第六章树和二叉树习题_数据结构

合集下载

中国农业大学_821数据结构_《数据结构》习题(6)

中国农业大学_821数据结构_《数据结构》习题(6)

第6章 二叉树与树一、回答题1. 图6-1所示的树的叶子结点、非中端结点、每个结点的度及树的深度各是多少?图6-1 树2. 已知一棵树边的集合表示为:{ ( L, N ), ( G, K ), ( G, L ), ( G, M ), ( B, E ), ( B, F ), ( D, G ), ( D, H ), ( D, I ), ( D, J ), ( A, B ), ( A, C ), ( A, D ) },画出这棵树,并回答以下问题:(1) 树的根结点是哪个?哪些是叶子结点?哪些是非终端结点? (2) 树的度是多少?各个结点的度是多少? (3) 树的深度是多少?各个结点的层数是多少?(4) 对于结点G ,它的双亲结点、祖先结点、孩子结点、子孙结点、兄弟和堂兄弟分别是哪些结点?3. 如果一棵度为m 的树中,度为1的结点数为n 1,度为2的结点数为n 2,……,度为m 的结点数为n m ,那么该树中含有多少个叶子结点?有多少个非终端结点?ABECDFGHJI4. 任意一棵有n 个结点的二叉树,已知有m 个叶子结点,能否证明度为2结点有m-1个?5. 已知在一棵含有n 个结点的树中,只有度为k 的分支结点和度为0的叶子结点,那么该树含有的叶子结点的数目是多少?6. 一棵含有n 个结点的k 叉树,可能达到的最大深度和最小深度各为多少?7. 对于3个结点A 、B 、C ,可以过程多少种不同形态的二叉树?8. 深度为5的二叉树至多有多少个结点?9. 任何一棵二叉树的叶子结点在先序、中序和后序遍历中的相对次序是发生改变?不发生改变?不能确定?10. 设n 、m 为一棵二叉树上的两个结点,在中序遍历时,n 在m 前的条件是什么? 11. 已知某二叉树的后续遍历序列是dabec ,中序遍历序列是debac ,那么它的前序遍历序列是什么?12. 对一棵满二叉树,m 个树叶,n 个结点,深度为h ,则n 、m 和h 之间的关系是什么? 13. 对图6-2(a)和(b)所示的二叉树,它们的经过先序、中序和后序遍历后得到的结点序列分别是什么?画出它们的先序线索二叉树和后序线索二叉树。

数据结构-6 树和二叉树

数据结构-6 树和二叉树

第六章树和二叉树一.选择题1. 以下说法错误的是。

A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2. 如图6-2所示的4 棵二叉树中,不是完全二叉树。

