同一平面内的两条直线有几种位置关系
垂直是相交的一种特殊情况吗

垂直是相交的一种特殊情况吗
垂直是相交的一种特殊情况。
因为在同一平面内,两条直线只有相交和平行这两种位置关系,垂直是一种特殊的相交。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂直一定会出现90°。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
垂直度介绍
垂直度(Perpendicularity)是位置公差。
垂直度评价直线之间、平面之间或直线与平面之间的垂直状态。
其中一个直线或平面是评价基准,而直线可以是被测样品的直线部分或直线运动轨迹,平面可以是被测样品的平面部分或运动轨迹形成的平面。
当基准是直线,被评价的是直线时,垂直度是垂直于基准直线且距离最远的两个包含被测直线上的点的平面之间的距离;当基准是直线,被评价当基准是平面,被评价的是直线时,垂直度是垂直于基准平面和评价方向,且距离最远的两个包含被测直线上的点的平面之间的距离。
人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)第十二章相交线与平行线相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。
像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。
所以对顶角相等二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.如图所示,图中ABCD,垂足为O。
垂直的两条直线共形成四个直角,每个直角都是90。
垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.如图,直线a与直线b平行,记作a//b平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.四、平行线的性质同位角、内错角同旁内角同一个平面中的三条直线关系三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
直线的位置关系

一、同步知识梳理1、两直线的位置关系(1)平面内两条直线的位置关系有三种:重合、平行、相交(垂直)。
(2)判别方法:法一:系数行列式判别解的个数方法① 0D ≠⇔相交;② =0D 且x D 、y D 至少有一个不等于零⇔平行; ③ D =x D =y D =0 ⇔ 重合法二:当直线不平行于坐标轴时,直线与直线的位置关系可根据下表判定2、相交直线交点与夹角(1)交点坐标:联立方程求解(2)夹角公式:向量表示:2222212121212121|||||cos |cos b a b a b b a a +⋅++===θα.斜率表示:同样地,由于不是所有的直线都有斜率,因此需要按“斜率存在、斜率不存在”分类讨论.(1)若两直线的斜率都存在,当2πα≠时,有公式21121tan k k k k +-=α;(2)如果直线1l 和2l 中有一条斜率不存在,“夹角”可借助于图形,通过直线的倾斜角求出.二、同步题型分析题型1:位置关系的判别与计算例1: 已知两条直线2:60P x m y ++=,Q:(2)320m x my m -++=.当m 为何值时,两直线(1)相交; (2)平行; (3)重合.【答案】解:联立方程组:26(2)32x m y m x my m ⎧+=-⎨-+=-⎩,则2321= 32 23m D m m m m m=---,26=23x m D m m --,16= 22y D m m ---. 令=0D 则=0m 或=3m 或=1m -,①当0m ≠且3m ≠且1m ≠-时,0D ≠, 则P 与Q 相交; ②当=0m 时,D =x D =0 但y D =-1≠0,则P 与Q 平行;③当=1m -时,D =0,x D = 16 y D =-16,则P 与Q 平行; ④当=3m 时,D =x D =y D =0,则P 与Q 重合.综上所述:(1)0m ≠且3m ≠且1m ≠-时,两直线相交; (2)=0m 或=1m -时,两直线平行; (3)m=3时,两直线重合.【此题的解法体现了化归的数学思想,二元一次方程组的解的讨论是一个规范化的纯代数问题,而直线P 与Q 的位置关系是一个纯几何问题,由交点个数与方程组的解的个数转化顺实现化归;解题中要弄清楚“且”与“或”的关系】例2、m 为何值时,直线1:(2)0L m x y m -++=,2:360L x my m +++=,互相垂直. 【答案】解:1L 的法向量1(2,1)n m =-,2L 的法向量2(3,)n m =.令12=0n n ⋅,则()32+=0m m -,解得3=2m . .例3、从点()1,2-作直线02153=--y x 的垂线,则垂足的坐标为 . 【答案】解:设垂足坐标为()00,P x y ,由直线的方向向量(5,3)d =,则()00(5,3)+1,2=0x y ⋅-①点()00,P x y 代入直线方程得:003521=0x y --② 由①、②得:00=2=3x y ⎧⎨-⎩.题型2:夹角公式应用例1:已知直线:,:,则直线与的夹角是 . 答案:3π例2:直线1l 在x 轴和y 轴上的截距分别为3和1,直线2l 的方程为10ax y -+=,直线1l 与2l 的夹角为45︒,则a 的值为答案:21或2-例3:直线1y =与直线3y =+的夹角为解析:当出现平行或垂直x 轴直线时,可数形结合用倾斜角判断答案:3π题型3:直线位置关系的综合分析例1:当m 取何值时,三条直线1:44L x y +=,2:0L mx y +=,3:234L x my -=不能构成三角形.