板式换热器设计计算与校核计算

板式换热器设计计算与校核计算
板式换热器设计计算与校核计算

题目:板式换热器设计及其选用

目录

一、说明书 (2)

二、设计方案 (3)

三、初步选定 (4)

(1)已知两流体的工艺参数

(2)确定两流体的物性数据

(3)计算热负荷和两流体的质量流速

(4)计算两流体的平均传热温差

(5)初选换热器型号

四、验证 (6)

(1)算两流体的流速u

(2)算雷诺数Re

(3)计算努塞尔特数Nu

(4)求两流体的传热系数α

(5)求污垢热阻R

(6)求总传热系数K,并核算

五、核算 (7)

(1)压强降△P核算

(2)换热器的换热量核算

六、结论 (7)

七、设计结果 (8)

八、附录 (9)

表1:板式换热器的污垢热阻

图1:多程流程组合的对数平均温差修正系数

九、参考文献 (9)

一、说明书

现有一块建筑用地,建筑面积为12500 m2,采用高温水在板式换热器中加热暖气循环水。高温水进入板式换热器的温度为100℃,出口的温度为75℃;循环水进入板式换热器的温度为65℃,出口的温度为90℃。供暖面积热强度为293 kJ/(m2·h)。要求高温水和循环水经过板式换热器的压强降均不大于100 kPa。请选择一台型号合适的板式换热器。(假设板壁热阻和热损失可以忽略)

已知的工艺参数:

二、设计方案

(1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差;

(2) 参考有关资料、数据,设定总传热系数K,求出换热面积S,根据已知数据初选换热器的型号;

(3) 运用有关关联式验证所选换热器是否符合设计要求; (4) 参考有关资料、数据,查出流体的污垢热阻; (5) 根据式???

? ??++++=

2211111

αλδαR R K O O 求得流体的总传热系数,该值应不

小于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算;

(6) 如果大于初设值,则再进一步核算两流体的压强降和换热量,是否满足设计要求,否则改换其他型号的换热器,由(3)开始重新计算; (7) 当所选换热器均满足设计要求时,该换热器才是合适的。

三 、初步选定

(1) 已知两流体的工艺参数

高温水

t 1′= 100℃

t 1〞= 75℃ △P 1≤100 kPa

循环水 t 2′= 65℃

t 2〞= 90℃ △P 2≤100 kPa

(2) 确定两流体的物性数据

高温水的定性温度为:C t ?=+=

5.87275

1001

循环水的定性温度为:C t ?=+=

5.772

90

652

根据定性温度,分别查取两流体的有关物性数据:

① 热的一侧(高温水)在87.5℃下的有关数据如下:

密度 ρ 1 = 970.17 kg /m 3

定压比热容 c p 1 = 4.196 kJ /(kg ·℃)

导热系数 λ1 = 0.67425 W /(m ·℃) 流体运动黏度 ν1 = 0.355×10-6 m 2

/s

普兰特数 Pr 1 = 2.145

② 冷的一侧(循环水)在77.5℃下的有关数据如下:

密度 ρ 2 = 976.3 kg /m 3

定压比热容 c p 2 = 4.18 kJ /(kg ·℃)

导热系数 λ2 = 0.669 W /(m ·℃) 流体运动黏度 ν2 = 0.4205×10-6 m 2

/s

普兰特数 Pr 2 = 2.465

(3)计算热负荷和两流体的质量流速

热负荷: )(1.1017361366250012500293W h kJ qA Q ==?== 高温水质量流速: ()())(34914196

.4751003662500

1111

h k g c t t Q w p =?-=''-'=

循环水质量流速: ()())(34972189

.465903662500

22

2

2

h k g c t t Q w p =?-='-''=

(4)计算两流体的平均传热温差

对数平均温度差: ()()C t t

t m

?=-+-=

?+?='?102

6575901002min max

循环水的传热单元数:110

65

75mi n mi n

=-='??=

m t t NTU

由<图1>查得,取:Ф = 0.942,

则平均传热温差: C t t m

m ?=?='?=?42.910942.0φ (5)初选换热器型号

根据两流体情况,假设K ′=3100 W /(m 2

·℃),故: 传热面积:28.3442

.931001

.1017361m t K Q S m =?=?'=

'

由换热器系列标准中初选BR0.3型板式换热器,有关工艺参数如下:

换热面积 S o = 35 m 2

流程组合 ()逆流24

2242??