图6-2 4 棵二叉树3. 在线索化二叉树中,t 所指结点没有左子树的充要条件是。

A. t->left == NULLB. t->ltag==1C. t->ltag==1 且t->left==NULL D .以上都不对4. 以下说法错误的是。

A.二叉树可以是空集B.二叉树的任一结点最多有两棵子树C.二叉树不是一种树D.二叉树中任一结点的两棵子树有次序之分5. 以下说法错误的是。

A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好6. 如图6-3所示的4 棵二叉树,是平衡二叉树。

图6-3 4 棵二叉树7. 如图6-4所示二叉树的中序遍历序列是。

A. abcdgefB. dfebagcC. dbaefcgD. defbagc图6-4 1 棵二叉树8. 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是。

A. acbedB. decabC. deabcD. cedba9. 如果T2 是由有序树T 转换而来的二叉树,那么T 中结点的前序就是T2 中结点的。

A. 前序B.中序C. 后序D. 层次序10. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是。

A. bdgcefhaB. gdbecfhaC. bdgaechfD. gdbehfca11. 将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双亲结点编号为。

数据结构-习题-第六章-树

数据结构-习题-第六章-树

数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。

其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。

第6章_数据结构习题题目及答案_树和二叉树_参考答案

第6章_数据结构习题题目及答案_树和二叉树_参考答案

一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。

【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。

【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。

本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。

虽然解法也对,但步骤多且复杂,极易出错。

6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。

【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。

6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。

【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。

若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。

6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。

数据结构课后习题答案及解析第六章

数据结构课后习题答案及解析第六章

第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。

表示该遗传关系最适合的数据结构为( )。

A.向量B.树 C图 D.二叉树2.树最合适用来表示( )。

A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。

A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。

A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。

A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为 ( )。

A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。

A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。

A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。

..专业知识编辑整理..10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.4..专业知识编辑整理..11.在一棵具有35个结点的完全二叉树中,该树的深度为( )。

数据结构习题第6章

数据结构习题第6章

第6章树和二叉树一、选择题1.不含任何结点的空树()。

A. 是一棵树B. 是一棵二叉树C. 是一棵树也是一棵二叉树;D. 既不是树也不是二叉树2. 一棵有n个结点的树的所有结点的度数之和为()。

A. n-1B. nC. n+1D. 2n3. 在二叉树中某一个结点的深度为3,高度为4,则该树的高度是()。

A. 5B. 6C. 7D. 84. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至多为()。

A. 2h-1B. 2h+1C. 2h-1D. 2h+15. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至少为()。

A. 2h-1B. 2h+1C. 2h-1D. 2h+16. 高度为h的满二叉树中有n个结点,其中有m个叶结点,则正确的等式是()。

A. h+m=nB. h+m=2nC. m=h-1D. n=2h-17.二叉树是非线性数据结构,所以()。

A. 它不能用顺序存储结构存储B. 它不能用链式存储结构存储C. 顺序存储结构和链式存储结构都能存储D. 顺序存储结构和链式存储结构都不能使用8. 一棵完全二叉树有25个叶结点,则该树最少有()个结点。

A. 48B. 49C. 50D. 519. 假设一个三叉树的结点数为36,则该树的最小高度为()。

A. 2B. 3C. 4D. 510. 设二叉树有n个结点,则二叉链表中非空指针数为()。

A. n-1B. nC. n+1D. 2n11. 先序序列和中序序列正好相反的二叉树是()。

A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树12. 后序序列和中序序列正好相反的二叉树是()。

A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树13.把一棵树转换为二叉树后,这棵二叉树的形态是()。

A. 唯一的B. 有多种C. 有多种,但根结点都没有左孩子D. 有多种,但根结点都没有右孩子14. 将一棵树T转换为孩子—兄弟链表表示的二叉树H,则T的后根序遍历是H 的()。

数据结构课后习题(第6章)

数据结构课后习题(第6章)

【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。

2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。

3.由n个权值构成的哈夫曼树共有个结点。

4.在线索化二叉树中,T所指结点没有左子树的充要条件是。

5.在非空树上,_____没有直接前趋。

6.深度为k的二叉树最多有结点,最少有个结点。

7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。

8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。

9.一棵深度为7的满二叉树有___ ___个非终端结点。

10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。

11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。

12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。

二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。

每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。

2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。

3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。

4.度≤2的树就是二叉树。

5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。

6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。

7.不存在有偶数个结点的满二叉树。

8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。

9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。

数据结构习题第六章树和二叉树

数据结构习题第六章树和二叉树

第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D.-+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。

其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A. 2n B . n- l C . n+ l D
.n
21.下面几个符号串编码集合中,不是前缀编码的是(
)。
A. {0,10,110,1111}
B
. {11,10,001,101,0001}
C. {00,010,0110,1000} D
. {b,c,aa,ac,aba,abb,abc}
22. 一棵有 n 个结点的二叉树,按层次从上到下,同一层从左到右顺序存储在一维数组
else { p=pop(s); printf( “%c”,p ->data);(2)__ __; }/*
栈顶元素出栈 */
}
14.二叉树存储结构同上题,以下程序为求二叉树深度的递归算法,请填空完善之。
int depth(bitree bt) /*bt
为根结点的指针 */
{int hl,hr;
if (bt==NULL) return((1)_
A.任何一棵二叉树中至少有一个结点的度为
2
B.任何一棵二叉树中每个结点的度都为 2
C.任何一棵二叉树中的度肯定等于 2
D.任何一棵二叉树中的度可以小于 2
3.讨论树、森林和二叉树的关系,目的是为了(