解:(1)当三线交于一点时,不妨设1L 、2L 相交,易求点44,444m m m -⎛⎫ ⎪--⎝⎭,将交点代入3L 的方程,求得=1m -或2=3m . (2)当三条直线中至少有两条平行(或重合)时, ①1L 与2L 平行(或重合),求得=4m ; ②1L 与3L 平行(或重合),求得1=6m -; ③3L 与2L 平行(或重合),m 无解.1l 023=+-y x 2l 0533=-+y x 1l 2l综上所述,当三条直线不能构成三角形时,m 值可以是1-或23或16-或4. 【由几何特征,易知三条直线交于一点或至少两条直线平行(或重合)时,三线都不能构成三角形;分类讨论时要点是不重复且不遗漏】三、课堂达标检测1、当m 为何值时,直线1:(2)0L m x y m -++=,2:360L x my m +++=.两直线 (1)相交;(2)平行; (3)重合. 【答案】(1)3m ≠且1m ≠-,相交;(2)=1m -,平行; (3)=3m 重合.2、若直线0342:L , 053:21=--=-+y x y ax L 互相垂直,求a 的值? 【答案】6.3、若直线()120x m y m +++-=与直线280mx y ++=平行,则实数m 的值为.A 1 .B 2- .C 1或2- .D 1-或2-4、“两条直线的斜率的乘积等于—1”是“两条直线互相垂直”的 ( )A .必要非充分条件;B .充分非必要条件;C .充要条件;D .既非充分又非必要条件. 【答案】B .(提示:当斜率为零与斜率不存在的情况下的两条直线也相互平行)5、若直线042:L , 043:21=+-=-+b y x y ax L 互相平行,则a 、b 的值是 ( )A .32a =,163b ≠;B .32a =,163b ≠-;C .32a =-,163b ≠;D .32a =-,163b ≠-.【答案】 C .6、若直线1:(1)30L kx k y +--=,2:(k-1)(23)20L x k y ++-=互相垂直,则k 的值为 .【答案】—3或1(提示:当斜率不存在的时候不能忽略).7、两条直线1110A x B y C ++=,2220A x B y C ++=垂直的充要条件是( ).A 12120A AB B +=.B 12120A AB B -= .C 12121A A B B =- .D 12121B B A A = 解析:理解公式的全面性问题 答案:A8、 “12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-= 相互垂直”的( ).A 充分必要条件; .B 充分而不必要条件; .C 必要而不充分条件; .D 既不充分也不必要条件. 答案:A9、直线3x y +=和直线2x y +=的位置关系是.A 相交不垂直 .B 垂直 .C 平行 .D 重合答案:B10、直线1:0L x c +=,2:0L xsin α+=3(2ππα<<)的位置关系是( )A .平行;B .相交;C .垂直;D .重合. 答案C .11、若c b a 、、是△ABC 的三条边,则直线1:0L xsinA ay c ++=,2:0L bx ysinB sinC -+=的位置关系是( )A .平行;B .相交;C .垂直;D .重合. 答案C .12、已知两条直线1l :y x =,2l :0ax y -=,其中a 为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动时,a 的取值范围是.A ()0,1 .B 3⎛ ⎝ .C (),11,33⎛⎫⎪ ⎪⎝⎭.D ((1,3)解析:数形结合分析1l 倾斜角4π,则2l 倾斜角范围可得①1L 、2L 平行(或重合),求得=1a ;②1L 、2L 平行(或重合),求得=2a -;综上所述,当三条直线不能构成三角形时,a 值可以是1或7或-2.学法升华一、 知识收获1、两直线的位置关系(1)平面内两条直线的位置关系有三种:重合、平行、相交(垂直)。
第四章 平面上两条直线的位置关系

第四章平面上两条直线的位置关系4.1.1 相交与平行教学目标1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其直线平行关系的传递性的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;重点:理解并掌握平行公理难点:理解并掌握平行公理及其直线平行关系的传递性的内容教学过程一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)4.1. 2相交直线所成的角教学目标:1.理解相交直线所成的角意义,理解对顶角、同位角、内错角、同旁内角的概念。
2.4.1空间中直线与直线之间的位置关系

A F B
空间两直线的位置关系
相交直线 平行直线 异面直线 :不同在任何一个 平面内的两条直线
公理4:在空间平行于同一条直线的两条直
线互相平行.(平行线传递性) 等角定理:空间中如果两个角的两边分别对应平行, 那么这两个角相等或互补. 异面直线所成的角:平移,转化为相交直线所成的角
异面直线所成角的求法: 一作(找) 二证 三求
D1
G
A1
E B1
C1
D
F
C B
求异面直线所成的角的步骤是: 一作:作(或找)平行线 二证:证明所作的角为所求的异面 直线所成的角 三算:在一恰当的三角形中求出角
2 5 5
A
例3 四边形ABCD是空间四边形,E、 G分别是边AB、 CD的中点,H、F分别是边AD、CB的中点,求证:四 边形EFGH是平行四边形. A
A B F G C E
D G
C
A D B
H
H
E F
二、异面直线的画法
说明: 画异面直线时,为了体现它们不共面的特点, 常借助一个或两个平面来衬托. 如图:
b A b
(2)
a
a b
(3)
a
(1)
在同一平面内, 如果两条直线都和第三条直线平行,那么 这两条直线互相平行.在空间这一规律是否还成立呢? 观察: 将一张纸如图进行折叠 , 则各折痕及边 a, b, c, d, e, …之间有何关系?
