2019届山东省临沭第一中学高三元月高考模拟数学(文)试题扫描版含答案
2019年山东省高考数学模拟试卷(3月份)〔精品解析版〕

C.(﹣∞,0)
D.(0,+∞)
10.(5 分)已知 Sn 为等差数列{an}的前 n 项和,a1=1,公差为 d,则“﹣1<d<0”是“S22+S52
<26”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
11.(5 分)已知双曲线
=1(a>0,b>0)的离心率为 2,F1,F2 分别是双曲线的
2.(5 分)椭圆点
=1 的离心率为( )
A.
B.
C.
3.(5 分)若函数 f(x)=x2﹣ ,则 f′(1)=( )
A.1
B.2
C.3
D. D.4
4.(5 分)已知双曲线 C:
=1(a>0,b>0)的两条渐近线互相垂直,焦距为 8,
则 C 的方程为( )
A.
=1
B.
=1
C.
=1
D.
=1
5.(5 分)已知向量 () A.x=6,y=2
A. +
B.
C.
D.
8.(5 分)已知函数 f(x)= x+cos( +x),x∈[ , ],则 f(x)的极大值点为( )
第 1 页(共 16 页)
A.
B.
C.
D.
9.(5 分)已知函数 f(x)=mln(x+1)+x2﹣mx 在(1,+∞)上不单调,则 m 的取值范围
是( )
A.(4,+∞)
B.(﹣∞,4]
10,则 MF|=
.
16.(5 分)已知四棱柱 ABCD﹣A1B1C1D1 的底面是边长为 2 的正方形,侧棱与底面垂直.若
临沂市达标名校2019年高考一月数学模拟试卷含解析

临沂市达标名校2019年高考一月数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18B .200,20C .240,20D .200,182.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )A .83B .4C .163D .2033.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( )A .97B .53C .43D .13104.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛ ⎝的展开式中2x 项的系数为( ) A .60B .80C .90D .1205.5G 网络是一种先进的高频传输技术,我国的5G 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为0.042y x a =+.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5G 手机市场占有率能超过0.5%(精确到月)( )A .2020年6月B .2020年7月C .2020年8月D .2020年9月6.已知函数()cos 2321f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 7.已知非零向量,a b 满足a b λ=,若,a b 夹角的余弦值为1930,且()()23a b a b -⊥+,则实数λ的值为( ) A .49-B .23C .32或49-D .328.已知33a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题: ①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为213 ③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上. 其中所有正确命题的个数为( ) A .1B .2C .3D .410.已知复数z 满足i•z =2+i ,则z 的共轭复数是()A .﹣1﹣2iB .﹣1+2iC .1﹣2iD .1+2i11.已知集合1,2,3,4,6{}5,A =的所有三个元素的子集记为123,,,*,n B B B B n N ⋯∈.记i b 为集合i B 中的最大元素,则123n b b b b +++⋯+=( ) A .45B .105C .150D .21012.己知46a =,544log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则( ) A .a b c >> B .a c b >> C .b c a >> D .c a b >>二、填空题:本题共4小题,每小题5分,共20分。
山东省临沂市达标名校2019年高考一月质量检测数学试题含解析

山东省临沂市达标名校2019年高考一月质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在[]22-,上的函数()f x 与其导函数()f x '的图象如图所示,设O 为坐标原点,A 、B 、C 、D 四点的横坐标依次为12-、16-、1、43,则函数()xf x y e=的单调递减区间是( )A .14,63⎛⎫-⎪⎝⎭B .1,12⎛⎫-⎪⎝⎭C .11,26--⎛⎫⎪⎝⎭D .()1,22.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则AB =( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞3.i 是虚数单位,21iz i=-则||z =( ) A .1B .2C 2D .224.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图像上,则实数k 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫⎪⎝⎭C .1,13⎛⎫⎪⎝⎭D .1,22⎛⎫⎪⎝⎭5.双曲线C :22221x y a b-=(0a >,0b >)的离心率是32,则双曲线C 的焦距为( )A.3B .C .6D .6.若复数z 满足2(13)(1)i z i +=+,则||z =( )A B C D 7.下列函数中,在区间(0,)+∞上单调递减的是( ) A .12y x =B .2x y =C .12log y = xD .1y x=-8. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件9.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .2C D 10.已知函数()x af x x e -=+,()()ln 24a xg x x e-=+-,其中e 为自然对数的底数,若存在实数0x ,使()()003f x g x -=成立,则实数a 的值为( )A .ln21--B .1ln2-+C .ln 2-D .ln 211.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( ) A .84B .54C .42D .1812.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合A B =( )A .{2}B .{1,0,1}-C .{2,2}-D .{1,0,1,2}-二、填空题:本题共4小题,每小题5分,共20分。
2019年山东省高考数学模拟试卷及参考答案

