无功补偿装置技术及原理

合集下载

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构无功补偿装置是一种重要的电力设备,用于提高电网的功率因数,减少无功功率的损耗。

它在工业生产、电力系统中发挥着重要的作用。

本文将介绍无功补偿装置的工作原理和结构,以便读者更好地理解和应用。

一、工作原理:无功补偿装置的工作原理基于功率因数的概念和相位关系。

功率因数是指有功功率与视在功率之间的比值,通常用cosφ表示。

在电力系统中,发电机产生的功率可以分为有功功率和无功功率。

有功功率用来做实际的功率输出,而无功功率则是电能在传输和分配过程中的无效功率。

无功补偿装置通过将无功功率与有功功率的相位差调整到最小,从而减少无功功率的损耗。

它采用电容器或电感器进行补偿,根据电力系统的需求,在适当的时候引入或消除电容器或电感器,使得电压和电流的相位一致,功率因数接近1,达到无功补偿的效果。

无功补偿装置通常由控制器、电容器或电感器、断路器等组成。

控制器通过监测电流和电压的波形,实时判断无功功率和功率因数的大小,根据设定值控制电容器或电感器的引入或消除。

断路器用于保护电容器或电感器,防止过电流和短路等故障。

二、结构及组成部分:无功补偿装置的结构通常分为静态型和动态型两种。

静态型无功补偿装置主要由电容器组成。

电容器由多个电容单元串联或并联而成,具有较大的容量。

一般采用铝电解电容器或聚丙烯薄膜电容器,具有容量大、体积小、功耗低等优点。

静态型无功补偿装置在电力系统中安装方便,故障率低,适用于中小型电力负载。

动态型无功补偿装置主要由控制器、开关装置和电感器组成。

控制器负责监测和控制整个系统的运行。

开关装置用于控制电感器的引入和消除。

电感器由多个线圈组成,可以根据电力系统的需求来调整无功功率的补偿量。

三、应用场景:无功补偿装置广泛应用于电力系统、工矿企业以及特定负载场景中。

在电力系统中,无功补偿装置可以提高电压稳定性,减少线路损耗,降低电力设备的负荷率。

在工矿企业中,无功补偿装置可以提高设备的效率,减少电能损耗,节约能源。

无功补偿控制器及动态补偿装置工作原理

无功补偿控制器及动态补偿装置工作原理

无功补偿控制器及动态补偿装置工作原理1.无功补偿控制器的目标是维持电网的功率因数在良好范围内,并最大限度地减少无功功率的损耗。

为实现这个目标,控制器通过检测电网的功率因数来判断是否需要进行无功补偿以及补偿的大小。

当电网的功率因数低于设定值时,控制器发出指令,启动无功补偿装置,将电网中的无功功率与之相等的有功功率引入电网,从而提高功率因数。

2.无功补偿控制器采用了先进的电力电子技术,通过与无功补偿装置的通信以及对电网的监测,实现对电网无功功率的精确控制。

控制器通过测量电网的电压和电流来计算出电网的功率因数,并与设定值进行比较。

当功率因数偏离设定值时,控制器发出相应的指令,控制无功补偿装置进行补偿。

3.在电力系统中,无功补偿控制器还可通过调节无功功率的大小和相位来实现更精确的无功补偿。

控制器可以根据电网的需求和运行状态,调整无功补偿装置的输出功率,并确保无功功率的补偿与电网的负荷变化相匹配。

此外,控制器还可以通过改变无功补偿装置的输出电流相位角来实现无功功率的引入或者吸收,以进一步控制电网的功率因数。

4.无功补偿控制器在工作过程中还需要考虑到电网的稳定性和可靠性。

当电网的频率和电压发生波动时,控制器应具备相应的保护机制,及时判断是否需要调整无功补偿装置的补偿策略,并采取相应措施以保证电网的稳定运行。

动态补偿装置工作原理:动态补偿装置是无功补偿的一种重要技术手段,其工作原理主要包括以下几个方面:1.动态补偿装置通过实时检测电网的无功功率和功率因数,并与设定值进行比较,来判断是否需要进行无功补偿。

当电网的无功功率超过设定值时,动态补偿装置通过控制器发出指令,启动相应的无功补偿设备,并将其输出与电网中的无功功率相抵消,从而实现无功功率的补偿。

2.动态补偿装置采用了高速开关技术,通过将无功功率与之相等的有功功率引入电网,在实时响应电网无功功率的变化,快速调整补偿功率和补偿相位,以满足电网的补偿要求。

3.动态补偿装置还可以实现对电网的谐波抑制和电压调节。

无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理无功补偿装置是用于改善电力系统无功功率的设备,其作用是提高电力系统的功率因数,降低无功功率的流动以减少电力系统的无用能量损耗、提高系统的供电质量以及稳定运行。

