高中数学参数方程

合集下载

高中数学极坐标与参数方程公式的区别

高中数学极坐标与参数方程公式的区别

高中数学极坐标与参数方程公式的区别1. 引言在高中数学课程中,学生常常会遇到极坐标和参数方程,它们是解决几何问题中常用的工具。

尽管它们都能描述曲线的形状,但是极坐标和参数方程在表达方式和使用方法上存在一些区别。

本文将探讨高中数学中极坐标和参数方程公式的区别,以帮助学生更好地理解和应用这两种方法。

2. 极坐标公式极坐标公式是一种将平面直角坐标系中的点转换为极坐标系表示的方法。

每个点由极径 r 和极角θ 表示。

极径 r 表示点到原点的距离,极角θ 表示点与正半轴的夹角。

极坐标公式的一般形式为:(x, y) = (r*cosθ, r*sinθ)其中,x 和 y 分别是点在直角坐标系中的坐标,r 和θ 是点在极坐标系中的坐标。

举个例子,考虑一个点 P 在极坐标系中的表示,其极坐标为(r, θ)。

可以通过极坐标公式将其转换为直角坐标系的表示,即:(x, y) = (r*cosθ, r*sinθ)3. 参数方程公式参数方程公式是一种使用参数变量表示曲线上不同点的方法。

一个曲线可以由两个参数 x(t) 和 y(t) 表示,其中 t 是一个参数变量。

参数方程公式的一般形式为:x = x(t)y = y(t)参数方程公式中的 x(t) 和 y(t) 分别表示曲线上每个点的 x 坐标和 y 坐标。

举个例子,考虑一个曲线 C 在参数方程中的表示,其参数方程为:x = x(t)y = y(t)4. 区别和应用极坐标和参数方程是描述曲线的两种不同方式,它们在表达方式和使用方法上存在一些区别。

4.1 表达方式极坐标使用极径和极角来表示点的位置,将点的坐标转换为极坐标形式。

而参数方程使用参数变量来表示曲线上不同点的位置,通过参数方程的函数表达式来确定曲线上的点。

4.2 描述方式极坐标可以很方便地描述圆、椭圆、螺旋线等具有对称性的曲线。

极坐标描述的曲线方程更简洁,有时可以将复杂的曲线用简单的方程表示出来。

参数方程可以很方便地描述直线、抛物线、双曲线等非对称的曲线。

高中数学极坐标与参数方程公式大全

高中数学极坐标与参数方程公式大全

高中数学极坐标与参数方程公式大全极坐标公式极坐标是一种用极径和极角来确定平面上点位置的坐标系统。

在高中数学中,我们常常会遇到极坐标与直角坐标之间的转换和相关公式。

点的极坐标表示在极坐标系统中,一个点的位置由极径和极角确定。

极径表示点到极点的距离,通常用字母 r 表示;极角表示点与极轴的夹角,通常用字母θ表示。

通过将直角坐标系中的点 (x, y) 转换成极坐标系下的点(r, θ),可以使用以下公式:•极径 r:r = √(x^2 + y^2)•极角θ:θ = arctan(y / x)极坐标到直角坐标的转换假设在极坐标系统中,有一个点(r, θ),我们可以通过以下公式将其转换为直角坐标系统下的点:•x 坐标:x = r * cos(θ)•y 坐标:y = r * sin(θ)参数方程公式参数方程是一种用参数表示自变量和因变量之间关系的方式。

在高中数学中,我们常常使用参数方程来描述曲线或者路径。

曲线的参数方程表示对于一个给定的曲线,我们可以使用参数方程来表示。

通常,我们用参数 t 来表示自变量,然后通过指定 x 和 y 的表达式,将参数 t 和 (x, y) 一一对应。

例如,一个曲线的参数方程可以表示为:•x = f(t)•y = g(t)参数方程与直角坐标系的关系通常情况下,参数方程与直角坐标系下的方程之间存在关系。

我们可以通过参数方程将曲线在直角坐标系下表示出来。

在参数方程中,将参数 t 的取值范围确定在一定的区间上,可以画出曲线的一部分或者整条曲线。

极坐标与参数方程之间的转换在一些数学问题中,我们需要在极坐标和参数方程之间进行转换。

下面是一些常见的极坐标与参数方程之间的转换公式:极坐标到参数方程的转换•x = r * cos(θ)•y = r * sin(θ)上述公式可以表示为参数方程:•x = f(θ) = r * cos(θ)•y = g(θ) = r * sin(θ)参数方程到极坐标的转换给定参数方程 x = f(t) 和 y = g(t),我们可以通过以下步骤将其转换为极坐标:1.计算 r 的表达式:r = √(f(t)^2 + g(t)^2)2.计算极角θ 的表达式:θ = arctan(g(t) / f(t))可以注意到,在将参数方程转换为极坐标时,需要考虑函数 f(t) 和 g(t) 的符号,以确保角度θ 的取值范围正确。

