核电厂系统与设备知识点

合集下载

核电厂系统与设备-2.4 核电厂设备安全功能及分级

核电厂系统与设备-2.4 核电厂设备安全功能及分级

2.4 核电设备安全功能及分级
2.4.2 安全分级 (4)安全二级
安全二级主要指反应堆冷却剂系统承压边界内不属于安 全一级的各种部件; 为执行所有事故工况下停堆、 维持堆芯冷却剂总量和 排出堆芯热量及限制放射性物质向外释放的各种部件。
(1) 余热排出系统、 安全注入系统、安全壳喷淋系统; (2) 构成反应堆安全壳屏障的设备和部件:安全壳及隔离贯 穿反应堆厂房的流体系统的阀门和部件、 二回路系统直至 反应堆厂房外第一个隔离阀的部分,安全壳内氢气控制监测 系统及堆芯测量系统的设备和部件。
(2)核电厂安全系统的功能
A 为安全停堆和维持其安全停 堆状态提供手段; B 为停堆后从堆芯导出余热提 供手段; C 在事故后为防止放射性物质 的释放提供手段,以确保事故工 况之后的任何释放不超过容许极 限。
反应堆控制 REACTIVITY CONTROL
余热排出 COOL
放射性包 容
CONTAIN
本课程课程目录
《核电厂系统与设备》
序号
教学内容
1 第1章 绪论 2 第2章 压水堆核电厂 3 第3章 反应堆冷却剂系统和设备 4 第4章 核岛主要辅助系统 5 第5章 专设安全设施 6 第6章 核电厂热力学 7 第7章 核汽轮发电机组 8 第8章 核电厂二回路热力系统
共32学时
总学时
2 4 6 4 4 2 4 2
Non-Nuclear-Safety (NNS) non-classified (NC)
2.4 核电设备安全功能及分级
2.4.2 安全分级 (3)安全一级
安全一级主要包括组成反应堆冷却剂系统承压边界的所 有部件。
反应堆压力容器、 主管道以及延伸到并包括第二个隔离 阀的连接管道、反应堆冷却剂泵、 稳压器、 蒸汽发生 器的一次侧和控制棒驱动机构的壳体

核电厂系统及设备培训

核电厂系统及设备培训

核电厂系统及设备培训1. 引言核电厂是一种利用核能产生电能的设施,它是现代电力系统中重要的组成部分。

核电厂的系统及设备包括反应堆、燃料装载系统、冷却系统、蒸汽发生器、涡轮发电机等,这些设备的性能和工作原理对于核电厂的运行安全和经济性具有重要影响。

为了确保核电厂人员能够熟练操作和维护核电厂的系统及设备,进行培训是必要且重要的。

2. 核电厂系统及设备培训的目的核电厂系统及设备培训的主要目的是使核电厂运行人员具备以下能力: - 熟悉核电厂的各个系统及设备的工作原理和性能参数; - 掌握核电厂的运行操作流程和操作规范; - 能够快速排除系统故障,保证核电厂的运行安全性及稳定性; - 能够进行核电厂设备的日常维护和检修工作。

3. 核电厂系统及设备培训内容核电厂系统及设备培训的内容包括但不限于以下几个方面:3.1 反应堆•反应堆的结构和原理•反应堆的控制系统和安全系统•反应堆的运行指标和性能参数3.2 燃料装载系统•燃料装载系统的结构和作用•燃料装载系统的操作流程和注意事项•燃料装载系统的维护和检修3.3 冷却系统•冷却系统的工作原理和分类•冷却系统的操作流程和运行参数•冷却系统的故障排除和维护措施3.4 蒸汽发生器•蒸汽发生器的结构和工作原理•蒸汽发生器的运行参数和性能指标•蒸汽发生器的维护和检修方法3.5 涡轮发电机•涡轮发电机的结构和工作原理•涡轮发电机的运行参数和性能指标•涡轮发电机的维护和检修方法4. 核电厂系统及设备培训的方法为了确保核电厂人员能够有效地学习核电厂系统及设备的相关知识和技能,培训应采取多种方法: - 组织理论授课,讲解核电厂系统及设备的相关知识; - 安排实际操作训练,让学员能够亲自操作核电厂的系统及设备; - 进行案例分析和模拟演练,让学员能够应对不同的故障情况; - 定期进行考核和评估,检验学员对核电厂系统及设备的掌握程度。