无功补偿装置通常是由无功补偿电容器或者无功补偿电抗器构成,根据电力系统需要的补偿类型安装相应的补偿装置。

无功补偿装置的工作原理主要基于电流和电压之间的相位差。

功率因数是电流和电压之间相位差的函数,当电流和电压的相位差为零时,功率因数为1,这时电力系统处于纯阻性负载状态,所有的电能都被有效地转换为有用功。

然而,在现实情况下,电力系统中通常存在着诸如感性负载和容性负载等非纯阻性负载,导致电流和电压之间存在一定的相位差,功率因数小于1、当电流的相位落后于电压相位时,这被称为感性载荷,而当电流的相位超前于电压相位时,这被称为容性负载。

1.无功补偿电容器补偿:电容器具有存储能量的特性,当电容器与电力系统并联时,它可以吸收电流中的无功功率。

当系统的功率因数较低时,通过将无功补偿电容器与系统并联,可以吸收电流中的无功功率,并提高功率因数。

电容器通过补偿无功功率,降低系统中的无功损耗,提高电力系统的效率。

2.无功补偿电抗器补偿:电抗器和电容器相反,它消耗无功功率。

当系统的功率因数过高时,通过将无功补偿电抗器与系统并联,可以消耗电流中的无功功率,并提高功率因数。

电抗器通过消耗无功功率,减少系统中的无功损耗,提高电力系统的效率。

无功补偿装置通常使用自动补偿装置来监测系统的功率因数,并根据实际需求控制补偿装置的投入和退出。

当系统的功率因数较低时,自动补偿装置会投入补偿电容器来提高功率因数;当系统的功率因数较高时,自动补偿装置会退出补偿电容器,防止系统过补偿,从而实现自动无功补偿。

总而言之,无功补偿装置通过调整电流和电压之间的相位差来提高功率因数,降低系统的无功功率流动,减少无用能量损耗,并保证电力系统的稳定运行。

无功补偿装置的应用可以提高电力系统的供电质量,减少系统的能耗,对于提高电力系统的效率和可靠性具有重要作用。

无功补偿装置的分类及原理

无功补偿装置的分类及原理

无功补偿装置的分类及原理无功补偿装置是电力系统中的重要设备,可以通过对无功功率的调整来提高电力系统的功率因数,提高供电质量。

本文将对无功补偿装置的分类及原理进行详细介绍。

一、无功补偿装置的分类根据无功补偿装置的工作原理和结构特点,可以将其分为以下几类:静态无功补偿装置、动态无功补偿装置、谐波滤波无功补偿装置和电容式无功补偿装置。

1. 静态无功补偿装置静态无功补偿装置是通过电子元件,如电容器、电抗器等,来实现无功补偿的装置。

根据无功补偿的方式,静态无功补偿装置可以进一步细分为并联补偿和串联补偿。

并联补偿装置主要是通过并联连接电容器来补偿电路中的无功功率,这样可以提高功率因数,提高电网的稳定性。

而串联补偿装置则是通过串联连接电抗器来调整电路中的无功功率,来实现无功补偿的效果。

2. 动态无功补偿装置动态无功补偿装置主要是通过控制器来控制电容器的连接和断开,以实现对无功功率的补偿。

具有响应速度快、调节范围大等优点,适用于电网无功功率变化较大的情况。

3. 谐波滤波无功补偿装置谐波滤波无功补偿装置主要用于滤除电网中的谐波成分,以提高电网的谐波污染程度,保证电网的供电质量。

常见的谐波滤波无功补偿装置主要包括谐波滤波器和无功发生器。

4. 电容式无功补偿装置电容式无功补偿装置是一种通过电容器来实现无功补偿的装置。

通过控制电容器的容量和连接方式,可以实现对电网的无功功率进行精确调节。

二、无功补偿装置的原理无功补偿装置的原理主要是通过改变电路的电流和电压之间的相位差,来实现对电流中的无功功率的补偿。

当电力系统中存在导致无功功率的负荷或设备时,会导致电流与电压之间的相位差,从而产生无功功率。

无功补偿装置通过调整系统中的无功补偿元件(如电容器或电抗器)的连接和断开方式,来改变电路中的相位差,从而实现对无功功率的补偿。

在静态无功补偿装置中,通过控制无功补偿元件的连接或断开来改变相位角。

对于串联补偿装置,通过增加或减少串联电抗器的容值,来改变电路的无功功率。

svg无功补偿装置原理

svg无功补偿装置原理