单板换热面积 A o = 0.368 m 2

单流道截面积 A ε = 0.0013392 m

2

当量直径 d e = 0.0072 m

板片厚度 δo = 0.0008 ( 材料为18.8不锈钢 )

传热和压降计算关联式如下:)4.03.0(64.0Pr Re 349.0或=Nu

886

.0695.0Re

44329Re 107744::--==Eu Eu 扩张流道压缩流道

若采用此换热器,则要求过程的总传热系数K ≥3100 W /(m 2·℃)。

四、验 证

(1)算两流体的流速u :

高温水流速:s m A n w u 311.00013392.024360017

.9703491436002111

=??==

ερ

循环水流速:s m A n w u 31.00013392

.02436003

.9763497236002222

=??==

ερ

(2)算雷诺数Re :

5545

104025.031

.00072.0Re 630710

355.0311

.00072.0Re 6

2

26

1

1

12

=??=

=

=??==--ν

ν

u d u d e e

(3)计算努塞尔特数Nu :

7

.125465

.25545

349.0Pr Re 349.06.119145.26307349.0Pr Re 349.04

.0641

.04

.02641

.02

23.0641.03.01641.011=??===??==Nu Nu

(4)求两流体的传热系数α

高温水传热系数:()C m W d Nu

e

??=?

==211

1

112000072

.067425

.06.119λ

α

循环水传热系数:()C m W d Nu

e

??=?

==22

2

2

116790072

.0669

.07.125λ

α

(5)求污垢热阻R :

参考<表二>选取两流体的污垢热阻为:

()W C m R R ???==-24211045.0

(6)求总传热系数K ,并核算:

在板壁热阻和热损失可以忽略时,总传热系数为:

()

C m W R R K O O ??=??

?

??+?++?+=

???? ??++++=

--2442211

7.31841167911045.03.160008.01045.011200

1

1111

αλδα

计算表明,K 大于选择该型号换热器的初设值K ′= 3100 W /(m 2

·℃),故初

选的BR0.3型板式换热器是合适的,满足设计要求。

五、核 算

(1)压强降△P 核算:

热侧流道为流体压缩流道,冷侧流道为流体扩张流道

5.2165545449329Re 4493293.2466307107744Re 10774488

6.0886.02

2695.0695

.011=?===?==----Eu Eu

高温水压强降:

1

2

21

11116.46223311.017.9703.2462P Pa u Eu m P ?<=???=='?ρ

循环水压强降:

2

2

2222221.4062531.03.9765.2162P Pa u Eu m P ?<=???=='?ρ

计算表明,高温水和冷却水的压强降均满足设计要求。

(2)换热器的换热量核算:

W

t KS Q m 6.104999542.9357.3184=??=?='

而实际设计要求的热负荷量为:Q = 1017361.1 W

即: Q′ > Q

故,换热器的换热量满足设计要求。

六、结 论

通过计算表明,所选的BRO.3型换热器满足该住宅地用于高温水加热暖气循环水的设计要求。(板壁热阻和热损失可以忽略的情况下)。

七、设计结果

八、附录

<表1>板式换热器的污垢热阻(m2·℃)/ W

<图1>多程流程组合的对数平均温差修正系数

九、参考文献

(1) 《板式换热器工程设计手册》(重排本)杨崇麟主编.北京:机械工业出版社,1998;

(2) 《板式换热器的设计与应用》[J] 刘相宜.山东能源,1989年(4):1—5。

(3) 《换热器设计手册》(第三卷)[M]E.U.施林德尔 . 马庆芳等译 . 北京:机械工业出版

社,1988;

(4) 《换热器设计手册》钱颂文等译.北京:化学工业出版社,2002;

(5) 《热交换器设计手册》(下册)[M]尾花英朗[日].北京:石油工业出版社,1981;

(6) 《热交换器原理与设计》史美中、王中铮.东南大学出版社,1996.11;

(7) 《换热器原理及计算》[M]朱聘冠.北京:清华大学出版社,1989;

(8) 《机械设计课程设计》巩云鹏.东北大学出版社,2000.12.

