 多媒体

教学 过程 教师活动 学生活动 设计意图

复习设疑,激趣引入 小组活动,拼图验证. 层层设问,完成验证一 自主探究,完成验证二

(1)勾股定理的内容是什么? (2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢? 活动1: 教师导入,小组拼图。 教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形。 在此基础上教师提问: (1) 如图1你能表示大正方形的面积吗?能用两种方法吗 (2)你能由此得到勾股定理吗?为什么? 我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能请一名学生回答 请同学思考: 进一步验证,如何验证勾股定理呢? 请每位同学用2分钟时间独立拼图,然后再4人小组讨论 学生通过自主探究,小组讨论得到两个图形:

学生先独立思考,再4人小组交流 在学生回答的基础上板书(a+b)2=4×ab+c2.并得到 学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二 这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排。

(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度; (3)介绍世界上有数百种验证方法,激发学生兴趣。 设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股

相关文档
最新文档