svg无功补偿装置原理SVG(Static Var Generator)无功补偿装置是一种采用先进的功率电子技术实现电压和无功补偿的装置。

它广泛应用于电力系统中,以提高电力质量、增加电网稳定性和降低能耗。

本文将详细介绍SVG无功补偿装置的原理。

一、引言SVG无功补偿装置是一种通过控制电流流向来调节无功功率的设备,它能够在电网中快速、准确地调整无功功率,以实现电力系统的稳定运行。

在传统的电力系统中,无功功率的调节大多通过电抗器和电容器来实现,但这种方式需要手动调节,且响应速度较慢。

而SVG无功补偿装置则能够自动调节无功功率,具有更高的控制精度和快速响应能力。

二、SVG无功补偿装置原理SVG无功补偿装置主要由功率电子器件、控制系统和滤波器组成。

其工作原理如下:1. 功率电子器件SVG无功补偿装置通过功率电子器件来实现对电流的控制。

其中,采用较多的功率电子器件是IGBT(Insulated Gate Bipolar Transistor),它具有开关速度快、损耗小等优点。

通过对IGBT的开关控制,SVG无功补偿装置能够准确地改变电流的大小和相位,以实现对无功功率的调节。

2. 控制系统SVG无功补偿装置的控制系统负责监测电网的电压和电流,并根据设定的控制策略计算所需的补偿电流。

控制系统通常由微处理器或数字信号处理器组成,具有较强的算力和灵活性。

它能够根据电网需求实时调整补偿电流的大小和相位,以保持电网的电压稳定和功率因数接近1。

3. 滤波器SVG无功补偿装置中的滤波器用于抑制谐波和其他电磁干扰。

在电力系统中,谐波会对变压器和电机等设备造成损坏,而电磁干扰会干扰其他电子设备的正常工作。

通过在SVG无功补偿装置中引入滤波器,可以有效地抑制这些干扰,保护电力设备和其他电子设备的安全运行。

三、SVG无功补偿装置的优势SVG无功补偿装置相比传统的无功补偿方式具有以下优势:1. 快速响应能力:SVG无功补偿装置能够在毫秒级的时间内响应电网的无功功率需求,提供快速、准确的补偿。

无功补偿装置介绍 ppt课件

无功补偿装置介绍  ppt课件
SVG的主要组成 主要有连接电抗器、 启动装置、功率部分、 控制系统、冷却系统、 信号采集与传输等辅 助部分组成。
ppt课件
16
四、静止无功发生器(SVG)
启动装置 主要有由启动开关、启动电阻、避雷器、隔离刀
闸和接地刀闸等组成。 主要作用:实现SVG自励启动,限制上电时直 流电容的充电涌流,避免IGBT模块、直流电容 损坏。SVG上电时,启动电阻串于充电回路, 起限流保护作用;需将电阻通过启动开关旁路后 SVG方能投入运行。 连接电抗器 主要作用: 限制无功输出电流; 滤除装置产生的高次谐波; 将两个电压源连接起来。
ppt课件
21
四、静止无功发生器(SVG)
SVG操作与维护 1、 SVG动态无功补偿装置的投运:
将开关室SVG接地刀闸拉开 将室外接地刀闸拉开,并将隔离开关合上,将开关手车摇至运行位置。 将SVG控制柜上的“复位”按钮按下,直到“合闸就绪”指示灯亮起,此时将SVG断路器合 上,SVG动态无功补偿装置即可投入运行。 2、 SVG动态无功补偿装置的停机: 将SVG断路器断开,SVG动态无功补偿装置退出运行。 3、 如进入检修状态需进行如下操作: 将室外隔离开关拉开,并将接地刀闸合上 将开关室SVG手车开关摇至试验位置,并将接地刀闸合上
ppt课件
6
一、无功补偿基本知识
视在功率
视在功率:在交流电路中,电压与电流有效值的乘积,我 们把这一部分功率称之为视在功率。
视在功率用S表示,单位是VA、kVA、MVA等
功率因数
功率因数:在交流电路中,电压与电流之间的相位差(Φ )的余弦叫做功率因数。
在数值上,功率因数是有功功率和视在功率的比值 cos P
TCR型SVC装置中,通常装设特定调谐次数的滤波器,具有较好的滤波效果,能将负 荷波动产生的谐波滤去,以减少谐波对系统电能质量的影响。 SVC的主要功能 动态补偿无功,提高功率因数; 抑制电压波动及闪变,稳定电压; 抑制谐波,减少谐波对电网及设备的损害 抑制系统振荡,提高功率传输能力