600
A
A H E E G
D
C B
D G H C
B
注意:在求作异面直线所成角的平移过程中,经 常移到其中一条线段的端点或线段的中点处。
练习 1如图, 长方体ABCD-EFGH中, AB =2 3 , AD = 2 3 , AE = 2
相交线与平行线知识点总结

相交线与平行线第一节相交线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交. 相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3 )对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:有且只有”中,有”指存在;只有”指唯一”过一点"的点在直线上或直线外都可以.垂线段最短(1 )垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2 )垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从两点之间,线段最短”和垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.第二节平行线及其判定一:平行线平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)(1 )平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a// b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中、、八'lilt*、\ •要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解有且只有”的含义•从作图的角度说,它是能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.二:平行线的判定同位角、内错角同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U'形.平行线的判定(1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(3 )定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行. 第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.定理2 :两条平行线被地三条直线所截,同旁内角互补. .简单说成:两直线平行,同旁内角互补.精品文档定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1) 平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角平行线之间的距离(1) 平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点. 连接各组对应点的线段平行且相等作图----平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。
平行线及其性质和判定

平行线及其性质和判定核心纲要1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行".2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.本节重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.基础演练1.在同一平面内,两条直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行.3.如图所示,下列推理中错误的是( )A.∵∠A+∠ADC=180°,∴AB∥CD B.∵∠DCE=∠ABC,∴AB∥CDC.∵∠3=∠4,∴AD∥BC D.∵∠1=∠2,∴AD∥BC4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°5.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D’,C’的位置.若∠EFB=65°,则∠AED’等于__________.(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.图1 图2 图36.解答题.(1)填写推理理由如图所示,D、F、E分别是BC、AC、AB上的点,DF∥AB,DE∥AC,试说明:∠EDF=∠A.解:∵DF∥AB( )∴∠A+__________=180°( )∵DE∥AC(已知)∴∠AFD+__________=180°()∴∠EDF=∠A( )(2)推理填空,如图所示,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的度数过程填写完整:解:∵EF∥AD()∴∠2=__________()又∵∠1=∠2( )∴∠1=∠3( )∴AB∥__________( )∴∠BAC+__________=180°( )又∵∠BAC=70°( )∴∠AGD=__________7.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC.能力提升8.若α和β是同位角,且a=30°,则β的度数是( )A.30°B.150°C.30°或150°D.不能确定9.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A.30°和150°B.42°和138°C.都等于10°D.42°和138°或都等于10°10.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④11.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有( )个数A.1 B.2 C.3 D.412.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=__________.13.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.14.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.15.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.16.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF17.