5. 核电厂系统及设备培训的意义核电厂系统及设备培训的意义在于: - 提高核电厂运行人员的专业素质和能力水平; - 提高核电厂系统及设备的运行安全性和稳定性; - 保证核电厂的经济运行和电力供应的可靠性; - 降低核电厂事故的发生概率和事故的后果。

核电厂电气系统与设备

核电厂电气系统与设备

1.成套配电装置的特点(1)、电气设备布置在封闭或半封闭的金属外壳内,相间和对地距离可以缩小,结构紧揍,占地面积小。

(2)、所有电器元件已在工厂组装成一整体,现场安装工作量大大减小,有利缩短建设周期,也便于扩建和搬迁。

(3)、运行可靠性高,维护方便(4)、耗用钢材较多,造价较高。

2.发电机与配电装置的连接有三种方式,即用电缆、敞露母线、封闭母线连接。

3.电气主接线图一般画成单线图4.核电厂主要有三种主接线:高压开关站主接线、发变组接线、厂用电接线。

5.在两组母线间,装有三个断路器,可引接二个回路,又称为二分之三接线。

6.双母线接线特点(1)、检修任一组母线时,不会停止对用户连续供电。

(2)、运行调度灵活,通过倒换操作可形成不同的运行方式(3.)在特殊需要时,可以用母联与系统进行同期或解列操作。

7.厂用耗电量占发电厂全部发电量的百分数,称为厂用电率。

8.厂用电系统的主要功能是在任何工况下:(1)为核电厂的厂用点设备提供安全可靠的电源。

(2)并对与核安全有关的系统和设备提供应急电源,以确保核电站的安全运行。

励磁方式分为:用直流发电机作为励磁电源的直流励磁机励磁系统;用硅整流器装置将交流转化成直流后供给励磁的整流器励磁系统用直流发电机作为励磁电源的直流励磁机励磁系统用硅整流器将交流转化成直流后供给励磁的整流器励磁系统。

同步发电机并联运行的优点1.电能的供应可以相互调剂,合理使用2.增加供电的可靠性3.提高供电的质量,电网的电压和频率能保持在要求的恒定范围内4.系统愈大,负载就愈趋均匀,不同性质的负载,互相起补偿作用。

5.联成大电力系统,有可能使发电厂布局更加合理。

同步电动机的异步起动方法首先将同步电动机的励磁绕组通过一个电阻短接。

第二步,将同步电动机的定子绕组接通三相交流电源。

第三步,当同步电动机的转速达到同步转速的95%左右时,将励磁绕组与直流电源接通,则转子磁极就有了确定的极性,依靠转子磁场与定子磁场之间的吸引力将转子逐渐牵入同步。

核电厂系统及设备培训课程

核电厂系统及设备培训课程
智能化技术应用:引入先进的智能化技术,提高核电厂运行管理的自动化水平 人才培养与团队建设:加强员工培训和团队建设,提高核电厂运行与管理水平
运行成本:包括燃 料成本、维护成本、 人力成本等
经济效益:发电量、 电力销售收入、税 收等
社会效益:环保、 安全、就业等 Nhomakorabea综合效益评估:考 虑各种因素,评估 核电厂的总体效益
调整:根据监控数据,及时调 整运行参数,优化设备性能, 提高运行效率
运行监控:实时监测核电厂系 统及设备的运行状态,确保安 全稳定
应急处理:在出现异常情况时, 迅速采取应急措施,防止事故 扩大
培训内容:介绍核电厂运行监 控与调整的相关知识、技能和
注意事项
运行效率提升:通过改进操作流程和设备维护方式,提高核电厂运行效率 安全管理强化:加强安全监管和风险控制,确保核电厂安全稳定运行
感谢您的观看
汇报人:
核电厂设备介绍
反应堆类型:轻水堆、重水堆、快中子堆等 反应堆结构:压力壳、燃料组件、控制棒等 反应堆控制系统:调节反应堆功率、控制反应性等 反应堆安全设施:安全壳、应急冷却系统等
蒸汽发生器: 将核反应堆产 生的热能转化 为蒸汽,为汽 轮机提供动力
蒸汽管道:将 蒸汽从蒸汽发 生器输送到汽 轮机,以及从 汽轮机输送到
辐射防护:加强辐射防护措施,确 保员工和周边居民的健康与安全
核电厂运行与管理
核电厂运行计划:制定、执行和监控核电厂的运行计划,确保安全、经济和高效运行 调度管理:协调核电厂与电网之间的调度,确保电力供应的稳定和可靠 应急预案:制定和执行核电厂应急预案,应对突发事件和事故情况 运行人员培训:对核电厂运行人员进行培训,提高其技能水平和操作能力
核电厂安全与防护
国家核安全法 规和标准