A.借助二叉树上的运算方法去实现对树的一些运算
B.将树、森林按二叉树的存储方式进行存储
C.将树、森林转换成二叉树
______。
12.以下程序段采用先根遍历方法求二叉树的叶子数,请在横线处填充适当的语句。
Void countleaf(bitreptr t,int *
count)/ * 根指针为 t ,假定叶子数 count 的初值为
0*/
{if(t!=NULL)
{if((t->lchild==NULL)&&(t->rchild==NULL))________;
E.以上答案都不对
17. 一棵左右子树均不空的二叉树在先序线索化后,其中空的链域的个数是:
() 。
A. 0
B. 1 C. 2
D.
不确定
18. 引入二叉线索树的目的是(

A.加快查找结点的前驱或后继的速度
B .为了能在二叉树中方便的进行插入与删除
C.为了能方便的找到双亲
D
.使二叉树的遍历结果唯一
19. n 个结点的线索二叉树上含有的线索数为(
8.二叉树的先序序列和中序序列相同的条件是
___
___

9.一个无序序列可以通过构造一棵 为对无序序列进行排序的过程。
___ ___
树而变成一个有序序列,构造树的过程即
10.若一个二叉树的叶子结点是某子树的中序遍历序列中的最后一个结点, 的____ __ 序列中的最后一个结点。
则它必是该子树
11.若以 {4 ,5,6,7,8} 作为叶子结点的权值构造哈夫曼树,则其带权路径长度是
K 的满二
2.设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT 为指向该二叉树根结点的指针, p 和 q 分别为指向该二叉树中任意两个结点的指针, 试编写一算法 ANCESTO(RROO,T p,q,r ),
该算法找到 p 和 q 的最近共同祖先结点 r 。
3.有一二叉链表,试编写按层次顺序遍历二叉树的算法。
()
三、填空题
1.在二叉树中,指针 p 所指结点为叶子结点的条件是 ___
___

2.深度为 k 的完全二叉树至少有 ___ ____ 个结点,至多有 ___ ____ 个结点。
3.高度为 8 的完全二叉树至少有 ______个叶子结点。
4. 具有 n 个结点的二叉树中 , 一共有 ________个指针域 , 其中只有 ________个用来指向结点 的左右孩子,其余的 ________个指针域为 NULL。
D A
E BC
F
6.设二叉树 BT 的存储结构如下 : 1 2 3 4 5 6 7 8 9 10
Lchild
00
2
3
7
Data
JH
F
D
B
Rchild
00
0
9
4
其中 BT 为树根结点的指针, 其值为 6,Lchild,Rchild
为结点的数据域。试完成下列各题 : (l )画出二叉树 BT 的逻辑结构 ; (3)画出二叉树的后序线索树。
指针。 ( )
11.树形结构中元素之间存在一个对多个的关系。
()
12.将一棵树转成二叉树,根结点没有左子树。
()
13.度为二的树就是二叉树。 ( )
14. 二叉树中序线索化后,不存在空指针域。 ( )
15.霍夫曼树的结点个数不能是偶数。 ( )
16.哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。
4.已知二叉树按照二叉链表方式存储, 利用栈的基本操作写出先序遍历非递归形式的算法。
5.对于二叉树的链接实现 , 完成非递归的中序遍历过程。
6.试写出复制一棵二叉树的算法。二叉树采用标准链接结构。