2019年山东省高考数学模拟试卷()副标题题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.命题“∀x>1,x2-x>0”的否定是()A. ,B. ,C. ,D. ,2.椭圆点=1的离心率为()A. B. C. D.3.若函数f(x)=x2-,则f′(1)=()A. 1B. 2C. 3D. 44.已知双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,焦距为8,则C的方程为()A. B. C. D.5.已知向量,平面α的一个法向量,若AB⊥α,则()A. ,B. ,C.D.6.已知函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,则a=()A. 1B.C. eD.7.在三棱柱ABC-A 1B1C1中,若=,=,=,则=()A. B. C. D.8.已知函数f(x)=x+cos(+x),x∈[,],则f(x)的极大值点为()A. B. C. D.9.已知函数f(x)=m ln(x+1)+x2-mx在(1,+∞)上不单调,则m的取值范围是()A. B. C. D.10.已知S n为等差数列{a n}的前n项和,a1=1,公差为d,则“-1<d<0”是“S22+S52<26”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知双曲线=1(a>0,b>0)的离心率为2,F1,F2分别是双曲线的左右焦点,点M(-a,0),N(0,b),点P为线段MN上的动点,当•取得最小值和最大值时,△PF1F2的面积分别为S1,S2,则=()A. 4B. 8C.D.12.已知函数f(x)=x2+2a ln x+3,若∀x1,x2∈[4,+∞)(x1≠x2),∃a∈[2,3],<2m,则m的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数的最小值为______.14.直线l的一个方向向量为,直线n的一个方向向量为,则l与n的夹角为______.15.过焦点为F的抛物线y2=12x上一点M向其准线作垂线,垂足为N,若|NF|=10,则MF|=______.16.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直.若点C到平面AB1D1的距离为,直线B1D与平面AB1D1所成角的余弦值为______.三、解答题(本大题共6小题,共70.0分)17.如图,在正四棱柱ABCD-A1B1C1D1中,E为棱BB1的中点,AB=2,AA1=4.(1)若=x+y+z,求x+y+z;(2)以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,写出A1,C,D1,E 的坐标,并求异面直线DE与CD1所成角的余弦值.18.已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,(1)求E的轨迹方程;(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.19.如图,在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.(1)求异面直线EF与A1B所成角的正弦值;(2)求二面角A-B1F-E的余弦值.20.设函数f(x)=e2x-a(x+1).(1)讨论f(x)的单调性;(2)若f(x)>0对x∈R恒成立,求a的取值范围.21.已知椭圆C:的离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=kx+m(k>0,m2≠4)与椭圆C相交于A,B两点,若|AB|=4,试用m表示k.22.已知函数f(x)=x lnx+ax3-ax2,a∈R.(1)当a=0时,求f(x)的单调区间;(2)若函数g(x)=存在两个极值点x1,x2,求g(x1)+g(x2)的取值范围.答案和解析1.【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题“∀x>1,x2-x>0”的否定是:∃x0>1,x2-x≤0.故选:B.利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.【答案】A【解析】解:椭圆点=1,可得a=,b=,c=,可得e===.故选:A.求出椭圆的长半轴以及半焦距的大小,然后求解离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.3.【答案】C【解析】解:∵f(x)=x2-,∴f′(x)=2x+,则f′(1)=2+1=3.故选:C.求出原函数的导函数,取x=1得答案.本题考查导数的计算,关键是熟记初等函数的求导公式,是基础题.4.【答案】D【解析】解:双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,由2c=8,可得c=4由a2+b2=c2=16,可得a2=b2=8,故选:D.根据双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,再根据c=4,即可求出a2=b2=8.本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.5.【答案】A【解析】解:因为⊥α,所以,由,解得x=6,y=2.故选:A.根据空间向量的共线定理列方程组求出x、y的值.本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题.6.【答案】D【解析】解:函数,可得,函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,,所以a=-1.故选:D.求出函数的导数,求出切线的斜率,列出方程求解a即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.7.【答案】B【解析】解:=-=-=--.故选:B.利用=-=-即可得出.本题考查了向量三角形法则,考查了推理能力与计算能力,属于基础题.8.【答案】B【解析】解:f(x)=x+cos(+x)=x-sinx,则f′(x)=-cosx,令f′(x)>0,解得:-<x<-或<x<,令f′(x)<0,解得:-<x<,故f(x)在[-,-)递增,在(-,)递减,在(,]递增,故f(x)的极大值点是-,故选:B.求出函数的导数,求出函数的单调区间,从而求出函数的极大值点即可.本题考查了函数的单调性,极值点问题,考查导数的应用,是一道常规题.9.【答案】A【解析】解:函数的定义域为(0,+∞),函数的导数f′(x)=+2x-m=,若f(x)在(1,+∞)上不单调,即当x>1时f′(x)=0有解,即2x2+(2-m)x=0,则x>1时,有解,由2x2+(2-m)x=0得2x+(2-m)=0,即x=,则>1即可,得m>4,即实数m的取值范围是(4,+∞),故选:A.求函数的导数,结合函数在(1,+∞)上不单调,得当x>1时f′(x)=0有解,结合一元二次方程进行求解即可.本题主要考查函数导数的应用,结合函数单调性与导数之间的关系转化为f′(x)=0,有解是解决本题的关键.10.【答案】B【解析】解:∵S22+S52<26,∴(2+d)2+25(1+2d)2<26,∴(101d+3)(d+1)<0,∴-1<d<-,∵-1<d<0推不出-1<d<-,-1<d<-⇒-1<d<0,∴“-1<d<0”是“S22+S52<26”的必要不充分条件.故选:B.解出关于d的不等式,结合充分必要条件的定义,从而求出答案.本题考查了充分必要条件,考查解不等式问题,考查了等差数列的前n项公式,是一道基础题.11.