核电厂系统与设备

核电厂系统与设备

路漫漫其悠远
核电厂系统与设备
• 能动的安全性 必须依靠能动设备(有源设 备),即需由外部条件加以保证的安全性。
• 后备的安全性 指由冗余系统的可靠度或阻 止放射性物质逸出的多道屏障提供的安全 性保证。
路漫漫其悠远
核电厂系统与设备
• 固有安全性定义为:当反应堆出现异常工况 时,不依靠人为操作或外部设备的强制性干 预,只是由堆的自然安全性和非能动的安全 性,控制反应性或移出堆芯热量,使反应堆 趋于正常运行和安全停闭。
水送到高压安注泵入口,或当泵出口压力高
于一回路压力时直接注入一回路。
路漫漫其悠远
核电厂系统与设备
安全注入系统的主要参数
路漫漫其悠远
核电厂系统与设备
安注启动信号
• 高压和低压安注系统的触发信号由反应堆 保护系统给出。如果自动控制电路故障, 可由控制室手动启动。
• 中压安注系统不需要外电源或启动信号就 能快速响应。当反应堆冷却剂压力低于安 注箱的压力时就开始向一回路系统的冷段 注水,保证快速冷却堆芯。
• 手动启动。
路漫漫其悠远
核电厂系统与设备
启动信号触发后的保护动作
安注信号除立即启动RIS系统执行安注过程外, 还实施下列保护动作,包括:
• 反应堆紧急停堆(实际上应已停堆,这里是为 了确认),汽轮机脱扣;
• 启动应急柴油发电机; • 隔离主给水系统(ARE),并停运主给水泵; • 启动电动辅助给水泵;
核电厂系统与设备
路漫漫其悠远
2020/11/19
核电厂系统与设备
1 核反应堆的安全系统
• 在核电厂的设计、建造和运行过程中,必须 坚持和确保安全第一的原则。三哩岛和切尔 诺贝利两次重大事故的发生,使人们对反应 堆安全性提出了更高的要求。提出应以固有 安全(Inherent Safety)概念贯穿于核电厂 设计安全的新论点。

精选核电厂系统及设备培训课件

精选核电厂系统及设备培训课件

一座典型的1000MW级压水堆核电厂在冷却剂中各种裂变产物和活化腐蚀产物的放射性。冷却剂的放射性主要是由惰性气体(占90%以上)、碘(占3%以上)、铷(占1%)、钼(约占1%)和铯(小于1%)组成的。进入一回路冷却剂的放射性惰性气体每年大约有数千万GBq,绝大部分是Kr(1.83h)、Xe(9.11h)等短寿命的同位素,它们在运行过程中自行衰变,排出堆外后很快就消失,需作净化处理的仅占很小一部分。
按其功能可分为以下几类:排出核燃料剩余功率;对反应堆冷却剂进行化学和容积控制;进行设备的冷却;废物的收集和处理;核岛通风空调系统。
1 化学和容积控制系统(CVCS)
1.1 系统的功能1.2 设计依据1.3 系统流程1.4 系统设备布置1.5 系统运行
1.1 系统的功能
化容系统主要功能如下:通过改变反应堆冷却剂的硼浓度,对堆芯进行反应性控制;维持稳压器的水位,控制一回路系统的水装量;对反应堆冷却剂的水质进行化学控制和净化,减少反应堆冷却剂对设备的腐蚀,控制反应堆冷却剂中裂变产物和腐蚀产物的含量,降低反应堆冷却剂的放射性水平;
一回路主要辅助系统
1 化学和容积控制系统2 反应堆硼和水的补给系统3 余热排出系统4 设备冷却水系统5 重要厂用水系统6 换料水池和乏燃料池冷却和净化系统7 废物处理系统
概述 一回路主要辅助系统是核岛的重组成部分。它不仅对核电厂正常运行是不可缺少的,而且在事故工况下,为核电厂安全设施系统提供支持。
上充泵出口水分两路:一路经上充流量调节阀和再生换热器进入一回路冷段;另一路经轴封水流量调节阀向主泵输送密封水。稳压器丧失正常喷淋时,上充泵提供辅助喷淋;上充流量调节阀的最小流量要考虑冷却下泄流(6m3/h) ,最大流量(25.6m3/h) 要考虑保证轴封水供应。