(9) 《传热学》[M]杨世铭.北京:人民出版社,1981;

(10)《换热器》(中册)[M]兰州石油机械研究所主编.北京:烃加工出版社,1988;

换热器

中文名称:

换热器

英文名称:

heat exchanger

其他名称:

热交换器

定义:

将热量从一种载热介质传递给另一种载热介质的装置。

应用学科:

航空科技(一级学科);航空安全、生命保障系统与航空医学(二级学科)

以上内容由全国科学技术名词审定委员会审定公布

求助编辑百科名片

换热器

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。

换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。换热器作为传热设备被广泛用于锅炉暖通领域,随着节能技术的飞速发展,换热器的种类越来越多。

分类

适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:

一、换热器按传热原理分类

1、表面式换热器

表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。

2、蓄热式换热器

蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。

3、流体连接间接式换热器

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

机械课程设计轴的计算

五 轴的设计计算 一、高速轴的设计 1、求作用在齿轮上的力 高速级齿轮的分度圆直径为d 151.761d mm = 112287542 339851.761 te T F N d ?= == tan tan 2033981275cos cos1421'41"n re te F F N αβ=?=?=o o tan 3398tan13.7846ae te F F N β==?=。 2、选取材料 可选轴的材料为45钢,调质处理。 3、计算轴的最小直径,查表可取0112A = min 0 11223.44d A mm ==?= 应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带 轮相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后 将轴径圆整。故取25d mm =Ⅰ-Ⅱ 。 4、拟定轴上零件的装配草图方案(见下图) 5、根据轴向定位的要求,确定轴的各段直径和长度 (1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定 35L mm II-III = (2)初选流动轴承7307AC ,则其尺寸为358021d D B mm mm mm ??=??,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则

40.5L mm III-I∨=。 (3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定 100L mm III-II =,为了使齿轮轴上的齿面便于加工,取 5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。 (4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX = (5)计算可得123104.5,151,50.5L mm L mm L mm ===、 (6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为 10880b h L mm mm mm ??=??,大带轮与轴的配合为 7 6 H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F 带传动有压轴力P F (过轴线,水平方向),1614P F N =。 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系 图一 图二

板式换热器的结构设计与计算

摘要 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效紧凑换热器。各相邻板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器的传热性能与板面的波纹形状、尺寸及流程组合方式都有密切关系。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数高,结构紧凑,占地面积小,价格低,安装方便,易清洗,在适用的范围内有取代管壳式换热器的趋势。板式换热器应用很广,尤其是更适宜用于医药、食品、制酒、化工等工业,并且随着板型、结构上改进,正在进一步扩大它的应用领域。 本文对板式换热器的发展及应用领域作了简要的介绍,通过板式换热器的传热原理,进行板式换热器热力计算和阻力计算,在满足了校核条件下,设计出板片波纹形式为双人字形、板片数为149片的并联流程组合的可拆卸式板式换热器。在此基础上,用AutoCAD绘制板式换热器零件图及装配图。设计的换热器工艺性好,安全可靠,便于操作、安装,成本低。 关键词:板式换热器;结构设计;传热计算;阻力计算

Abstract Plate heat exchanger is a new compact and efficient heat exchanger, consists of a series of corrugated sheet metal with a certain shape made of stacked. Formed thin rectangular channels between adjacent plates, through plates exchange heat. Plate heat exchanger heat transfer performance are closely related with plate’s corrugated shape, size and process combinations. Compared with the conventional shell and tube heat exchanger, at the same flow resistance and pump power consumption, it has the advantages of high heat transfer coefficient, compact, small footprint, low price, easy to install and clean. It has the trends replace shell and tube heat exchanger within applicable range. Plate heat exchanger applications is very broad, especially more suitable for medicine, food, wine, chemical and other industries. With the improvement of plate’s shape and structural, its field of application is further expanding. In this paper, the development and applications of plate heat exchanger was made a brief introduction.Through the principles of heat transfer of the plate heat exchanger, performed thermal and resistance calculations, under meeting the checking conditions, designs detachable plate heat exchanger, that plate’s corrugated shape is double herringbone, plate number is 149, process composition is parallel. On this basis, using AutoCAD to draw plate heat exchanger parts and assembly drawings. Designed heat exchanger technology is good, safe, reliable, easy to operate, install, and low cost. Keywords:plate heat exchanger; structural design; heat transfer calculation; resistance calculation

机械专业 毕业设计说明书(轴校核部分).