【答案】A【解析】解:•取==PO2-c2.∵双曲线=1(a>0,b>0)的离心率为2,∴1+=4,即b=a.当PO⊥MN时,PO最小,当P与N重合时PO最大.当PO⊥MN时,由,可得,则=,故选:A.由•==PO2-c2.可得当PO⊥MN时,PO最小,当P与N重合时PO最大.求得面积S1,S2,即可.本题考查双曲线的定义、方程和性质,考查三角形的面积公式的运用,注意运用定义法解题,以及离心率公式,考查运算能力,属于中档题.12.【答案】D【解析】解:设x1>x2,由<2m,得f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,即在[4,+∞)上恒成立,整理得在[4,+∞)上恒成立,∵a∈[2,3],∴函数在[4,+∞)上单调递增,故有,∵∃a∈[2,3],∴,即.故选:D.设x1>x2,把<2m转化为f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,转化为在[4,+∞)上恒成立,求出函数在[4,+∞)上的最大值即可求得m的范围.本题考查利用导数研究函数的单调性,考查数学转化思想方法,训练了利用函数单调性求函数的最值,是中档题.13.【答案】【解析】解:因为,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以.故答案为:.求出函数的导数,利用函数的单调性转化求解函数的最小值.本题考查函数的导数的应用,函数的最值的求法,考查计算能力.14.【答案】【解析】解:∵直线l的一个方向向量为,直线n的一个方向向量为,,∴l与n的夹角为.故答案为:.利用空间向量夹角公式直接求解.本题考查两直线的夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,是基础题.15.【答案】【解析】解:设M(x0,y),F(3,0).∵|NF|=10,∴=102,=12x,解得x=,则MF|=+3=.故答案为:.设M(x0,y),F(3,0).由|NF|=10,可得=102,又=12x,联立解出即可得出.本题考查了抛物线的定义标准方程及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】解:设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,则A(2,0,0),B1(2,2,t),D1(0,0,t),D(0,0,0),C(0,2,0),=(0,2,t),=(-2,0,t),=(2,2,t),=(-2,2,0),设平面AB1D1的法向量=(x,y,z),则,取x=1,得=(1,-1,),∵点C到平面AB1D1的距离为,∴d===,由t>0,解得t=2,∴平面AB1D1的法向量=(1,-1,),=(2,2,2),设直线B1D与平面AB1D1所成角为θ,则sinθ===,∴cosθ==.∴直线B1D与平面AB1D1所成角的余弦值为.故答案为:.设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法求出t=2,从而求出平面AB1D1的法向量,利用向量法能求出直线B1D与平面AB1D1所成角的余弦值.本题考查线面线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)建立如图所示的空间直角坐标系得:D1(0,0,4),D(0,0,0),E(2,2,2),A(2,0,0),C(0,2,0),则=(2,2,2),=(2,0,0),=(0,2,0),=(0,0,4),又=x+y+z,所以,即,故x+y+z=(2)由图可得:A1(2,0,4),C(0,2,0),D1(0,0,4),E(2,2,2),所以=(2,2,2),=(0,-2,4),设,的夹角为θ,则cosθ==,则异面直线DE与CD1所成角的余弦值为,故答案为:.【解析】(1)由空间直角坐标系、空间点的坐标得:=x+y+z,所以,即,故x+y+z=(2)利用向量的数量积求异面直线所成的角得:设,的夹角为θ,则cosθ==,则异面直线DE与CD所成角的余弦值为,1得解.本题考查了空间直角坐标系、空间点的坐标及利用向量的数量积求异面直线所成的角,属中档题.18.【答案】解:(1)由题设知,点C到点F的距离等于它到直线x=-2的距离,所以点C的轨迹是以F为焦点x=-2为基准线的抛物线,所以所求E的轨迹方程为y2=8x.(2)由题意已知,直线l的斜率显然存在,设直线l的斜率为k,P(x1,y1),Q(x2,y2),则有,两式作差得y 12-y22=8(x1-x2)即得,因为线段PQ的中点的坐标为(1,1),所以k=4,则直线l的方程为y-1=4(x-1),即y=4x-3,与y2=8x联立得16x2-32x+9=0,得,.【解析】(1)利用动圆C过定点F(2,0),且与直线l:x=-2相切,所以点C的1轨迹是以F为焦点x=-2为基准线的抛物线,即可求动点C的轨迹方程;(2)先利用点差法求出直线的斜率,再利用韦达定理,结合弦长公式,即可求|PQ|.本题考查轨迹方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题19.【答案】解:(1)∵在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.∴以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,则E(2,0,4),F(0,2,8),A1(0,0,0),B(0,4,8),=(-2,2,4),=(0,4,8),设异面直线EF与A1B所成角为θ,则cosθ==,sinθ==,∴异面直线EF与A1B所成角的正弦值为.(2)A(0,0,8),B 1(0,4,0),=(0,-2,8),=(0,-4,8),=(2,-4,4),设平面AB 1F的法向量=(1,0,0),设平面B 1EF的法向量=(x,y,z),则,取z=1,得=(4,-2,1),设二面角A-B1F-E的平面角为θ,则cosθ===.∴二面角A-B1F-E的余弦值为.【解析】(1)以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与A1B所成角的正弦值.(2)求出平面AB1F的法向量和平面B1EF的法向量,利用向量法能求出二面角A-B1F-E的余弦值.本题考查异面直线所成角的正弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(1)由函数的解析式可得:f′(x)=2e2x-a,当a≤0时,f′(x)>0,f(x)在R上单调递增,当a>0时,由f’(x)=0可得,则单调递减,单调递增.(2)由题意可得:e2x-a(x+1)>0,e2x>a(x+1)恒成立,很明显a<0不合题意,当a≥0时,原问题等价于指数函数y=(e2)x的图象恒在y =a (x+1)的上方,直线y=a(x+1)恒过定点(-1,0),考查函数y=(e2)x过( -1,0)的切线方程:易知切点坐标为,切线斜率为,故切线方程为:,切线过(-1,0),故,解得:,综上可得,实数a的取值范围是.【解析】(1)首先求得导函数,然后分类讨论确定函数的单调性即可;(2)将原问题转化为函数过一点的切线问题,利用导函数研究切线的性质即可确定实数a的取值范围.本题主要考查导函数研究函数的切线方程,导函数研究函数的单调性,分类讨论的数学思想等知识,属于中等题.21.【答案】解:(1)由题意有,解得故椭圆C的方程为.(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-8=0,所以,.