核电厂系统及设备讲义

核电厂系统及设备讲义
级管理制。
5.2 多道屏障(Multi-barrier)
• 为了阻止放射性物质向外扩散,设计上 的最重要安全措施之一,是在放射源与 人之间设置了多道屏障。最为重要的是 以下三道屏障。
• 第一道屏障: 燃料元件包壳(cladding)
轻水堆核燃料采用低富集度二氧化铀, 将其烧结成芯块,叠装在锆合金包壳管 内,两端用端塞封焊住。正常运行时, 仅有少量气态裂变产物有可能穿过包壳 扩散到冷却剂中;如包裂和1%的裂变 产物会从包壳逸出。据美国统计,正常 运行时实际最大破损率为0.06%。
类; • F类为裂变产物屏障丧失类; • H类为影响电厂安全的灾害和其它条件类; • S为系统故障类。
我国核应急计划
• 我国的核事故应急工作是在1986年4月26 日前苏联切尔诺贝利核电厂事故后,随着 我国秦山、大亚湾核电厂的建设而逐步发 展起来的。国家核应急预案(原称国家核 应急计划)第一版编制于1996年,是我国 公共安全应急工作领域内最早的应急预案 之一。该预案第二版于2001年11月颁布。 2003年“非典”事件后,又开始酝酿修订。 2004年12月,为了统一,《国家核应急计 划》更名为《国家核应急预案》。
• 第二道防御:防止运行中出现的偏差发展 成为事故。
设置可靠的保护装置和系统。探测妨碍 安全的瞬变,完成适当的保护动作。必须 按保守的设计实践设计,留有足够的安全 裕量并配有重复探测、检查和控制手段, 各种测试仪表必须具备较高的可靠性。
• 第三道防御:限制事故的放射性后果,保 障公众的安全。
对付必须加以考虑的各种假想事故, 配 置了专设安全设施。轻水堆的典型假想事 故有:一回路或二回路管道破裂、燃料操 作事故、弹棒事故等(下图)。轻水堆的 专设安全设施包括:应急堆芯冷却系统、 辅助给水系统、安全壳及安全壳喷淋系统、 安全壳隔离系统、消氢系统等。

【清华压水堆核电厂运行】系统与设备(3)热工基础3小时

【清华压水堆核电厂运行】系统与设备(3)热工基础3小时

燃料棒束的阻力损失,流道摩擦阻力损 失,
提升损失,重力压降,
ቤተ መጻሕፍቲ ባይዱ
堆芯出入口联箱的阻力损失,
定位格架的阻力损失,
沿程加速压降。
系统与设备(3)
26
热工设计准则
为了反应堆的运行安全可靠,热工设计必须满足一些准 则:
燃料元件表面的最大热流密度小于临界热流密度。定
义偏离泡核沸腾比DNBR:
燃料元件的总温降
从燃料中心线到冷却剂的总温度降可以表示为:
T −Tf = q′ r F + 1 + tc + rF 中心 2 π rF 2λ αfG λc α(r + t ) F c
q′为线功率密度,r为燃料元件芯块的半径,

