保险精算1-10章答案(第二版)李秀芳

合集下载

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及问题详解

保险精算第二版习题及问题详解

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算李秀芳15章习题答案

保险精算李秀芳15章习题答案

第一章生命表1.给出生存函数()2 2500 xs x e-=,求:(1)人在50岁~60岁之间死亡的概率。

(2)50岁的人在60岁以前死亡的概率。

(3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s ss sqsP X ssps<<=--=>==2、已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T(t)(4)f T(f)(5)E(x)3、已知Pr[5<T(60)≤6]=0、1895,Pr[T(60)>5]=0、92094,求q65。

()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s sq ps ss sqs-====-∴==4、已知Pr[T(30)>40]=0、70740,Pr[T(30)≤30]=0、13214,求10p60Pr[T(30)>40]=40P30=S(70)/S(30)=0、7074 S(70)=0、70740×S(30)Pr[T(30)≤30]=S(30)-S(60)/S(30)=0、13214 S(60)=0、86786×S(30)∴10p60= S(70)/S(60)=0、70740/0、86786=0、815115、给出45岁人的取整余命分布如下表:k0 1 2 3 4 5 6 7 8 945kq 、0050 、0060 、0075 、0095 、0120 、0130 、0165 、0205 、0250 、0300求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0、0050+0、0060+0、0075+0、0095+0、120)=0、046、这题so easy 就自己算吧7、设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0、0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0、005+0、00213)≈11(3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0、02169)×0、02235=1500×0、021865≈33 8、 已知800.07q =,803129d =,求81l 。

保险精算 李秀芳 傅安平 王静龙(第二版)中国人民大学出版社 课后答案

保险精算 李秀芳 傅安平 王静龙(第二版)中国人民大学出版社 课后答案

保险精算 李秀芳 傅安平 王静龙(第二版)中国人民大学出版社 课后答案第一章1. 386.4元2. (1)0.1 0.083 3 0.071 4(2)0.1 0.1 0.1 3. 1 097.35元 1 144.97元 4. 794.1元5. (1)11 956 (2)12 2856. ()()m m d di i δ<<<<7. 20 544.332元 8. 0.074 6 9. 0.358 2 10. 1.822 11. B 12. A第二章1. 略2. 80 037.04元 3.0.082 99 4. 12 968.71元 5. 1 800 元 6. 略7. 6.71% 8. 28911i i =∑9. A 10. B第三章1. (1) 0.130 95 (2) 0.355 96 (3) 0.140 86 (4) 0.382 892. 0.020 583. 41 5714. (1) 0.92 (2) 0.915 (3) 0.9095. B6. C第四章1. (1) 0.092 (2) 0.0552. (1) 5.2546元 (2)5.9572元 (3)略3. (1) 0.05 (2) 0.54. 略5. 0.546. 0.817. 283 285.07元8. 略9. 2 174.29元 10. 71 959.02元 11. 690.97元 12. 3 406.34元 13. 749.96元 14. 397.02元 15. D 16. C 17. B第五章1. 15.382. (1) 0.035 (2) 0.653. 793元4. 25 692.23元5. 36 227.89元6. 略7. (1) 18 163.47元 (2) 18 458.69元(3)18 607.5 元(4)18 707.28 元8. 略9. 167.71元10. 106 11. 83 629.47元12. 46.43元13.A14. D 15. B第六章1.()xPμ=Ā,()()222āx xxVar Lδ=Ā-Ā2. 28.30元3. 14.784. 0.039 75. 0.1036. 20.07<P≤21.747. 21份8. 3.20 9. 0.01610. 0.041 311. (1)-100 (2) 134 444.44 (3) 0.272 712.()10.194471.7R bb=+13. B 14. C 15. D 第七章1.()()22::2:,x t n t x t n t t tx t n tE L a Var Lδ+-+-+--==ĀĀ2. 15 3. 0.5154. (2) (3)5. 0.001 66. 0.156 947. 556.88元8. 0.609. 0.40 10. 0.239 11. 0.90 12. 0.06 13. 0.40 14. 3.889 元15. 0.05816.xx q p17. C 18. B第八章1. 略2. 略3. 根据表8.1.3中的各种情况算出的1E分别为:(1)0.650.02ää0.65xxxp⎛⎫+⎪-⎝⎭(2)0.046 (3)0.650.02ää0.65xp⎛⎫+⎪-⎝⎭(4)0.40.250.02ää0.4xp pα⎛⎫++⎪-⎝⎭(5)0.250.36xpα+(6)0.650.02ää0.65xp⎛⎫+⎪-⎝⎭(7)0.046根据表8.1.4中的各种情况算出1E分别为:(1) 1.25P+0.01 (2) 0.064.(1)()()221k x x W⎡⎤-⎣⎦ĀĀ(2)()()()22 211::221x x k s x k sx k x k++++⎡⎤--⎢⎥⎣⎦-ĀĀĀĀĀ5. 0.073 86. (1)()11040:101CV L L⎡⎤---⎣⎦Ā1040E(2)154545:5(1)L E E -+Ā7.1:122x t n tn t x t b bE+--+⎛⎫+-⎪⎝⎭Ā8. 略9. 略10.(1)略(2)1ˆ1ˆ1h x hx hi Pi P+++⎛⎫⎛⎫+⋅ ⎪⎪+⎝⎭⎝⎭11. 略12. B 13. B.第九章1. 第0年到第十年的现金价值分别为:9300元10 137元11 168元12 303元13 551元14 925元14 722元16 475元17 307元18 000元18 720元第四年的准备金为13 819 元2.重新计算表9.2.8后的值。