(完整word版)高中数学参数方程知识点大全

(完整word版)高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得 222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

【高中数学】坐标系与参数方程

【高中数学】坐标系与参数方程

【高中数学】坐标系与参数方程1. 平面直角坐标系学习过程1. 到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2. 在⊿ABC 中,已知|AB|=10,且{ EMBED Equation.3 |6=-BC AC ,求顶点C 的轨迹方程.例题讲解例1. 已知△ABC 的三边满足,BE,CF 分别为边A C, AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系。

例2. 求证:三角形的三条高线交于一点.巩固练习1. 两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 得轨迹2. 求直线与曲线的交点坐标.3. 已知A (-2,0),B (2,0),求以AB 为斜边的直角三角形的顶点C 的轨迹方程4. 已知A (-3,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为,求点M 的轨迹方程5. 已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东600的方向埋设一条地下管线m 但在A 村的西北方向400米处,发现一古代文物遗址W 。

根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区。

试问:埋设地下管线m 的计划需要修改吗?2. 坐标变换1. 理解平面直角坐标系中的伸缩变换;2. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;3. 会用坐标变换、伸缩变换解决实际问题。

学习过程设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点(,)称为坐标系中的伸缩变换. 例题讲解例1. 在平面直角坐标系下,求下列方程所对应的图形经过伸缩变换后的图形. (1)(2)例2. 在同一平面直角坐标系中,求满足下列图形变换的伸缩变换. (1)直线变换成直线 (2)曲线变成曲线例3. 在伸缩变换下,椭圆是否可以变成圆?抛物线、双曲线变成什么曲线?巩固练习1. 已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )A.B .2C.3D.2. 在同一直角坐标系中,经过伸缩变换后,曲线C 变为曲线则曲线C 的方程为( )A.B.C.D.3. 在同一平面坐标系中,经过伸缩变换后,曲线C 变为曲线,求曲线C 的方程并画出图象。

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t +中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高考数学复习考点知识讲解课件76 参数方程

高考数学复习考点知识讲解课件76 参数方程
学科素养:通过参数方程的应用考查数学建模、数学运算的核心素
养.
必备知识—基础落实
一、必记4个知识点
1.参数方程的概念
任意一点
一般地,在平面直角坐标系中,如果曲线上________的坐标x,y都
x=f t ,
是某个变数t的函数:ቊ
并且对于t的每一个允许值,由方程
y=g t .
这条曲线上
组所确定的点M(x,y)都在__________,那么方程叫做这条曲线的参
(1)求C1的普通方程和C2的直角坐标方程;

1
(2)若C1 ,C2 交于A,B两点,点P的极坐标为(2 2,- ),求
+
1
PB
4
的值.
PA
2.[2022·石家庄市重点高中高三摸底考试]已知曲线C的参数方程为
x = cos θ

(θ为参数),A(2,0),P为曲线C上的一个动点.
y = sin θ
(1)求交点坐标、距离、线段长.可先求出直角坐标方程,然后求
解.
(2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.
(3)求参数方程与极坐标方程综合的问题.一般是先将方程化为直角
坐标方程,利用直角坐标方程来研究问题.
【对点训练】
[2022·惠州市高三调研考试]在直角坐标系xOy中,曲线C1 的参数方
12
.
3+sin2 θ
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
x = cos α ,
解析:(1)因为曲线C1的参数方程为ቊ y = sin α (α为参数),所以曲线C1的普通
方程为x2+y2=1.
因为曲线C2的极坐标方程ρ2=

高中数学直线参数方程教案

高中数学直线参数方程教案

高中数学直线参数方程教案
目标:学习如何用参数方程表示直线
一、直线方程的一般形式
在平面直角坐标系中,一条直线可以用一般形式的方程表示为:
Ax + By + C = 0
其中A、B、C为常数,A和B不同时为0。

二、直线的参数方程
一个方程组可以用参数形式表示为:
x = x0 + at
y = y0 + bt
其中x0、y0分别是直线上的一个点的坐标,a、b为实数。

三、如何求直线的参数方程
1.已知直线上的两个点P(x1, y1)和Q(x2, y2),可以先求出直线的斜率:
m = (y2 - y1) / (x2 - x1)
然后,根据直线的斜率和一个已知点的坐标,可以得出直线的参数方程。