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.18.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.19.阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b),已知△ABC,过点A作AD∥BC则∠DAC=∠C.又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b 反射出的光线n平行于m,且∠1=50°,则∠2=_________,∠3=__________;(2)在(1)中,若∠1=40°,则∠3=__________,若∠1=55°,则∠3=__________;(3)由(1)(2)请你猜想:当∠3=__________时,任何射到平面镜a上的光线m经过平面镜a和b 的两次反射后,入射光线m与反射光线n总是平行,请说明理由.20.已知直线MN∥BC,点A在直线MN上,点D在线段BC上,AB平分∠MAD,AC平分∠NAD(1)如图(a)所示,若DE⊥AC于E,求证:∠1=∠2.(2)若点F为线段AB上不与点A、B重合的一动点,点H在线段AC上,FQ平分∠AFD交AC于点Q,设∠HFQ=x,∠MAB=α,∠BDF=β,∠AFD=∠FBD+∠FDB,点D在线段BC上(不与B、C两点重合),问当α、β、x之间满足怎样的等量关系时,FH∥MN(如图(b)所示)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH∥MN.21.如图所示,已知射线CB∥OA,AB∥OC,∠C=∠OAB=100°,点E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.中考连接22.如图所示,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( ) A.17°B.34°C.56°D.68°23.如图所示,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°巅峰突破24.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.③④D.①②④25.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.平行线及其性质和判定26.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11 / 11。
2023-2024年小学数学四年级上册知识梳理真题讲练 专题五(人教版含解析)

专题05 平行四边形和梯形知识点一:平行与垂直(一)、认识平行与垂直1、同一平面内的两条直线的位置关系,不是平行就是相交。
2、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
图一:“直线A和直线B是平行线;直线A 和直线B互相平行。
”3、平行可以用符号“//”表示。
a与b互相平行,记作a//b,读作:a平行于b。
4、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
图二:“直线A和直线B相互垂直;直线A是直线B的垂线;点C是垂足。
”5、垂直可以用符号“⊥”表示。
a与b互相垂直,记作a⊥b,读作:a垂直于b。
6、两条直线互相垂直,可以组成4个直角。
有1个垂足。
7、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
垂直的线段最短。
9、两条平行线之间可以画无数条垂直线段,这些垂直线段不仅互相平行而且长度相等。
平行线间的垂直线段都相等。
10、过直线上一点和直线外一点画已知直线的垂线,只可以画1条。
过直线外一点画已知直线的平行线只可以画1条。
(二)垂线的画法用三角尺画已知直线的垂线,移动三角尺时,必须保证与直线重合的直角边要始终与直线重合,不能错位。
画好后别忘了标出直角符号。
(三)画长方形的方法:1、画一条长度等于长方形的长的线段;2、从画出的线段两端开始,向同一方向画两条与这条线段垂直且长度等于长方形的宽的线段;3、把新画的两条线段另外的端点联结起来,画出长方形的另外一条长。
真题讲练:一、选择题1.(2021·广东广州·四年级期末)观察下图,已知AB CD =,以下表达正确的是( )。
A .a b ⊥B .AB CD ⊥C .//a b 【答案】C【分析】同一平面内,垂直于同一条直线的两条直线互相平行。
两直线互相平行时,从一条直线上任意一点向另一条直线作垂线,所得的平行线间的垂直线段的长度,叫做平行线间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
b
a
⑴
b a
⑵
b
⑶
a
巩固:
2. 两条异面直线指: (
)
A. 空间中不相交的两条直线; B. 不在同一平面内的两条直线; C. 不同在任一平面内的两条直线; D. 分别在两个不同平面内的两条直线; E. 空间没有公共点的两条直线; F. 既不相交,又不平行的两条直线.
BACK
2.1.2 空间中直线与直线之间的位置关系
按是否共面分
相交直线 同在一个平面内
平行直线
不同在任何一个平面内: 异面直线
按公共点个数分
有一个公共点: 相交直线
平行直线 无 公 共 点 异面直线
2.异面直线的画法
b
说明: 画异面直线时 , 为了体现 它们不共面的特点。常借
助一个或两个平面来衬托. 如图:
平行,那么这两个角相等或互补 ”.那么空间中这一结论是
否仍然成立呢?
观察 :如图所示,长方体ABCD-A1B1C1D1中, ∠ADC与∠A1D1C1 ,
∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小
关系如何?
D1
C1
答:从图中可看出, ∠ADC=∠A1D1C1, ∠ADC +∠A1B1C1=180 O
的锐角θ(或直角), 称为异面直线a,b所成的角。
b a′ ? OP a
b′
平
a′ θ O
移
若两条异面直线所成角为90°,则称它们互相垂直。
异面直线a与b垂直也记作a⊥b
异面直线所成角θ的取值范围:(0,90]
在求作异面直线所成的角时,O点 常选在其中的一条直线上
H
E
思想方法:空间问 题转化为平面问题 D
A
G F
C B
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所 成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
D
C
2)A1 B1与AC所成的角 = 4 5°
A
B
3)A1B与D1B1所成的角 = 6 0°
练习:1、求直线AD1与B1C所成的夹角; 2、与直线BB1垂直的棱有多少条?