因为|AB|=4|,所以,所以,整理得k2(4-m2)=m2-2,显然m2≠4,所以.又k>0,故.【解析】(1)由题意可得,解得a,b即可.(2)利用直线与椭圆方程,利用弦长公式,韦达定理,求得,整理得,即可求解.本题考查椭圆标准方程的求法,考查椭圆的简单性质,训练了直线与椭圆位置关系的应用,属中档题.22.【答案】解:(1)当a=0时,f(x)=x lnx,f′(x)=ln x+1,令f′(x)<0,解得:0<x<,令f′(x)>0,解得:x>,故函数f(x)在(0,)递减,在(,+∞)递增;(2)g(x)==ln x+ax2-ax(x>0),g′(x)=,由题意知:x1,x2是方程g′(x)=0的两个不相等的正实根,即x1,x2是方程ax2-ax+1=0的两个不相等的正实根,故,解得:a>4,∵t(a)=g(x1)+g(x2)=a-ax 1+ln x1+a-ax2+ln x2=a[-2x 1x2]-a(x1+x2)+ln(x1x2)=-a-ln a-1是关于a的减函数,故t(a)<t(4)=-3-ln4,故g(x1)+g(x2)的范围是(-∞,-3-ln4).【解析】(1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出a的范围,得到t(a)=g(x1)+g(x2)的解析式,结合函数的单调性求出其范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.。
2019年山东省高考数学模拟试卷(文科)含答案解析

2019年山东省高考数学模拟试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={1,2,4,8,16},B={y |y=log 2x ,x ∈A },则A ∩B=( ) A .{1,2} B .{2,4,8} C .{1,2,4} D .{1,2,4,8}2.已知z (2﹣i )=1+i ,则=( )A .B .C .D .3.已知,命题p :已知m ≠0,若2a >2b ,则am 2>bm 2,则其否命题为( ) A .已知m=0,若2a >2b ,则am 2>bm 2 B .已知m ≠0,若2a ≤2b ,则am 2>bm 2 C .已知m ≠0,若2a >2b ,则am 2≤bm 2 D .已知m ≠0,若2a ≤2b ,则am 2≤bm 24.已知向量,|,则<等于( )A .B .C .D .5.函数f (x )=cosx •log 2|x |的图象大致为( )A .B .C .D .6.如图为某几何体的三视图,则该几何体的体积等于( )A .B .C .D .7.已知变量x ,y 满足,则z=2x ﹣y 的最大值为( )A.2 B.10 C.1 D.128.2019年2月,为保障春节期间的食品安全,某市质量监督局对超市进行食品检查,如图所示是某品牌食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,则的最小值为()A.9 B.C.8 D.49.过抛物线y2=4ax(a>0)的焦点F作斜率为﹣1的直线,该直线与双曲线=1(a>0,b>0)的两条渐近线的交点分别为B,C,若x C是x B与x F的等比中项,则双曲线的离心率等于()A.B.C. D.10.设函数y=f(x)是定义在R上的可导函数,当x≠0时,f(x)<﹣f′(x),则函数g(x)=f(x)﹣的零点个数为()A.0 B.1 C.2 D.0或2二、填空题(每题5分,满分25分,将答案填在答题纸上)11.函数f(x)=的定义域为_______.12.△ABC的三内角A、B、C的对边边长分别为a、b、c,若a=b,A=2B,则sinB=_______.13.如图是某算法的程序框图,若实数x∈(﹣1,4),则输出的数值不小于30的概率为_______.14.已知直线y=﹣2x+a与圆C:x2+y2﹣4x+4y+4=0相交于A,B两点,且△ABC的面积S=2,则实数a=_______.15.设互不相等的平面向量组(i=1,2,…,n)满足:①||=2;②=0(1≤i,j≤n).若,记b n=|,则数列{b n}的前n项和S n为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数(ω>0)的两条对称轴之间的最小距离为.(Ⅰ)求ω的值以及f(x)的最大值;(Ⅱ)已知△ABC中,cosA<0,若f(A)≥m恒成立,求实数m的取值范围.17.2019年山东省东部地区土豆种植形成初步规模,出口商在各地设置了大量的代收点.已(Ⅰ)求m、n的值;(Ⅱ)利用分层抽样的方法从这n袋土豆中抽取10袋,剔除特级品后,再从剩余土豆中任意抽取两袋,求抽取的两袋都是一等品的概率.18.如图几何体中,长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE ∥BC,BD⊥AD,M为AB的中点..(Ⅰ)证明:EM∥平面ACDF;(Ⅱ)证明:BD⊥平面ACDF.19.已知数列{a n}的前n项和为S n,对一切正整数n,点P n(n,S n)在函数f(x)=x2﹣x的图象上.等比数列{b n}单调递减,且b1b2b3=8,b1+b2+b3=.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n是a n、b n的等比中项,求数列{c n2}的前n项和T n.20.已知f(x)=a+lnx,记g(x)=f′(x).(Ⅰ)已知函数h(x)=f(x)•g(x)在[1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)(ⅰ)求证:当a=1时,f(x)≤x;(ⅱ)当a=2时,若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求实数t的取值范围.21.已知椭圆C:=1(a>b>0)的离心率为,在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于不同的两点M、N,O为坐标原点,且k OM•k ON=﹣.(ⅰ)求证:△OMN的面积为定值;(ⅱ)求的最值.2019年山东省高考数学模拟试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={1,2,4,8,16},B={y |y=log 2x ,x ∈A },则A ∩B=( ) A .{1,2} B .{2,4,8} C .{1,2,4} D .{1,2,4,8} 【考点】交集及其运算.【分析】先求出集合B ,再由交集的定义求A ∩B . 【解答】解:∵A={1,2,4,8,16}, ∴B={y |y=log 2x ,x ∈A }={0,1,2,3,4}, ∴A ∩B={1,2,4}. 故选:C .2.已知z (2﹣i )=1+i ,则=( )A .B .C .D .【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案. 【解答】解:由z (2﹣i )=1+i ,得,∴.故选:D .3.已知,命题p :已知m ≠0,若2a >2b ,则am 2>bm 2,则其否命题为( ) A .已知m=0,若2a >2b ,则am 2>bm 2 B .已知m ≠0,若2a ≤2b ,则am 2>bm 2 C .已知m ≠0,若2a >2b ,则am 2≤bm 2 D .已知m ≠0,若2a ≤2b ,则am 2≤bm 2 【考点】四种命题间的逆否关系.【分析】由否命题的定义直接写出结果盆选项即可. 