保险精算1-10章答案(第二版)李秀芳

保险精算1-10章答案(第二版)李秀芳

我是发老师给我们的答案上来的,老师姓周,供大家下载使用。

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及答案


(1)法一:1000 A1 35:5

4
vk 1 k
k 0
pxqxk

1 l35
( d35 1.06

d36 1.062
d37 1.063
d38 1.064

d39 1.065
)
查生命表 l35 979738, d35 1170, d36 1248, d37 1336, d38 1437, d39 1549 代入计算:
试计算:
5. (x)购买了一份 2 年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,
则在死亡年末可得保险金 1 元, qx 0.5, i 0,Var z 0.1771 ,试求 qx1 。
6.已知, A76 0.8, D76 400, D77 360, i 0.03, 求A77 。
M 30 M 50 D30
d30

A1
30:20
vk 1 l30k
k0
1 (1.06)2
d31
l30

d30k l30k
1 (1.06)3
1 l30
d32

k0

查(2000-2003)男性或者女性非养老金业务生命表中数据 l30 , d30 , d31, d32 d49 带入计算即可,或者 i=0.06
35:5
D35
127469.03
1000 p35
1000A1 35:1
1000
C35 D35
1000A 143.58 127469.03
1.126
1000 p36
1000A1 36:1

第四章寿险精算(人身保险-南开大学,李秀芳)


9093.465 8531.089 8277.164 8039.333 7816.236 7606.652
9577.175 10000
9317.294 10000
9194.765 10000
9076.836 10000
8963.274 10000
8853.86 10000
人身保险
14
利润现值表
利率
2003年
人身保险
3
寿险公司风险类型
C1:资产贬值风险 C2:定价不足风险 C3:利率变动风险 C4:一般经营风险 C5:汇率风险
2003年
人身保险
4
C1:资产贬值风险
如债券、抵押贷款、股票、不动产和其它投资发生损失而 造成的风险,由于利息支付违约或本金违约,或由于市场 价值的损失而造成的风险。C1风险影响寿险公司的资产而 不包括负债。控制C1风险是投资管理部门的职责。审慎的 投资分析和信用分析是控制C1风险的最好方法,而在操作 中可以通过评估投资风险而投资于高质量的资产。
372.9029 381.7385
5% 377.6005 386.5342
385.7004 394.8721 404.2662 413.8842 423.7237 433.7912 444.0879 454.6161 465.3796
390.796 400.0765 409.5824 419.3152 429.2723 439.4603 449.8805 460.5353 471.4284
比较典型的C1风险包括:
资产市场价值的损失(不包括利率变动引起的损失); 借方对于利息的违约; 借方对于本金的违约等。
2003年
人身保险
5
美国高利率债券资产违约率分布

寿险精算

t 0
x 1
(4)极限年龄:生命的最高年龄。l=0, l-1=d-1 。
3.2.2
生命表的内容(二)
(5) 死亡率qx:qx=Pr{(x)在1年内死亡} 1) qx=Pr(T(x)≤1) 2) qx=dx/lx=(lx-lx+1)/lx , q-1=1 (6) 生存率px:px=Pr{(x)至少活到x+1岁} 1) px=Pr(T(x)>1) 2) px=s(x+1)/s(x)=lx+1/lx=1-qx,p-1=0 3) px+qx=1 (7) npx:npx=Pr{(x)在n年后仍然生存}=Pr(T(x)>n) 1) p l x n p p p p
mn
qx
lxm
lx lxmn

d x m d x m 1 d x m n 1 lx

m n 1

t m
t
qx
m p x n q x m
3.2.2
生命表的内容(四)
(10)简单平均余命①ex
1)(x)的简单平均余命,是指(x)的余命(不包括不满一年的 零数)K(x)的平均值,即(x)取整余命K(x)的平均值。 l l l 2)假定死亡者都在年初死亡,则 e x x 1 x 2 3) e x E[ K ( x )] k Pr[ K ( x ) k ] k k p x q x k k 1 p x k 0 k 0 k 0