Graduation Project (Thesis) Harbin University of Commerce X6132milling machine feed system, lifting platform and platform design Student SunMingxing Supervisor Yan Zugen Specialty X6132 milling machine feed system, lifting platform and platform design School Harbin University of Commerce 2012年6月9日

1 绪论 1.1机床的用途及性能 X6132、X6132A型万能升降台铣床属于通用机床。主要适用于机械工厂中加工车间、工具车间和维修车间的成批生产、单件、小批生产。 这种铣床可用圆柱铣刀、圆盘铣刀、角度铣刀、成型铣刀和端面铣刀加工各种平面、斜面、沟槽等。如果配以万能铣头、圆工作台、分度头等铣床附件,还可以扩大机床的加工范围。 X6132、X6132A型铣床的工作台可向左、右各回转45 o当工作台转动一定角度,采用分度头时,可以加工各种螺旋面。 X6132型机床三向进给丝杠为梯形丝杠,X6132A型机床三向进给丝杠为滚珠丝杠。 X6132/1、X6132A/1型数显万能升降台铣床是在X6132、X6132A型万能升降台铣床的基础上,在纵向、横向增加两个坐标的数字显示装置的一种变型铣床,该铣床具有普通万能升降台铣床的全部性能外,借助于数字显示装置还能作到加工和测量同时进行,实现动态位移数字显示,既保证了工件加工质量,又减轻了工人劳动强度和提高劳动生产率,配上万能铣头还可以进行镗孔加工。 图1-1 X6132卧式铣床整机外形图

轴的设计、计算、校核

轴得设计、计算、校核 以转轴为例,轴得强度计算得步骤为: 一、轴得强度计算 1、按扭转强度条件初步估算轴得直径 机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。 根据扭转强度条件确定得最小直径为: (mm) 式中:P为轴所传递得功率(KW) n为轴得转速(r/min) Ao为计算系数,查表3 若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。在轴得结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴得直径 l)绘出轴得结构图 2)绘出轴得空间受力图 3)绘出轴得水平面得弯矩图 4)绘出轴得垂直面得弯矩图 5)绘出轴得合成弯矩图 6)绘出轴得扭矩图 7)绘出轴得计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值: a)扭切应力理论上为静应力时,取α=0、3。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。 c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。 9)校核危险断面得当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。 如计算应力超出许用值,应增大轴危险断面得直径。如计算应力比许用值小很多,一般不改小轴得直径。因为轴得直径还受结构因素得影响。 一般得转轴,强度计算到此为止。对于重要得转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴得强度中没有考虑轴得应力集中、轴径尺寸与表面品质等因素对轴得疲劳强度得影响,因此,对于重要得轴,还需要进行轴危险截面处得疲劳安全系数得精确计算,评定轴得安全裕度。即建立轴在危险截面得安全系数得校核条件。 安全系数条件为: 式中:为计算安全系数; 、分别为受弯矩与扭矩作用时得安全系数; 、为对称循环应力时材料试件得弯曲与扭转疲劳极限; 、为弯曲与扭转时得有效应力集中系数, 为弯曲与扭转时得表面质量系数; 、为弯曲与扭转时得绝对尺寸系数; 、为弯曲与扭转时平均应力折合应力幅得等效系数; 、为弯曲与扭转得应力幅; 、为弯曲与扭转平均应力。 S为最小许用安全系数: 1、3~1、5用于材料均匀,载荷与应力计算精确时; 1、5~1、8用于材料不够均匀,载荷与应力计算精确度较低时; 1、8~ 2、5用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时。 三、按静强度条件进行校核

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴强度校核例题与方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较

敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤

轴的设计、计算、校核

轴的设计、计算、校核 以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm)式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数,查表3 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图

8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。 c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。 9)校核危险断面的当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),查表4。 为对称循环变应力时轴的许用弯曲应力,查表1。 如计算应力超出许用值,应增大轴危险断面的直径。如计算应力比许用值小很多,一般不改小轴的直径。因为轴的直径还受结构因素的影响。 一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。即建立轴在危险截面的安全系数的校核条件。 安全系数条件为:

板式换热器设计

南京工业大学 《材料工程原理B》课程设计 设计题目:板式换热器1-油处理能力17000公斤 /小时 专业:高分子材料与工程 班级:高材1001班 学号: 1102100124 姓名: 联系方式: 日期: 2013-1-5---2013-1-14 指导教师:张振忠 设计成绩:日期: 2013-1-14

目录 设计任务书 (3) (一)设计题目 (3) (二)设计任务及操作条件 (3) 第一章设计方案简介 (4) 1.1 板式换热器概述 (4) 1.2 确定设计原则 (7) 第二章板式换热器的工艺设计计算 (10) 2.1 设计计算步骤 (10) 2.2 工艺设计数据一览表 (11) 2.3 板式换热器设计计算 (12) 2.4 压降核算 (16) 2.5 换热器主要结构尺寸及计算结果一览表 (17) 第三章辅助设备的计算与选择 (19) 3.1 水泵的选择 (19) 3.2 油泵的选择 (19) 第四章附图 (21) 4.1 工艺流程图 (21) 4.2 主体设备工艺图 (22) 第五章设计小结 (24) 5.1 设计小结 (24) 5.2 参考文献 (25) 5.3 答辩及评语 (26)

设计任务书 (一)设计题目 板式换热器-油处理能力17000公斤/小时 (二)设计任务及操作条件 1、处理能力见下表 2、设备型式板式换热器 3、操作条件 (1)油:入口温度100℃,出口温度40℃ (2)冷却介质:冷却塔循环水,入口温度30℃,出口温度50℃。(3)油侧与水侧允许压强降:不大于5×105 Pa (4)油定性温度下的物性参数: 名称 ρ(kg/m3)Cp (KJ/ ㎏·℃) μ(Pa.s)λ(W/m·℃)油825 2.22 8.66×10-40.14 油的中性温度= 240 100+=70℃

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

传动轴的设计及校核

第一章轻型货车原始数据及设计要求 发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: ?五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克 设计要求: 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出厂的,在使用中就应特别注意。 图 2-1 万向传动装置的工作原理及功用 图 2-2 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章轻型货车万向传动轴结构分析及选型 由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的设计计算

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。【五】教学任务及内容 任务知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 (一)根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。 2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

轴设计校核

4.3 升降轴的设计 升降轴是升降电机动力通过链轮输入的一段,它的结构如下图: 图4-2 轴的结构图 1. 估算轴的基本直径 选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得 取0A =120,得 mm 515 .272.2120n d 330=?=≥P A 所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即mm 5.5305.151d min =?=。 为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm ,故轴颈mm 55d 12=,与轴配合长度84mm 。 2. 轴的结构设计 (1)初定各段直径,见表4-1

(2)确定各段长度,见表4-2 3. 轴上零件的周向固定 半联轴器的周向定位均采用平键连接,按12d 由《机械设计》查得平键尺寸801016l h b ??=??,长为80mm ,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为251422l h b ??=??,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。 4. 考虑轴的结构工艺性 考虑轴的结构工艺性,轴肩处的圆角半径R 值为2.5,轴端倒角c=2mm ;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。 4.4 升降轴的强度校核 1. 轴的受力分析 轴的力学模型如下图: 根据升降传动轴的受力情况,此轴主要受扭矩作用。 (1)求出轴传递的扭矩: m N 7645.272.295509550?=?==n P T

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

心轴的设计与校核

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力 t F和上抬力 r F如图4-24 图4-24 轮齿受力图 2 cos t r t t n T F d F Ftg F F α α ? =? ? =? ? =?? 式中:T——行走电机最终传到行走轮上的转矩,N·m; d——摆线行走轮的节圆直径,m; α——啮合角(压力角)。 () 111 9550/955036.15/1034523.25N m T P n ==?=? 1 1 1 234523.251000 2230155N 300 t T F d ?? === 11 83769.57N r t F F tgα == () 222 9550/955034/840587.5N m T P n ==?=? 2 2 2 240587.51000 2226676.16N 358.11 t T F d ?? === 22 83503.38N r t F F tgα == 2241223.73N cos t n F Fα ==

(2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。 图 4-25 弯矩图 由计算得 1153036.4N R = 279557.94N R = (3)按弯扭合成强度校核轴的强度 空心轴[] 3 4 3 21.681M d σα =- 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1 d d α = []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ, 转动心轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

相关文档
最新文档