【解答】解:命题p :已知m ≠0,若2a >2b ,则am 2>bm 2, 则其否命题为:已知m ≠0,若2a ≤2b ,则am 2≤bm 2 故选:D .4.已知向量,|,则<等于( )A .B .C .D .【考点】平面向量数量积的运算.【分析】求出,代入向量的夹角公式计算.【解答】解:||=,=2,∵()()=1,∴∴=﹣1.∴cos<=.∴<=.故选D.5.函数f(x)=cosx•log2|x|的图象大致为()A.B.C.D.【考点】函数的图象.【分析】由条件判断函数为偶函数,且在(0,1)上单调递增,从而得出结论.【解答】解:由函数f(x)=cosx•log2|x|为偶函数,可得它的图象关于y轴对称,故排除A、D.在区间(0,1)上,f(x)=cosx•log2x,f′(x)=﹣sinx•log2x+>0,故函数f(x)在(0,1)上单调递增,故排除C,故选:B.6.如图为某几何体的三视图,则该几何体的体积等于()A.B.C.D.【考点】由三视图求面积、体积.【分析】几何体为长方体和两个半球的组合体.【解答】解:由三视图可知几何体为长方体和两个半球的组合体,长方体的棱长分别为2,2,1,半球的半径为1.∴几何体的体积V=2×2×1+=4+.故选:C.7.已知变量x,y满足,则z=2x﹣y的最大值为()A.2 B.10 C.1 D.12【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z=2x﹣y得y=2x﹣z作出不等式组,对应的平面区域如图(阴影部分):平移直线y=2x﹣z由图象可知当直线y=2x﹣z过点A时,直线y=2x﹣z的截距最小,此时z最大,由,解得,即A(4,﹣2).代入目标函数z=2x﹣y,得z=2×4+2=10,∴目标函数z=2x﹣y的最大值是10.故选:B.8.2019年2月,为保障春节期间的食品安全,某市质量监督局对超市进行食品检查,如图所示是某品牌食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,则的最小值为()A.9 B.C.8 D.4【考点】众数、中位数、平均数;茎叶图.【分析】根据平均数的定义求出a+b=2,再利用基本不等式求出的最小值即可.【解答】解:根据茎叶图中的数据,该组数据的平均数为=(a+11+13+20+b)=11.5,∴a+b=2;∴=+=2+++≥2+=,当且仅当a=2b,即a=,b=时取“=”;∴+的最小值为.故选:B.9.过抛物线y2=4ax(a>0)的焦点F作斜率为﹣1的直线,该直线与双曲线=1(a>0,b>0)的两条渐近线的交点分别为B,C,若x C是x B与x F的等比中项,则双曲线的离心率等于()A.B.C. D.【考点】抛物线的简单性质.【分析】求出直线的方程和双曲线的渐近线方程,通过解方程组得出x C,x B,根据等比中项的性质列方程化简得出a,b的关系.代入离心率公式计算.【解答】解:抛物线的焦点为F(a,0),∴直线方程为y=﹣x+a.∵双曲线=1的渐近线为y=±,∴直线y=﹣x+a与渐近线的交点横坐标分别为,.∵x C是x B与x F的等比中项,∴()2=a•或()2=a,∴3ab+b2=0(舍)或3ab﹣b2=0,∴b=3a.∴c==,∴双曲线的离心率e==.故选:D.10.设函数y=f(x)是定义在R上的可导函数,当x≠0时,f(x)<﹣f′(x),则函数g(x)=f(x)﹣的零点个数为()A.0 B.1 C.2 D.0或2【考点】利用导数研究函数的单调性.【分析】令m(x)=x2f(x),根据当x≠0时,f(x)<﹣f′(x),求出m(x)的单调性,令h(x)=x2g(x)=x2f(x)﹣1,求出h(x)的单调性,从而求出函数的零点的个数.【解答】解:∵满足当x≠0时,f(x)<﹣f′(x),∴2f(x)+xf′(x)<0,令m(x)=x2f(x),则g′(x)=x[2f(x)+xf′(x)],∴当x>0时,g′(x)<0;当x<0时,g′(x)>0,∴g(x)在(0,+∞)递减,在(﹣∞,0)递增,令h(x)=x2g(x)=x2f(x)﹣1,则h′(x)=m′(x),∴当x>0时,函数h(x)单调递减;当x<0时,函数h(x)单调递增,∴h(x)的最大值是h(0)=0,显然g(x)的定义域是x≠0,∴关于x的函数g(x)=f(x)﹣的零点个数是0个.故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.函数f(x)=的定义域为{x|0<x≤2且x≠1}.【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:函数f(x)=,∴,解得,∴f(x)的定义域为{x|0<x≤2且x≠1}.故答案为:{x|0<x≤2且x≠1}.12.△ABC的三内角A、B、C的对边边长分别为a、b、c,若a=b,A=2B,则sinB=.【考点】正弦定理.【分析】a=b,利用正弦定理可得:sinA=sinB.由A=2B,利用倍角公式可得:sinA=sin2B=2sinBcosB,化为cosB=,再利用同角三角函数基本关系式即可得出.【解答】解:∵a=b,∴sinA=sinB,∵A=2B,∴sinA=sin2B=2sinBcosB,∴sinB=2sinBcosB,∴cosB=,∵B∈(0,π),∴sinB==.故答案为:.13.如图是某算法的程序框图,若实数x∈(﹣1,4),则输出的数值不小于30的概率为.【考点】程序框图.【分析】由程序框图的流程,写出前三次循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于30得到输入值的范围,利用几何概型的概率公式求出输出的x不小于30的概率.【解答】解:设实数x∈(﹣1,4),经过第一次循环得到x=2x+2,n=3,经过第二循环得到x=2(2x+2)+2,n=5,经过第三循环得到x=2[2(2x+2)+2]+2,n=7,此时输出x,输出的值为8x+14,令8x+14≥30,得x≥2,由几何概型得到输出的x不小于30的概率为P==.故答案为:.14.已知直线y=﹣2x+a与圆C:x2+y2﹣4x+4y+4=0相交于A,B两点,且△ABC的面积S=2,则实数a=2±.【考点】直线与圆的位置关系.【分析】根据圆的标准方程,求出圆心和半径,利用△ABC的面积S=2,可得圆心C到直线AB的距离d=,根据点到直线的距离公式即可得到结论.【解答】解:圆C:x2+y2﹣4x+4y+4=0可化为(x﹣2)2+(y+2)2=4∴圆心C(2,﹣2),半径r=2,∵△ABC的面积S=2∴AC⊥BC,∴圆心C到直线AB的距离d=,即d==,解得a=2±,故答案为:2±.15.设互不相等的平面向量组(i=1,2,…,n)满足:①||=2;②=0(1≤i,j≤n).若,记b n=|,则数列{b n}的前n项和S n为S n=2n2+2n(n=1,2).【考点】平面向量数量积的运算.【分析】根据向量两两垂直可知平面向量组只有两个向量,代入计算即可.【解答】解:∵=0,∴,,∵,∴.∴=﹣,与矛盾.∴n最大值为2.∴=,.∴b1=,b2=||2==8.∴S1=4,S2=12.∴S n=2n2+2n.故答案为2n2+2n.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数(ω>0)的两条对称轴之间的最小距离为.(Ⅰ)求ω的值以及f(x)的最大值;(Ⅱ)已知△ABC中,cosA<0,若f(A)≥m恒成立,求实数m的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)由三角函数公式化简可得f(x)=sin(2ωx﹣)﹣,由函数图象和周期公式可得ω=1,易得最大值;(Ⅱ)可得<A<π,由三角函数最终可得sin(2A﹣)﹣的最小值,由恒成立可得.