无功补偿装置基本原理及巡视注意事项

无功补偿装置基本原理及巡视注意事项
计算,指令下发等。
② 动态无功功率补偿装置的功能 ✓ 补偿负载产生的基波无功功率,改善电能质量; ✓ 维持受电端电压,加强系统电压稳定性; ✓ 补偿系统无功功率,提高功率因数; ✓ 抑制和滤除负载产生的谐波无功功率; ✓ 抑制电压波动和闪变; ✓ 抑制三相不平衡。
③ 动态无功功率补偿装置的分类
二、无功补偿 2.1 无功补偿定义: 指根据电网中的无功类型,人为地补偿容性无功或感性无功来抵消线路中的无功功率。 2.2 无功功率有那些危害: 无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备 过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。 2.3 无功功率补偿装置接人系统的方式有两种:并联和串联。 ①以并联方式接入系统的无功功率补偿装置称为并联无功功率补偿,并联补偿方式因 为接线简单、操作方便、对系统可靠性影响小而广泛使用。 ②以串联方式接入系统的无功功率补偿装置称为串联无功功率补偿。串联补偿方式因 为接线复杂,操作不方便、对系统可靠性影响大而使使用范围受到限制,一般是在并 联补偿方式不能满足技术要求的情况下才使用。
2.4 动态无功补偿(SVG)
① SVG 并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随 负荷无功电流的变化而变化,自动补偿系统所需无功功,根据电网中动态变化的无功 量实时能够快速连续地提供容性和感性无功功率,实现适当的电压和无功功率控制, 保障电力系统稳定、高效、优质地运行。
2.8 并联电容器优点:价格低廉、安装灵活、操作简单、运行稳定、维护方便 并联电容器缺点:①其无功功率输出与电压平方成正比,低电压时无功功率输出减小, 而这时的系统却需要更多的无功功率; ②电容器提供的无功功率在电压稳定时是不变的,不能随系统无功功率需求的变而改 变,是一种静态无功功率补偿装置,适用于无功功率需求稳定的场所,但即使这样, 也容易造成欠补偿或过补偿。

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业摘要无功补偿有多种形式,基于MCR的动态无功补偿是其中较为先进的一类,磁控电抗器(MCR)利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

该系统装置具有较高的安全性,运行稳定可靠。

与其他类型的无功补偿装置对比。

此类补偿装置与其它类型的无功补偿装置的区别主要在于磁控电抗器(MCR),因此,该文重点讲述了MCR的基本原理和技术优势,与它类型的无功补偿装置做了技术比较,预测了MSVC技术的发展前景。

关键词:MCR;直流励磁;可控硅;无功功率引言目前,无功补偿的主要装置是电容器、电抗器和少量的动态无功补偿装置。

开关(断路器)投切电容器的调节方式是离散的,不能取得理想的补偿效果。

开关投切电容器所造成的涌流和过电压对系统和设备本身都十分有害。

20世纪80年代以来,基于相控电抗器(TCR)的静止型动态无功补偿器(SVC)在电力系统中投入实际运行。

但由于其投资昂贵,难以推广。

20世纪末,因具有价格便宜、维护方便等优点,基于磁阀式可控电抗器(MCR)的SVC,相继在一些国家电网投入运行,并展示了它的优越性。

磁控电抗器(MCR)型SVC(简称MSVC)装置利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

一、MSVC装置的基本结构:MSVC装置由补偿(滤波)支路和磁控电抗器(MCR)并联支路组成,其中补偿(滤波)支路经隔离开关固定接于母线,通过调节磁控电抗器的输出容量(感性无功功率)实现无功的柔性补偿。

因与其它各类补偿装置的主要区别在于磁控电抗器,故下面集中对磁控电抗器(MCR)作介绍。

图1动态无功补偿装置(MSVC)一次系统图二、磁控电抗器(MCR)2.1基本工作原理磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁芯,改变铁芯磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行并尽可能提高负载率。

(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,
它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企
业的功率因数,变压器不应空载运行或长期处于低负载运行状态。

(3)供电电压超出规定范围也会对功率因数造成很大的影响。

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功
无功补偿装置技术及原理
无功补偿装置技术原理及内容
▪ 无功功率与功率因数 ▪ 有功与无功的关系 ▪ 影响功率因数的因素 ▪ 无功补偿的定义及意义 ▪ 无功补偿常用的方法 ▪ 无功补偿装置 ▪ SVC的发展和意义
一、无功功率与功率因数
▪ 许多用电设备均是根据电磁感应原理工作的,如配电变压 器、电动机等,它们都是依靠建立交变磁场才能进行能量

cosφ=P/S=P/(P2+Q2)