D1
1)直线AD1与B1C所成的夹角 9 0°A1
C1 B1
D
2)与棱BB1垂直的棱有:
相交:A1B1、 AB、 B1C1、 BC、 A 异面: A1D1、AD、D1C1、 DC、 D1
A1
相交垂直
垂直
异面垂直
D
A
C B
A
·F
D
B
E·
·G
C
填空: 1、空间两条不重合的直线的位置关系有__平__行____、 _相__交_____、 ____异__面__三种。
C1 B1
C B
练习:
判断对错: 1、分别在两个平面内的两条直线一定是异面直线。( )
2、空间两条不相交的直线一定是异面直线。
( )
3、垂直于同一条直线的两条直线必平行。
( )
4、过一点能引且只能引一条直线和已知直线垂直。( )
5、若一条直线垂直于两条平行直线中的一条,则它一定
与另一条直线垂直。
∵ EH是△ABD的中位线 ∴EH ∥BD且EH = BD 同理,FG ∥BD且FG = BD
∴EH ∥FG且EH =FG
∴EFGH是一个平行四边形
A
H
E
D G
B
F
C
解题思想: 把所要解的立体几何问题转化为平面几何的问题 ——解立体几何时最主要、最常用的一种方法。
三、两条异面直线所成的角
如图所示,a,b是两条异面直线,在空间中任选一点O, 过O点分别作 a,b的平行线 a′和 b′, 则这两条线所成
A1 D
B1 C
A
B
定理(等角定理):空间中,如果两个角的两边分别对应平行,
那么这两个角相等或互补.
NEXT
1、平行关系的传递性
例2 已知ABCD是四个顶点不在同一个平面内的空间四边
形,E,F,G,H分别是AB,BC,CD,DA的中点,连
结EF,FG,GH,HE,求证EFGH是一个平行四边形。
证明: 连结BD
相交直线
空间两直线的位置关系
平行直线
异面直线
异面直线的画法 用平面来衬托
异面直线所成的角 平移,转化为相交直线所成的角
公理4: 在空间平行于同一条直线的两条直线互相平行.
空间中,如果两个角的两边分别对应平行, 等角定理:
那么这两个角相等或互补.
作业:
❖ 练习:空间四边形ABCD中,E、F分别是BC、AD 的中点,若BD=AC=2,EF=1,求直线EF与直 线AC所成的角。
a
a
(1)
A
a
b
(2)
b
(3)
探究: 如图是一个正方体的展开图,如果将它还原为正方体, 那么 AF, BM , ED , DN这四条线段所在直线是异面直线的有 对?
答:共有三对
E
D A
N(M) F
C B
D EA
N CM
D
B F
练习 如图所示:正方体的棱所在的直线 中,与直线A1B异面的有哪些?
同一平面内的两条直线有几种位置关系?
a
o
b
相交直线 平行直线
a b
相交直线 (有一个公共点)
平行直线 (无公共点)
问题2:没有公共点的直线一定平行吗?
问题3:没有公共点的两直线一定在同 一平面内吗?
1.异面直线的定义:
不同在 任何 一个平面内的两条直线叫做异面直线。
判断异面直线的方法: 1)定义 2)既不平行也不相交
D1 A1
C1 B1ຫໍສະໝຸດ D AC B练习 如图所示:正方体的棱所在的直线 中,与直线A1B异面的有哪些?
D1 A1
D A
C1 答案:
B1 C
D1C1、C1C、CD、 D1D、AD、B1C1
B
巩固:
1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
巩固:
( )
课堂练习
如图,已知长方体 ABCD A1B1 C1D1 中,AB = 2 3 ,
AD = 2 3 , AA1 2
(1)求BC 和 A1C1 所成的角是多少度?
(2)求AA1 和 BC1所成的角是多少度?
D1
C1
A1
2 2 3D
B1
C
A
23
B
BACK
NEXT
6.课堂小结
异面直线的定义: 不同在 任何 一个平面内的两条直线叫做异面直线。
公理4:在空间平行于同一条直线的两条直线互相平行.
符 号
设a,b,c为直线
语 言
a∥b
a∥c
c∥b
———平行线的a传递性
b c
a,b,c三条直线两两平行,可以记为a∥b∥c
这个公理表明:在空间平行于一条已知直线的所有直线都互 相平行.
作用:判断两条直线是否平行的依据
在平面内, “ 如果一个角的两边与另一个角的两边分别