【解答】解:(Ⅰ)由三角函数公式化简可得f(x)=sinωxcosωx﹣cos2ωx=sin2ωx﹣=sin(2ωx﹣)﹣,∵函数f(x)图象两条对称轴之间的最小距离为,∴周期T==2×,解得ω=1,∴f(x)=sin(2x﹣)﹣,∴f(x)的最大值为1﹣=;(Ⅱ)∵△ABC中,cosA<0,∴<A<π,∴<2A﹣<,∴﹣1≤sin(2A﹣)<,∴﹣≤sin(2A﹣)﹣<0,要使f(A)≥m恒成立,则m≤f(A)=sin(2A﹣)﹣的最小值,故实数m的取值范围为(﹣∞,﹣]17.2019年山东省东部地区土豆种植形成初步规模,出口商在各地设置了大量的代收点.已(Ⅰ)求m、n的值;(Ⅱ)利用分层抽样的方法从这n袋土豆中抽取10袋,剔除特级品后,再从剩余土豆中任意抽取两袋,求抽取的两袋都是一等品的概率.【考点】列举法计算基本事件数及事件发生的概率;分层抽样方法.【分析】(Ⅰ)由已知得0.30+2m+m+0.10=1,由此能求出m,n.(Ⅱ)由(Ⅰ)知利用分层抽样方法从这n袋土豆中抽取10袋土豆,由特级品有3袋,一等品有4袋,二等品有2袋,三等品有1袋,由此利用等可能事件概率计算公式能求出抽取的两袋都是一等品的概率.【解答】解:(Ⅰ)由已知得0.30+2m+m+0.10=1,解得m=0.20,∴n===200.(Ⅱ)由(Ⅰ)知利用分层抽样方法从这n袋土豆中抽取10袋土豆,由特级品有3袋,一等品有4袋,二等品有2袋,三等品有1袋,记一等品的四袋分别为A、B、C、D,二等品的两袋为a,b,三等品的一袋为c,则从中抽取两袋,不同的结果为:n==21,抽取的两袋都是一等品包含的基本事件个数m==6,∴抽取的两袋都是一等品的概率p==.18.如图几何体中,长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE ∥BC,BD⊥AD,M为AB的中点..(Ⅰ)证明:EM∥平面ACDF;(Ⅱ)证明:BD⊥平面ACDF.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)取BC中点N,连结EN、MN,推导出平面EMN∥平面ACDF,由此能证明EM∥平面ACDF.(2)由已知AC⊥平面BCDE,从而AC⊥BD,再由BD⊥AD,AC∩AD=A,能证明BD⊥平面ACDF.【解答】证明:(Ⅰ)取BC中点N,连结EN、MN,∵长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE∥BC,BD⊥AD,M为AB的中点,∴EN∥CD,MN∥AC,∵EN∩MN=N,CD∩AC=C,EN,MN⊂平面EMN,CD,AC⊂平面ACDF,∴平面EMN∥平面ACDF,∵EM⊂平面EMN,∴EM∥平面ACDF.(2)∵长方形ACDF中,AC⊥CD,长方形ACDF所在平面与梯形BCDE所在平面垂直,∴AC⊥平面BCDE,∵BD⊂平面BCDE,∴AC⊥BD,∵BD⊥AD,AC∩AD=A,∴BD⊥平面ACDF.19.已知数列{a n}的前n项和为S n,对一切正整数n,点P n(n,S n)在函数f(x)=x2﹣x的图象上.等比数列{b n}单调递减,且b1b2b3=8,b1+b2+b3=.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n是a n、b n的等比中项,求数列{c n2}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)点P n(n,S n)在函数f(x)=x2﹣x的图象上,可得S n=n2﹣n,利用递推关系即可得出a n.设等比数列{b n}的公比为q,由b1b2b3=8,b1+b2+b3=.可得=8,+b2q=,解出即可得出.(II)利用等比数列的通项公式、“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)点P n(n,S n)在函数f(x)=x2﹣x的图象上,∴S n=n2﹣n,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.∴当n=1时,a1=0;当n≥2时,a n=S n﹣S n﹣1当n=1时上式也成立,∴a n=2n﹣2.设等比数列{b n}的公比为q,∵b1b2b3=8,b1+b2+b3=.∴=8, +b2q=,解得b2=2,q=或3,∵数列{b n}单调递减,∴q=,∴b n==2×.(II)∵c n是a n、b n的等比中项,∴=a n b n=(2n﹣2)×=.∴数列{c n2}的前n项和T n=+…+,=4+…+,∴==4=4,解得T n=9﹣.20.已知f(x)=a+lnx,记g(x)=f′(x).(Ⅰ)已知函数h(x)=f(x)•g(x)在[1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)(ⅰ)求证:当a=1时,f(x)≤x;(ⅱ)当a=2时,若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求实数t的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出导数,由题意可得h′(x)≤0恒成立.即有1﹣a≤lnx在x≥1恒成立,求得右边函数的最小值即可;(Ⅱ)(i)令函数y=1+lnx﹣x,求出导数,判断单调性,即可得证;(ii)当a=2时,不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立即为t≤(1+)(2+lnx)在x∈[1,+∞)恒成立.令函数y=(1+)(2+lnx),求得导数,判断单调性,可得最小值,即可得到所求范围.【解答】解:(Ⅰ)g(x)=f′(x)=,h(x)=f(x)•g(x)=(a+lnx)•,h′(x)=﹣(a+lnx)•,由题意可得h′(x)≤0恒成立.即有1﹣a≤lnx在x≥1恒成立,由lnx≥0,则1﹣a≤0,即为a≥1;(Ⅱ(i)证明:令函数y=1+lnx﹣x,y′=﹣1=,当x>1时,y′<0,函数y递减;当0<x<1时,y′>0,函数y递增.即有x=1处取得极大值,也为最大值,且为0,则1+lnx﹣x≤0,则f(x)≤x;(ii)当a=2时,不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立即为t≤(1+)(2+lnx)在x∈[1,+∞)恒成立.令函数y=(1+)(2+lnx),则y′=,由x≥1时,x﹣1≥lnx成立,可得y′≥0,函数y递增.则函数y的最小值为4.则t≤4.21.已知椭圆C:=1(a>b>0)的离心率为,在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于不同的两点M、N,O为坐标原点,且k OM•k ON=﹣.(ⅰ)求证:△OMN的面积为定值;(ⅱ)求的最值.【考点】椭圆的简单性质.【分析】(I)椭圆C的离心率为,在椭圆C上.可得,=1,a2=b2+c2,联立解得即可得出.(II))(i)证明:当l⊥x轴时,设M(x0,y0),N(x0,﹣y0),则+=1,由k OM•k ON=﹣,可得=﹣,联立解得即可得出.当l与x轴不垂直时,设直线l的方程为:y=kx+m,M(x1,y1),N(x2,y2),与椭圆方程联立化为:(1+4k2)x2+8kmx+4m2﹣4=0,△>0,可得1+4k2>m2.利用根与系数的关系可得|MN|=.