在电力网的运行中,功率因数反映了电源输出的视在
功率被有效利用的程度,我们希望的是功率因数越大越好。
这样电路中的无功功率可以降到最小,视在功率将大部分
用来供给有功功率,从而提高电能输送的功率。
二、有功与无功的关系
▪ 有功功率常用P表示,无功一般用Q来表示, 功率因数为cosφ,有功与无功有如下关系式 表示:
功率将增长得很快,据有关资料统计,当供电电压为额定值的110%
时,一般无功将增加35%左右。当供电电压低于额定值时,无功功
率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响
电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽
可能保持稳定。
四、无功补偿的定义及意义
▪ 交流电在通过纯电阻的时候,电能都转成了热能,而在通 过纯容性或者纯感性负载的时候,并不做功。也就是说没 有消耗电能,即为无功功率。当然实际负载,不可能为纯 容性负载或者纯感性负载,一般都是混合性负载,这样电 流在通过它们的时候,就有部分电能不做功,就是无功功 率,此时的功率因数小于1,为了提高电能的利用率,就 要进行无功补偿。 电网中的电力负荷如电动机、变压器 等,大部分属于感性电抗,在运行过程中需要向这些设备 提供相应的无功功率。在电网中安装并联电容器、同步调 相机等容性设备以后,可以供给感性电抗消耗的部分无功 功率小电网电源向感性负荷提供无功功率。也即减少无功 功率在电网中的流动,因此可以降低输电线路因输送无功 功率造成的电能损耗,改善电网的运行条件。这种做法称 为无功补偿。
低压个别补偿就是根据个别用电设备对无功的需要量
将单台或多台低压电容器组分散地与用电设备并接,它与
用电设备共用一套断路器。通过控制、保护装置与电机同
时投切。随机补偿适用于补偿个别大容量且连续运行(如
大中型异步电动机)的无功消耗,以补励磁无功为主。低
压个别补偿的优点是:用电设备运行时,无功补偿投入,
用电设备停运时,补偿设备也退出,因此不会造成无功倒 送。具有投资少、占位小、安装容易、配置方便灵活、维 护简单、事故率低等优点。
▪ ⑤装设静止无功补偿器(SVS)还能改善电网的电压波形,减小谐波分量和解决 负序电流问题。对电容器、电缆、电机、变压器等,还能避免高次谐波引起 的附加电能损失和局部过热。
五、无功补偿的方法
▪ 无功补偿通常采用的方法主要有3种:低压个别补偿、低 压集中补偿、高压集中补偿。
▪ (1)低压个别补偿:

▪ 无功补偿可以收到下列的效益: ▪ ①提高用户的功率因数,从而提高电工设备的利用率; ▪ ②减少电力网络的有功损耗; ▪ ③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改
善电能质量,提高了电力系统的抗干扰能力;
▪ ④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态 性能,提高输电线的输送能力和稳定性;
的转换和传递。为建立交变磁场和感应磁通而需要的电功
率称为无功功率,因此,所谓的"无功"并不是"无用"的电
功率,只不过它的功率并不转化为机械能、热能而已;因
此在供用电系统中除了需要有功电源外,还需要无功电源,
两者缺一不可。无功功率单位为乏(Var)。

在功率三角形中,有功功率P与视在功率S的比值,
称为功率因数cosφ,其计算公式为:
三、影响功率因数的因素

(1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机
等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗
的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在
异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~
70%。所以要改善异步电动机的功率因数就要防止电动机的空载运
▪ (2)低压集中补偿:

低压集中补偿是指将低压电容器通过低压开关接在配电变压器低
压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上
的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做
不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,
使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济
性,是目前无功补偿中常用的手段之一。
▪ (3)高压集中补偿:

高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高
压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,
用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并
可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而
▪ 电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电 力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要 求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。 同时,无功功要的来源是利用各种无功功率补偿(以下简称无功补偿) 设备在电力系统的各个环节进行无功补偿。因此,无功补偿是电力系统的重 要组成部分,它是保证电能质量和实现电力系统经济运行的基本手段。
合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。
同时便于运行维护,补偿效益高。
▪ 按投切方式分类:
▪ 1. 延时投切方式

延时投切方式即人们熟称的“静态”补偿方式。这种投切依靠于
传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑
相关文档
最新文档