2.已知直线的一般形式方程Ax + By + C = 0,可以先求出一个点P(x0, y0):
x0 = -C / A
y0 = 0
然后,根据这个点和直线的斜率,可以得出直线的参数方程。

四、练习题
1.已知直线L过点P(1, 2)和Q(-2, 5),求直线L的参数方程。

2.已知直线L的一般形式方程2x - 3y + 6 = 0,求直线L的参数方程。

五、思考题
1.直线的参数方程和一般形式方程有何区别?
2.如果已知直线的参数方程x = 2t - 1,y = 3t + 4,如何表示这条直线的斜率?
六、作业
1.完成练习题。

2.思考题中的问题,并写下自己的回答。

本节课重点:学习如何用参数方程表示直线,以及如何根据已知条件求出直线的参数方程。

新高考数学极坐标与参数方程吗

新高考数学极坐标与参数方程吗

新高考数学:极坐标与参数方程引言新高考数学课程的改革给了学生更多的选择余地。

在以往的高中数学课程中,极坐标与参数方程的学习通常是在高中数学的辅助章节中,内容相对较少,甚至被一些学生所忽略。

然而,在新高考数学中,极坐标与参数方程的重要性得到了更高的重视。

本文将探讨新高考数学中的极坐标与参数方程的知识点,并解释其与实际应用的相关性。

一、极坐标与参数方程的基本概念1. 极坐标极坐标是描述平面上的点位置的一种坐标系统。

与直角坐标系不同,极坐标系统使用两种数值来确定点的位置:极径和极角。

极径表示点到原点的距离,极角表示点与极轴之间的夹角。

2. 参数方程参数方程是一种描述曲线或曲面的方式,其中自变量和因变量都用参数表示。

对于平面上的曲线而言,通常使用参数t来表示。

参数方程可以帮助我们更直观地描述和分析曲线的运动、形状和属性。

二、极坐标与参数方程的联系与应用1. 极坐标与参数方程的转换极坐标与参数方程之间存在着一种转换关系。

通过参数方程中的参数,我们可以得到对应的极坐标点,反之亦然。

这种转换关系使得我们能够根据实际问题的要求,选择更合适的坐标系进行分析。

2. 极坐标与参数方程的实际应用极坐标与参数方程在实际问题中具有广泛的应用。

例如,在物理学中,极坐标可以用于描述旋转体的运动轨迹,参数方程可以用于描述质点在空间中的运动轨迹。

再例如,在工程中,极坐标可以用于描述圆形构件的设计和制造,参数方程可以用于描述复杂曲线的绘制和计算。

三、新高考数学中的极坐标与参数方程1. 新高考数学的要求根据新高考数学课程标准,学生需要掌握极坐标与参数方程的基本知识和转换关系。

他们需要能够理解并解决使用极坐标与参数方程描述的问题,并能够灵活运用相关知识解决实际问题。

2. 极坐标与参数方程的解题思路在解决与极坐标与参数方程相关的问题时,学生需要先建立合适的坐标系,然后根据问题的要求选择合适的描述方式。

他们需要熟练掌握极坐标与参数方程之间的转换关系,并能够利用这种转换关系解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学参数方程
一、前言
在高中数学中,参数方程是一个非常重要的概念,也是数学与实际问题相结合的杰出体现。