λf为燃料元件的导热系数,λc为包壳的导热系 数,
tc为包壳厚度, α为包壳表面与冷却剂的放热系数,αG为燃料与
反应堆冷却剂回路依靠三台主泵使冷却剂循环,将热量 传给蒸汽发生器二回路的给水。
单位时间冷却剂输送的热量P为:
P = G C ∆T

mp
mp
G 为流量率,C 为冷却剂热容,∆T为冷却剂的温升。

因为∆T= ∆H/ Cp,所以上式可以改写为:
P =Gm∆H
∆H为冷却剂的焓升。H=u+P/ρ,u为内能,P为压 力, ρ为流体密度。
燃料非均匀装载对功率分布的影响。为了展平径向功率 分布,压水堆一般分三区配置不同富集度燃料,高富集 度的新燃料在最外区。
„ 控制棒对功率分布的影响。
5
系统与设备(3)
6
压水堆传热特点
传热有三种基本形式,即对流换热、导热和辐射传 热。压水堆堆芯的换热主要依靠前两种方式。 UO2芯块裂变后产生的热量主要是通过热传导传给 芯块表面及燃料包壳。一回路的冷却剂通过主泵进 行强制循环进入堆芯,将燃料元件表面热量通过对 流换热带走。冷却剂带出热量后流入蒸汽发生器, 也是通过对流换热把热量传给二次侧的给水。 为了提高整个电厂的循环效率,需要提高二回路蒸 汽的温度和压力,从而必须提高一回路冷却剂的温 度,因而必须提高一回路压力。大亚湾核电站的一 回路冷却剂压力为15.5MPa。波动范围为0.2MPa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核电厂系统与设备知识点2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。

在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。

坚持“质量第一,安全第一”,坚持“以我为主,中外合作”我国确定发展压水堆核岛:一回路系统及其辅助系统、安全设施及厂房。

常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。

配套设施:除核岛、常规岛的其余部分。

压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的:1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。

2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。

在此只进行热量交换,不进行能量形态的转变;3)汽轮机:将蒸汽的热能转变为高速旋转的机械能;4)发电机:将汽轮机传来的机械能转变为电能。

大亚湾核电厂共有348个系统核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口;b.满足工艺要求,便于设备运输,减少管线迂回纵横交叉;c.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.d.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房.布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置:T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。

L型:汽轮机叶片旋转平面与安全壳相交,须设置防止汽轮机飞车时汽轮机叶片对安全壳和冲击的屏障.占地少,两台以上机组可公用汽轮机厂房,仅用一台吊车。

我国采用T型布置。

安全分级的目的是正确选择用于设备设计、制造、检验的规范标准安全功能:1 安全停堆和维持安全停堆状态;2 停堆后余热导出;3 事故后防止放射性物质释放,以保证放射性物质释放不超过容许值。

确定某物项对于安全的重要性有:确定论方法;概率论方法。

安全分为四级1 安全一级:一回路承压边界所有部件;选用设备等级一级,质量A组。

按照实际可能的最高标准设计、制造、安装和实验。

2 安全二级:余热去除、安注和安喷系统。

3 安全三级:辅助给水;设备冷却水;乏燃料池冷却系统;为安全系统提供支持的系统和设施。

4 安全四级:核岛中不属于安全三级以上的,但要求按照非和规范和标准中较高要求设计制造。

抗震分为一、二类和非抗震类(NA):抗震一类指其损害会直接或间接造成事故的工况以及用来实施停堆或维持停堆状态的构筑物、系统和设备。

安全一、二、三级和LS和1E级电器设备属抗震一类。

抗震一类要求满足安全停堆地震载荷要求安全停堆地震是分析电厂所在区域地址和地震条件,分析当地地表下物质的特性的基础上所确定的可能发生的最大地震。

安全停堆地震通常取当地历史上发生过的最大地震再加上一个适当的安全裕量后确定的。

抗震二类的表明设备的设计要满足能承受运行基准地震(OBE)引起载荷要求。

在美国,抗震I类设备必定是安全级设备,而对非安全级设备也可以提单独的抗安全停堆地震要求。

核电厂的安全设计中辐射防护应遵循:正常运行工况下反射性排放低于预定限值,对环境与公众的影响可以忽略不计;导致高辐射计量或放射性物质大量释放的事故概率要低,而发生概率较高的辐射后果要小。