由k OM•k ON=﹣,可得=﹣,化为4(kx1+m)(kx2+m)+x1x2=0,把根与系数的关系代入可得:2m2=1+4k2.把m2=代入|MN|,可得|MN|=,原点O到直线l的距离d=.即可得出.S△MON=|MN|d=1为定值.(ii)当l⊥x轴时,由(i)可得:=.当l与x轴不垂直时,可得:=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+mk(x1+x2)+m2=.把m2=代入,化简整理即可得出.【解答】解:(I)∵椭圆C的离心率为,在椭圆C上.∴,=1,a2=b2+c2,联立解得a=2,b=1,c=,∴椭圆C的标准方程为+y2=1.(II)(i)证明:当l⊥x轴时,设M(x0,y0),N(x0,﹣y0),则+=1,由k OM•k ON=﹣,可得=﹣,联立解得:,,∴S△MON==1.当l与x轴不垂直时,设直线l的方程为:y=kx+m,M(x1,y1),N(x2,y2),联立,化为:(1+4k2)x2+8kmx+4m2﹣4=0,△>0,可得1+4k2>m2.∴x1+x2=,x1x2=,则|MN|===.由k OM•k ON=﹣,可得=﹣,化为4(kx1+m)(kx2+m)+x1x2=0,即(1+4k2)x1x2+4mk(x1+x2)+4m2=0,∴﹣+4m2=0,化为:2m2=1+4k2.把m2=代入|MN|,可得|MN|=,原点O到直线l的距离d=.∴S△MON=|MN|d=×|m|==1.综上可得S△MON=1为定值.(ii)当l⊥x轴时,由(i)可得:==.当l与x轴不垂直时,可得:=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+mk (x1+x2)+m2=﹣+m2=.把m2=代入可得:==﹣.由△>0,可得1+4k2>恒成立,∴k∈R.∴∈.综上可得:∈.∴的最小值为,最大值为.2019年9月8日。
山东省临沂市临沭县第一中学2019届高三数学上学期开学考试试题理(扫描版,无答案)

山东省临沂市临沐县第一中学2019届高三数学上学期开学考试试题理(扫描版,无答案)临沐一中高16级高三第一次摸底考试理科数学i・答卷前,考生务必将自己的姓名和准考证号填写在答題卡上.2.回答选择题时•选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动.用權皮擦干净后・再选涂其它答案标号•回答非选择题时.将答案写在答题卡上•写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择廳:本题共12小题.毎小題5分,共60分.在毎小题给出的四个选项中.只有一项是符合JH目要求的.1.己知集合 ^ = {x|x-1^0}.加{0,1, 2} •则4CIB=A. {0}B. {】}C. {1,2}D. {0,1,2}2.(l + i)(2-i) =A. -3-iB. -3 + iC. 3-iD. 3 + i3.中国古建筑借助桦卯将木构件连接起来,构件的凸出部分叫棹头,凹进部分叫卯眼,图中木构件右边的小长方体是棹头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是则cos 2a =C. D.5.(丘+壬)的展开式中的系数为A. 10 B・ 206・宜线x+y+2 = 0分别与X轴,丿轴交于乩C. 40D. 80B两駄点P在圆(x-2/+/=2上,则厶4肿面积的取值范围是A. [2, 6]B. [4,8]C.[迈,3迈]D.〔2血,3坷A2八••・=1 (。
>0, b>0)的左、右焦点.O 是坐标原点.过耳作C 的一条渐近线的垂线,垂足为尸.若I";卜&|0尸|・则C 的离心率为A. 75B. 2 C ・D ・近12・设 a = logg°3,6 =阳2°・3,则A. a + b<ab <0B. ab <a + b <QC. a<0<abD. ab <0<ab二 填空题:本题共4小JR.每小題5分.共20分・13.已知向量g=Q2),戶(2»-2),尸(1,2)・若c 〃(加+6),则2= ___________ ・ 14.曲线F = (Q + ])(/在点(0, 1)处的切线的斜率为-2,则。
临沭县一中2018-2019学年高三上学期11月月考数学试卷含答案
临沭县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}2. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为()A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或23. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α4. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 25. 某几何体的三视图如图所示,则该几何体的表面积为()A .8+2B .8+8C .12+4D .16+46. 下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°7. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .22,0(33,0(55,0()66,0(8. 函数y=sin (2x+)图象的一条对称轴方程为()A .x=﹣B .x=﹣C .x=D .x=9. 函数y=a 1﹣x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny ﹣1=0(mn >0)上,则的最小值为( )A .3B .4C .5D .6班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2B.1C.D.11.设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12B.10C.8D.212.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()A.9B.11C.13D.15二、填空题13.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是 ;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.14.复数z=(i虚数单位)在复平面上对应的点到原点的距离为 .15.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为 .14.已知集合,若3∈M,5∉M,则实数a的取值范围是 .16.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|= . 17.已知直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),则ab的最大值是 .18.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是 .三、解答题19.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.20.已知cos(+θ)=﹣,<θ<,求的值.21.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.22.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.23.已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数+2ax .若在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围. 24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。
