经典行列式一题四解

合集下载

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。

行列式的巧解

行列式的巧解

化为上三角行列式,即依次消去第二三四列的第一个元素,再消去三四列的第二个元素,再消去第四列的第三个元素,然后行列式的值就是对角线乘机例如消去第二三四行的第一列元素方法: A B C DE F G HI J K LM N O P=A B C D0 -ABF/E -ACG/E -ADH/E0 -ABJ/I -ACK/I -ABL/I0 -ABN/M -ABO/M -ABP/M再用第二列乘以某数消去第三列的第二个元素-ABJ/I,然后依次类推(过程你自己算把^^),换算成三角行列式就好了1.递推法例1求行列式的值:(1)的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方第一条次对角线的元全为1,其余元全为0;即为三对角线型。

又右下角的(n)表示行列式为n阶。

解把类似于,但为k阶的三对角线型行列式记为。

把(1)的行列式按第一列展开,有两项,一项是另一项是上面的行列式再按第一行展开,得乘一个n – 2 阶行列式,这个n – 2 阶行列式和原行列式的构造相同,于是有递推关系:(2)移项,提取公因子β:类似地:(递推计算)直接计算若;否则,除以后移项:再一次用递推计算:∴,当β≠α(3)当β= α,从从而。

由(3)式,若。

∴注递推式(2)通常称为常系数齐次二阶线性差分方程.注1仿照例1的讨论,三对角线型的n阶行列式(3)和三对角线型行列式(4)有相同的递推关系式(5)(6)注意两个序列和的起始值相同,递推关系式(5)和(6)的构造也相同,故必有由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。

前面算出,故例2 计算n阶范德蒙行列式行列式解:即n阶范德蒙行列式等于这n个数的所有可能的差的乘积2.拆元法例3:计算行列式解①×(x + a)②×(x – a)3.加边法例4计算行列式分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法.解4.数学归结法例5计算行列式解:猜测:证明(1)n = 1, 2, 3 时,命题成立。

行列式展开与应用例题和知识点总结

行列式展开与应用例题和知识点总结

行列式展开与应用例题和知识点总结一、行列式的定义对于一个\(n\)阶方阵\(A =(a_{ij})\),其行列式\(|A|\)定义为:\|A| =\sum_{\sigma\in S_n}(-1)^{\tau(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}\其中\(S_n\)是\(n\)个元素的全排列集合,\(\tau(\sigma)\)是排列\(\sigma\)的逆序数。

对于二阶行列式,有\(\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} a_{12}a_{21}\)对于三阶行列式,有\(\begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} a_{13}a_{22}a_{31} a_{12}a_{21}a_{33}a_{11}a_{23}a_{32}\)二、行列式的性质1、行列式与它的转置行列式相等。

2、对换行列式的两行(列),行列式变号。

3、行列式中某行(列)的公因子可以提到行列式外面。

4、若行列式中有两行(列)元素成比例,则行列式为零。

5、若行列式的某行(列)的元素都是两个数之和,则行列式可以拆分成两个行列式之和。

6、把行列式的某行(列)的倍数加到另一行(列),行列式不变。

三、行列式的展开1、按行展开设\(A =(a_{ij})\)是\(n\)阶方阵,\(A_{ij}\)是\(a_{ij}\)的代数余子式,则\(|A| = a_{i1}A_{i1} + a_{i2}A_{i2} +\cdots + a_{in}A_{in}\)(\(i\)为任意行)2、按列展开类似地,\(|A| = a_{1j}A_{1j} + a_{2j}A_{2j} +\cdots +a_{nj}A_{nj}\)(\(j\)为任意列)四、应用例题例 1:计算行列式\(\begin{vmatrix}2 &-1 & 3 \\ 1 & 2 & 0\\ 4 & 1 & 5\end{vmatrix}\)解:按照三阶行列式的展开公式计算:\\begin{align}&\begin{vmatrix}2 &-1 & 3 \\ 1 & 2 & 0 \\ 4 & 1 &5\end{vmatrix}\\=&2\times\begin{vmatrix}2 & 0 \\ 1 & 5\end{vmatrix} (-1)\times\begin{vmatrix}1 & 0 \\ 4 & 5\end{vmatrix} +3\times\begin{vmatrix}1 & 2 \\ 4 & 1\end{vmatrix}\\=&2\times(2\times5 0\times1) + 1\times(1\times5 0\times4) +3\times(1\times1 2\times4)\\=&2\times10 + 5 + 3\times(-7)\\=&20 + 5 21\\=&4\end{align}\例 2:已知\(\begin{vmatrix}1 & 2 & 3 \\ 2 & 3 & x \\ 3 &x & 1\end{vmatrix} = 0\),求\(x\)的值。