纵深防御要贯彻到核电厂的全部活动中。

核电厂提供多层次的设备和规程,用以防止事故、或在未能防止事故发生时实施适当的防护,保证核电厂的安全。

五道相继深入而又相互增援的设计防御措施:第一道防御:考虑对事故的预防,核电厂的设计必须是稳妥的和偏于安全的第二道防御:防止运行中出现的偏差发展成为事故。

设置可靠的保护装置和系统。

探测妨碍安全的瞬变,完成适当的保护动作第三道防御:限制事故的放射性后果,保障公众的安全。

第四道防御是应付可能已超出设计基准事故的严重事故,并使放射性后果合理尽量低。

第五道防御:应急计划;万一发生严重事故造成放射性大量外逸时,对附近居民实行隐蔽、疏散、供给药物、封锁食品,使放射性物质释放带来的损害减小到最小制定事故应急响应预案的目的是:在核电厂发生事故时,采取及时有效措施,保护公众、保护环境,将事故损失减到最小国核事故应急管理体系:核事故应急工作实行国家、地方、核电厂三级管理制。

为了阻止放射性物质向外扩散,设计上的最重要安全措施之一,是在放射源与人之间设置了多道屏障:第一道屏障: 燃料元件包壳;第二道屏障: 一回路压力边界;第三道屏障: 安全壳,即反应堆厂房。

有时见到四道屏障之说,它们依次是:燃料芯块;燃料元件包壳;一回路压力边界;气密性的承压反应堆厂房(安全壳)核电厂各系统安全设计的基本原则有:单一故障准则满足单一故障准则的设备组合,在其任何部位发生单一随机故障时,仍能保持所赋于的功能多样性原则多样性应用于执行同一功能的多重系统或部件,即通过多重系统或部件中引入不同属性来提高系统的可靠性。

独立性原则为了提高系统的可靠性,防止发生共因故障或共模故障,系统设计中应通过功能隔离或实体分隔,实现系统布置和设计的独立性。

故障安全原则,;充分采用固有安全性的设计原则;运行人员操作优化的设计;主控制操纵员室设计反应堆冷却剂系统又称为一回路系统主要功能使冷却剂循环流动,将堆芯裂变产生的热量载出,并通过蒸汽发生器传给二回路工质,产生蒸汽,驱动汽轮发电机组发电余热载出:在停堆后的第一阶段,经蒸汽发生器带走堆内的衰变热。

放射性屏障:压力边界构成防止裂变产物释放到环境中的一道屏障,第二道屏障。

反应性控制:冷却剂作为可溶化学毒物硼的载体,并起慢化剂和反射层作用。

压力控制:RCP系统的稳压器用来控制一回路的压力,防止堆内发生偏离泡核沸腾,同时对一回路系统实行超压保护。

按照功能,反应堆冷却剂系统可分为冷却系统、压力调节系统和超压保护系统主系统可分为两部分,即一回路系统部分和泄压蒸汽收集部分一回路主要部件包括:反应堆压力容器、蒸汽发生器的主冷却阀、主泵、稳压器主管道分期热段、过渡段、冷段三部分冷却系统由反应堆冷却剂泵、反应堆和蒸汽发生器及相应的管道组成。

在反应堆冷却剂泵电动机顶部装飞轮,延长主泵断电后的惰转时间,增加泵的惯性流量在一回路设备布置上,应使蒸汽发生器的位置高于反应堆压力容器,以便建立和保持一个自然循环驱动头。

在一回路出现两相流的情况下,必须考虑流动的不稳定性问题。

原理上,增加堆芯与蒸汽发生器间的高度差仍然有效,但增加的办法更倾向于降低堆芯高度,拉长反应堆压力容器而不是抬高蒸汽发生器。

卸压系统主要由装在稳压器汽空间连管上的卸压阀或安全阀及其管道和卸压箱组成一回路的工作压力、冷却剂的反应堆进出口温度、流量和流速等参数的选择,直接影响了核电厂的安全性和经济性核电厂一回路一般采用2~4条环路并联形式。

一般压水堆核电厂一回路系统的工作压力约为15.5MPa左右。

设计压力取1.10~1.25倍工作压力;冷态水压试验压力取1.25倍设计压力。

电厂热效率与冷却剂的平均温度密切相关,冷却剂出口温度越高,电厂热效率越高,但冷却剂出口温度的确定应考虑以下因素:燃料包壳温度限制、传热温差的要求、冷却剂过冷度要求。