7.请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表, 表头指针为 head 。 二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链 表指针。分析你的算法的时、空复杂度。
__);
hl=depth(bt->lchild); hr=depth(bt->rchild);
if((2)_
__) (3)_
____

return(hr+1);
}
15 . 将 二 叉 树 bt 中 每 一 个 结 点 的 左 右 子 树 互 换 的 C 语 言 算 法 如 下 , 其 中 ADDQ(Q,bt),DELQ(Q),EMPTY(Q) 分别为进队,出队和判别队列是否为空的函数,请填写算法 中得空白处,完成其功能。
A. 2h B . 2h-1 C . 2h+1 D . h+1
11. 利用二叉链表存储树,则根结点的右指针是(
)。
A.指向最左孩子
B .指向最右孩子
C .空 D .非空
14.在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序(

A.都不相同
B
.完全相同
C.先序和中序相同,而与后序不同
B.若一个二叉树的树叶是某子树的中序遍历序列中的第一个结点,则它必是该子树的 后序遍历序列中的第一个结点。
C.已知二叉树的前序遍历和后序遍历序列并不能惟一地确定这棵树,因为不知道树的
根结点是哪一个。
D.在前序遍历二叉树的序列中,任何结点的子树的所有结点都是直接跟在该结点的之
后。
二、判断题(在各题后填写“√”或“×” )
1. 完全二叉树一定存在度为 1 的结点。 ( )
2.对于有 N 个结点的二叉树,其高度为 log 2n。 ( )
3. 二叉树的遍历只是为了在应用中找到一种线性次序。
()
4. 一棵一般树的结点的前序遍历和后序遍历分别与它相应二叉树的结点前序遍历和后序遍
历是一致的。 ( )
5. 用一维数组存储二叉树时,总是以前序遍历顺序存储结点。
D .中序和后序相同,而与先序不同
15.在完全二叉树中,若一个结点是叶结点,则它没(
)。
A.左子结点
B
.右子结点
C.左子结点和右子结点
D .左子结点,右子结点和兄弟结点
16.在下列情况中,可称为二叉树的是(

A.每个结点至多有两棵子树的树
B. 哈夫曼树
C.每个结点至多有两棵子树的有序树
D. 每个结点只有一棵右子树
习题六 树和二叉树
一、单项选择题
1. 以下说法错误的是 ( )
A.树形结构的特点是一个结点可以有多个直接前趋
B.线性结构中的一个结点至多只有一个直接后继
C.树形结构可以表达 ( 组织 ) 更复杂的数据
D.树 ( 及一切树形结构 ) 是一种 " 分支层次 " 结构
E.任何只含一个结点的集合是一棵树
2.下列说法中正确的是 ( )
1)各层的结点的数目是多少? 2)编号为 n 的结点的双亲结点(若存在)的编号是多少? 3)编号为 n 的结点的第 i 个孩子结点(若存在)的编号是多少? 4)编号为 n 的结点有右兄弟的条件是什么?如果有,其右兄弟的编号是多少? 请给出计算和推导过程。
5.将下列由三棵树组成的森林转换为二叉树。 (只要求给出转换结果)
typedef struct node {int data ; struct node *lchild, *rchild; }btnode;
void EXCHANGE(btnode *bt) {btnode *p, *q; if (bt){ADDQ(Q,bt);
while(!EMPTY(Q)) {p=DELQ(Q); q=(1)_ __; p->rchild=(2)_ __; (3)__ _=q;
G
HI
J
KL
MN O
P
5
8
0
10 1
A
C
E
G
I
0
0
0
0
0
分别为结点的左、 右孩子指针域 ,data
五、算法设计题 1.要求二叉树按二叉链表形式存储,
(1)写一个建立二叉树的算法。 (2)写一个判别给定的二叉树是否是完全二叉树的算法。 完全二叉树定义为:深度为 K,具有 N 个结点的二叉树的每个结点都与深度为 叉树中编号从 1 至 N的结点一一对应。此题以此定义为准。
6.设森林 F 中有三棵树,第一,第二,第三棵树的结点个数分别为
M1,M2和 M3。与森林 F
相关文档
最新文档