新生儿在x1岁和x2岁之间死亡的概率: Pr(x1<X≤x2)=Pr(X≤x2)-Pr(X≤x1)
=F(x2)-F(x1)=s(x1)-s(x2)
3.1.3
T(x)

保险精算教学大纲丶习题及答案

保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:学习的目的和要求要求了解利息的各种度量掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率利息的定义实际利率单利和复利实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求要求了解年金的定义、类别掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求理解常用生命表函数的概率意义及彼此之间的函数关系了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求掌握寿险趸缴纯保费的厘定原理理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算理解趸缴纯保费的现实意义主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求理解生存年金的概念掌握各种场合计算生存年金现时值的原理和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我是发老师给我们的答案上来的,老师姓周,供大家下载使用。

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

7.如果0.01t t δ=,求10 000元在第12年年末的积累值。

、1200.7210000(12)100001000020544.33t dt a e e δ⎰===8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

(4)(2)414212(1)(1)(1)(1)(1)421.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336i i i i d i -+=+-++==⇒=9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

()()2021211221212() 1.01()1.01, 1.432847643tt tt dtt ta t a t e ee t δ=⎰==⇒==10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

()()()2210.010.1220.01*200.1*2020423()1()11 1.8221tt tt t dta t i a t e ei ee i δ++=+⎰==⇒+==+=11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19B. 4.04C. 3.31D. 5.21(3)3*5153(1)3*1.02 4.03763i +==12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

A.7 225B.7 213C.7 136D.6 987(2)2*24(1) 1.03 1.12552i +==第二章:年金练习题1.证明()n mm n v v i a a -=-。

()11()m nn m m n v v i a a i v v i i---=-=-2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。

年计息12次的年名义利率为8.7% 。

计算购房首期付款额A 。

12012011000100079962.96(8.7%/12)16000079962.9680037.04v a i i-===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

718711110.08299a a a i i ⎛⎫=+ ⎪+⎝⎭∴=4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。

年利率为10%,计算其每年生活费用。

10101015000112968.7123a x a i x ⎛⎫= ⎪+⎝⎭∴= 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。

年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v=,计算K 。

10201010102010101110002000100011111800A a a a i iB Ka K a i A B K ⎛⎫⎛⎫=++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫=+ ⎪+⎝⎭=∴=6. 化简()1020101a v v ++ ,并解释该式意义。

()102010301a v v a ++=7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。

51055111000200017000113.355%a a i i i ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭⇒=8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为18k+,计算V(2)。

112119111(2)11(1)(1)(1)(1)9991101128V i i i i i =+++++++++=+++9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n 年每年末平分所领取的年金,n 年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )A. 113n⎛⎫⎪⎝⎭B. 13n C.13n⎛⎫ ⎪⎝⎭D.3n1211213n n n n n a v a v v i i v ∞=-==11. 延期5年连续变化的年金共付款6年,在时刻t 时的年付款率为()21t +,t 时刻的利息强度为1/(1+t),该年金的现值为( )A.52B.54C.56D.5801125|651125|65()(1)111()()11(1)541t t dt a v t t dtv t a t t e a t dt t δ=+===+⎰⇒=+=+⎰⎰第三章:生命表基础练习题1.给出生存函数()22500x s x e-=,求:(1)人在50岁~60岁之间死亡的概率。

(2)50岁的人在60岁以前死亡的概率。

(3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s s s s q s P X s s p s <<=--=>==2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。

()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s s q p s s s s q s -====-∴==3. 已知800.07q =,803129d =,求81l 。

8080818080800.07d l l q l l -=== 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。

求生存函数s(x)在20岁、21岁和22岁的值。

120121122000(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l ++++++======5. 如果221100x x xμ=++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。

A.2073.92B.2081.61C.2356.74D.2107.560022211000100()1((1)(4))2081.61xxx dxdxx x x s x e ex l s s μ-+-+--⎛⎫⎰⎰=== ⎪+⎝⎭-=6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则|201q 为( )。

A. 0.008B. 0.007C. 0.006D. 0.00522211|20200.006l l q l -== 第四章:人寿保险的精算现值练 习 题1. 设生存函数为()1100xs x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10Ā的值。

(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t ttt x x t tt tx x t x s x t s x p s x xA v p dt dt Var Z AAvp dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

相关文档
最新文档