压水堆核电厂一回路参数范围:工作压力15.5MPa左右;冷却剂进口温度取280℃~300℃,出口温度取310℃~330℃。

核电厂变工况时,平均温度变化允许的最大温差为17℃~25℃。

反应堆的设计温度为350℃。

单环路对应的电功率为300MW时,冷却剂总质量流量可达到15000t/h~21000t/h。

主管道内冷却剂流速可达15 m/s,一回路系统的总阻力约为0.6MPa~0.8MPa 堆芯又称为活性区,位于反应堆压力容器中心偏下的位置。

大亚湾核电厂由157个几何形状和机械结构完全相同的燃料组件,构成一个高3.65m,等效直径3.04m的准圆柱状核反应区。

在典型的燃料管理方案中,初始堆芯分成三个燃料浓集度不同的区,在堆芯外区放置浓集度较高的燃料组件,浓集度较低的燃料组件以棋盘的形式排列在堆芯的内区。

1区53个组件,浓集度1.8%;2区52个组件,浓集度2.4%;3区52个组件,浓集度为3.1%。

通常每年进行一次换料,每次换料更换1/3 燃料组件,达到平衡换料时新燃料的浓集度为3.2%。

反应堆冷却剂流过堆芯时起到慢化剂的作用。

控制棒组件用于反应堆控制,提供反应堆停堆能力和控制反应性快速变化燃料元件呈17x17正方形排列,每个组件有289个位置,其中264个位置由燃料元件占据。

燃料元件是由产生核裂变并释放热量的部件。

燃料组件骨架由24根控制棒导向管、一根中子通量测量管与上下管座焊接而成,沿高度方向放置有8个定位格架以提高组件的刚性和强度。

可燃毒物组件由装在不锈钢包壳管中的含硼玻璃管(成分为B2O3+SiO2)组成,用于抵消新堆芯第一次装料大部分过剩后备反应性锎-252被广泛用作为初级中子源堆芯支承结构包括:下部支承结构;上部支承结构;堆芯仪表支承结构堆芯下栅板为燃料组件提供精确定位和流量分配上部堆芯支承结构为燃料组件提供上部的定位,并为控制棒组件提供导向反应堆压力容器对材料要求:高强度,耐腐蚀,抗辐照反应堆压力容器本体材料属低碳钢压力容器的法兰结合处用两道“O”形圈密封。

材料显示塑性还是脆性,取决于工作环境如温度,辐照等因素。

高温,显示塑性;低温,显示出脆性;存在一个塑性-脆性转变温度反应堆冷却剂泵分为全密封泵和轴封泵。

全密封泵长期在核动力舰艇上使用,密封性能好,运行安全可靠。

局限性:它效率低驱动反应堆冷却剂泵的电动机是立式、鼠笼、单速三相感应式,采用防滴结构在泵轴末端附近设置轴封组件,它的作用是保证在电厂正常运行期间从反应堆冷却剂系统沿主泵泵轴向安全壳气空间的反应堆冷却剂泄漏量基本为零。

轴封组件的三级密封自下而上依次称为1号、2号、3号密封,其中头两道是全设计压力的轴封,而第三道密封只是一个泄漏水导流轴封,即将第二道密封的泄漏水导流至收集点1号密封位于泵轴承上方,它是密封组件中最重要的部件,又称主密封。

2号密封的主要作用是阻挡1号密封的泄漏,将其导向化容系统离心泵(或轴流式泵)借助于叶轮带动流体旋转把能量传递给流体。

流体获取能量后,压力升高,从而实现冷却剂在一回路的强迫循环。

汽蚀是这样一种现象:由于流体动力作用,运动液体的局部压力降低到液体温度下的饱和压力时,液体就开始汽化而形成汽泡,汽泡随液体到达静压超过饱和蒸汽压力的区域时,蒸汽突然凝结而使汽泡破裂,这种破裂在很短时间内发生,周围的液体以极高的速度向汽泡原来所占的空间冲去,产生了强烈的高频水力冲击。

相关文档
最新文档