行列式典型例题

行列式典型例题
行列式典型例题
目录
• 计算行列式 • 行列式的性质 • 行列式的展开 • 行列式的应用 • 特殊行列式
01
计算行列式
二阶行列式
总结词:二阶行列式是2x2矩阵的行列 式值,计算方法为对角线元素乘积减去 副对角线元素乘积。
|3 4|
示例:对于行列式|1 2|,其值为1*32*4=-5。
详细描述:对于二阶行列式,其一般形式 为|a b|,计算公式为a*c-b*d,其中a、b、 c、d分别代表矩阵中的元素。
行列式与矩阵的逆和转置有关, 它们都可以通过行列式进行计算 或判断。
行列式有一些重要的性质,如交 换律、结合律、分配律等,这些 性质在矩阵运算中非常重要。
05
特殊行列式
对角线型行列式
总结词
对角线型行列式是指除了主对角线上 的元素外,其他元素都为零的行列式。
详细描述
对角线型行列式的值就是主对角线上 的元素乘积,计算过程相对简单,因 为除了主对角线元素外,其他元素都 为零,所以可以直接将主对角线上的 元素相乘得到结果。
04
行列式的应用
行列式在几何中的应用
线性变换
行列式可以表示线性变换前后的面积比,用于研 究几何图形的变换性质。
Hale Waihona Puke 定向行列式可以用来确定定向,即方向和旋转顺序, 对于三维空间中的向量场和曲线非常重要。
体积
行列式可以用来计算多面体的体积,特别是平行 六面体的体积。
行列式在代数方程组中的应用
线性方程组
行列式的加法性质
总结词
行列式的加法满足分配律
详细描述
对于任何两个n阶方阵A和B,以及任意的常数c和d,有|cA + dB| = c|A| + d|B|。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,

1-4、阶行列式解析

1-4、阶行列式解析

例1
计算对角行列式
0 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0

分析
展开式中项的一般形式是
a1 p1 a2 p2 a3 p3 a4 p4
若 p1 4 a1 p1 0, 所以 p1只能等于 4 ,
从而这个项为零, 同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为a14a 23a 32a41 .
第四节
行列式
一、二阶和三阶行列式 二、排列及其逆序数 三、n 阶行列式的定义
四、行列式的性质和计算
五、小结 思考题
一、二阶和三阶行列式
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
1 2
1 a22 : 2 a12 :
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 b1 D2 a21 b2 a31 b3 a13 a23 , a33
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33
a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
4 6 32 4 8 24 14.
1 1
例3 解
1 x 0. x2
求解方程 2 3 4 9
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12

D
3 2 2 1 1
3 ( 4) 7 0,
D1
12 2 1

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。

推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。

③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。

推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。

④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。

化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。

(完整版)行列式习题答案

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。

ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。

线性代数典型例题

A = C 1,: 2,: 3),B =(:1: 2: 3, j 2 24 3√ 13: 29 3)线性代数第一章行列式典型例题、利用行列式性质计算行列式 、按行(列)展开公式求代数余子式四、抽象行列式的计算或证明1. 设四阶矩阵 A=[2>,3 2,4 3, 4],B=「,2 2,3 3,4 4],其中2, 3, 4 均为四 维列向量,且已知行列式|A| = 2,|B|=-3,试计算行列式|A - B|.A12. 设A 为三阶方阵,A 为A 的伴随矩阵,且IAI=',试计算行列式2"(3A ) j-2A * 0〕 2 L :O AT3. 设A 是n 阶(n 工2)非零实矩阵,元素a ij与其代数余子式A j 相等,求行列式|A|.2 1 04. 设矩阵 A= 1 2 0 ,矩阵 B 满足 ABA * = 2BA*+E ,则 |B|= ________ .'0 0 1 J5. 设>1√∙2, : 3均为3维列向量,记矩阵已知行列式D 4 =1 3 1 123 5 1 34 6 2 4 4 7 2=-6,试求 A 41 A 42 与 A 43 ' A 44.三、利用多项式分解因式计算行列式11、tW1 2 —X1 •计算D =151 9-x 22 •设 f(x)=X b b b b X C C C C Xddd ,则方程f (X) =O 有根X = d如果I A ∣=1,那么| B |= __ .五、n阶行列式的计算六、利用特征值计算行列式1. 若四阶矩阵A与B相似,矩阵A的特征值为丄丄,则行列式2 3 4 51IB -E∣= _________ .2. 设A为四阶矩阵,且满足|2E ∙ A∣=0,又已知A的三个特征值分别为-1,1,2,试计算行列式|2A 3E |.第二章矩阵典型例题一、求逆矩阵1. 设代B, A ■ B都是可逆矩阵,求:(A J■ B」)」.-00021〕000532.设 A =12300,求A JL4580034600一二、讨论抽象矩阵的可逆性1. 设n阶矩阵A满足关系式A3∙ A2- A- E =0,证明A可逆,并求A^l.2. 已知A3 =2E,B = A2 -2A ∙ 2E ,证明B可逆,并求出逆矩阵。

行列式的展开(知识点,例题,习题,答案)


( 1)
1 3
6
2
5 5

8 0
2 5
40.
例2
证明范德蒙德(Vandermonde)行列式
1 x1 1 x2
2 x2

1 xn
2 xn
2 Dn x1 n 1 x1

n i j 1
( xi x j ).
(1)
n 1 n 1 x2 xn
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
a11
a22 a23 a32 a33
a12
a21 a23 a31 a33
a13
a21 a23 a31 a33
在 n 阶行列式中,把元素 a ij 所在的第 i 行和第 j 列划去后,留下来的 n 1 阶行列式叫做元素 a ij 的余子式,记作 M ij .
n
1 ,当 i j, 其中 ij 0 ,当 i j .
3 5 3
例3 计算行列式 D 0 7 解 按第一行展开,得
D 3 1 0 7 2 5 0 0 7 2
1 0 7 2
3
0 1 7 7
27.
5 1
例4 计算行列式
3 7
1 2 0 2 5 2 3 3 1 0 5 0
ann
aij ij anj

0

0 ann
于是有 ai 1, j ai 1, j 1 ai 1,n aij Mij ,

a n , j 1

aij 0 0 a ij 故得 i j D 1 ai 1, j ai 1, j 1 ai 1,n 1i j aij M ij . anj an , j 1 ann
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档