掌握参数方程的基本概念和求解方法对于高中学生的数学学习和理解具有重大的帮助。

本文将从参数方程的基本概念、常用的图形、求解方法和应用等方面进行详细介绍,帮助学生全面掌握该概念。

二、参数方程的基本概念
1. 参数方程的定义
参数方程是一种通过给定的参数变量,用参数的函数表示一个曲线或者一个曲面的方法。

在参数方程中,通常用参数t表示自变量。

例如,设有一条曲线C,可以用如下的参数方程表示:
x=f(t), y=g(t)
上述的式子就是一条经过点(x,y)的曲线C的参数方程。

参数t常常被称为参数变量,它是曲线C上的自变量。

2. 参数方程的优点
与直角坐标系下表示曲线的函数相比,参数方程的优点在于它可以更加灵活地表示一些曲线,如椭圆、双曲线、螺线等等。

同时,参数方程也可以用来表示高维度的曲面,如三维曲面、四维曲面等等。

此外,参数方程在图像处理、计算机动画、自动控制、机器人控制等领域中也有广泛的应用。

三、参数方程的常用图形
1. 抛物线
抛物线是参数方程中最常见的图形之一。

抛物线的参数方程通常为:
x = t, y = t^2
其中,t是参数变量。

2. 椭圆
椭圆是平面直角坐标系下的二次曲线,也可以用参数方程表示。

椭圆的参数方程通常为:
x = a*cos(t), y = b*sin(t)
其中,a和b分别是椭圆的长轴和短轴长度。

3. 双曲线
双曲线也是平面直角坐标系下的二次曲线,与椭圆不同的是,它有两个分离的实部,能够在极值点处取到无穷大值。

双曲线的参数方程通常为:
x = a*cosh(t), y = b*sinh(t)
其中,a和b分别是双曲线的横轴和纵轴长度。

4. 螺线
螺线是一种等腰斜螺线(又称Archimedean螺线),由希腊数学家阿基米德研究而得名。

螺线的参数方程通常为:x = a*cos(t), y = a*sin(t) + bt
其中,a和b分别是螺线的宽度和高度。

5. 极坐标方程
对于一些图形而言,它们的表达式最适合使用极坐标方程来表达。

例如一些对称的图形,如多边形和圆形,它们的示意图可以用一个简单的方程式来表示。

a. 多边形
多边形可以用极坐标方程表示,它的顶点坐标可以表示
为:
x = acos(θ), y = asin(θ)
其中,a表示多边形顶点到圆心的距离,θ表示多边形的旋转角度。

b. 圆形
圆形的极坐标方程可以表示为:
r = a
其中,a表示圆形的半径。

四、参数方程的求解方法
1. 消元法
消元法是解决参数方程问题的最基本方法之一。

消元法的实质是利用相等或关系将参数t消去,得到x和y之间的关系式。

这个关系式通常是可以用常规的算数方法解决的。

例如,给定以下的参数方程:
x = t^2 + 1, y = t - 1
为了消去参数t,可以将第一个方程的t用第二个方程的t表示:
t = y + 1
将其代入第一个方程中:
x = (y + 1)^2 + 1
这样我们就得到了一个不带参数t的简单函数。

2. 消元前几项的法
消元前几项的法是解决参数方程问题的另一种方法。

这种方法比消元法更直接、更简单,一般适用于那些含t的方程项数相等或者几乎相等的情形。

例如,对于以下的参数方程:
x = 2t + 1, y = t^2 + t - 2
我们可以先计算出y/x的值:
y/x = (t^2 + t - 2) / (2t + 1)
然后把x、y用t的一次式表示:
t = (x - 1) / 2, t = -1 ± sqrt(x^2 - 2x + 9) / 2 然后将两个t值代入y/x中,求出y/x的取值。

这样我们就得到了一个没有参数t的简单函数。

五、参数方程的应用
参数方程广泛应用在不同领域中,如数学、物理、工程、计算机图形学、动画等等。

下面我们将介绍一些有代表性的应用实例。

1. 曲线绘制
我们可以设计一个简单的程序,通过输入不同的参数方程,绘制出各种曲线。

这种应用极为灵活,不仅可以进行数学绘图,还可以绘制地图、地形、建筑、人物等等。

例如,我们可以通过以下的参数方程来绘制一个八宝荷花图案:
x = sin(t) * (abs(cos(3t))) ^ (1/3), y = cos(t) * (abs(sin(3t))) ^ (1/3)
2. 自动控制
在机器人控制、飞行控制等领域中,参数方程可以描述机器人或飞行器的运动轨迹。

利用参数方程可以将机械臂、飞行器等移动到指定的位置。

例如,在机器人领域中,我们可以用如下的参数方程来实现机械手的控制:
x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ)
其中,r表示距离中心点的距离,θ和φ表示仰角和方
位角。

3. 人脸识别
人脸识别领域中,通过计算人脸图像与标准图像之间的差异,从而快速准确地识别人脸。

例如,通过使用以下的参数方程,可以构建一个简单的人脸识别程序:
x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ) + offset
其中,r表示半径大小,θ和φ表示角度,offset表示人脸的位置。

六、总结
本文中,我们详细介绍了参数方程的基本概念、常用的图形、求解方法和应用等方面。

参数方程虽然是高中数学的一部分,但它在多个领域中都有着广泛的应用。

掌握参数方程的基本概念和求解方法,对于学习和理解数学概念具有非常重要的帮助。

我们希望本文可以对读者有所帮助,并且能够乘此机会更进一步地了解参数方程的相关知识。

相关文档
最新文档