临沂市2019届高三下学期第一次模拟考试(数学文)
临沂市高三教学质量检测考试文科数学2019.2注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数21iz i=-(i 为虚数单位)对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}{}31,10xA xB x x =<=+>,则A B ⋂= A .(),1-∞-B .(),0-∞C .()1,0-D .()1,1-3.已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是A .众数为7B .极差为19C .中位数为64.5D .平均数为644.已知双曲线()222210,0x y a b a b-=>>的一个焦点F(2,0),一条渐近线的斜率为3,则该双曲线方程为A .2213y x -= B .2213x y -= C .2213y x -= D .2213x y -= 5.将函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位,得到函数()g x 的图象,则下列说法正确的是A .()g x 的一个周期为2πB .362g π⎛⎫= ⎪⎝⎭C .3x π=是()g x 图象的一条对称轴D .()g x 是偶函数6.“不等式220x x m -+≥在R 上恒成立”的一个充分不必要条件是A .m ≥1B .m ≤1C .m ≥0D .m ≥27.已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2log y x =的图象关于y x =对称,则()()12g g -+-= A .-7 B .-9 C .-11D .-138.执行如图所示的程序框图,输出的值为 A .0B .12C .1D .-19.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a=2,b=3,C=60°,则tanA= A .33B .32 C .3D .23310.某几何体的三视图如图,其中侧视图为半圆,则该几何体的表面积为 A .64π+ B .63π+ C .94π+ D .93π+ 11.“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明。
2019年山东省临沂市临沭县实验中学高三数学文模拟试卷含解析
2019年山东省临沂市临沭县实验中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数f(x)=|sinx|?cosx,则下列说法正确的是()A.f(x)的图象关于直线x=对称B.f(x)的周期为πC.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间[,]上单调递减参考答案:D【考点】命题的真假判断与应用;三角函数的化简求值;正弦函数的图象.【分析】f(x)=|sinx|?cosx=,进而逐一分析各个答案的正误,可得结论.【解答】解:∵f(x)=|sinx|?cosx=,故函数的图象关于直线x=kπ,k∈Z对称,故A错误;f(x)的周期为2π中,故B错误;函数|f(x)|的周期为,若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z),故C错误;f(x)在区间[,]上单调递减,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了三角函数的图象和性质,难度中档.2. 如图所示,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则此几何体的体积为()(A)(B)2 (C)4 (D)参考答案:A由题意知,根据给定的三视图可知,该几何体为一个三棱锥,其底面面积为,三棱锥的高为2,所以此几何体的体积为,故选A.3. 已知数列{a n}中,a1=3,a2=6,a n+2=a n+1﹣a n,则a2015=( )A.﹣6 B.6 C.﹣3 D.3参考答案:C【考点】数列递推式.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】利用a1=3,a2=6,a n+2=a n+1﹣a n,可得a n+5=a n.即可得出.【解答】解:∵a1=3,a2=6,a n+2=a n+1﹣a n,∴a3=3,a4=﹣3,a5=﹣6,a5=﹣3,a6=3,a7=6,….∴a n+5=a n.则a2015=a5×403=a5=﹣3.故选:C.【点评】本题考查了递推关系的应用、数列的周期性,考查了推理能力与计算能力,属于中档题.4. 在数列中,,,则的值为()A. B. C. D.参考答案:C5. 下列函数中,定义域是且为增函数的是()A.B.C.D.参考答案:B略6. 如果用C,R和I分别表示复数集,实数集和纯虚数集,其中C为全集,那么有A.C=R∪IB.R∩I={0}C.?U R=C∩ID. R∩I=?参考答案:D如果用C,R和I分别表示复数集,实数集和纯虚数集,其中C为全集,那么有R∩I=?,故选择D.7. 同时具有性质:“①最小正周期为;②图象关于直线对称;③在上是增函数”的一个函数是A. B.C. D.参考答案:D8. 已知,则的值是()A. B. C. D.参考答案:A9. 已知集合A={x|>0},B={x|lg(x+9)<1},则A∩B=()A.(﹣1,1)B.(﹣∞,1)C.{0} D.{﹣1,0,1}参考答案:A【考点】交集及其运算.【分析】解不等式求得集合A,求函数定义域得集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|>0}={x|(1﹣x)(1+x)>0}={x|﹣1<x<1},B={x|lg(x+9)<1}={x|0<x+9<10}={x|﹣9<x<1},则A∩B={x|﹣1<x<1}=(﹣1,1).故选:A.10. 某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位长度:,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)( )A. B.C. D.300参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)满足xf′(x)=(x﹣1)f(x),且f(1)=1,则f(x)的值域为.参考答案:(﹣∞,0)∪[1,+∞)【考点】利用导数研究函数的单调性.【分析】根据条件构造函数g(x)=xf(x),求函数的导数,结合函数极值和导数之间的关系求函数的极值和单调性即可得到结论.【解答】解:∵xf′(x)=(x﹣1)f(x),∴f(x)+xf′(x)=xf(x)设g(x)=xf(x),则g′(x)=f(x)+xf′(x),即g′(x)=g(x),则g(x)=ce x,∵f(1)=1,∴g(1)=f(1)=1,即g(1)=ce=1,则c=,则g(x)=xf(x)=?e x,则f(x)=,(x≠0),函数的导数f′(x)==,由f′(x)>0得x>1,此时函数单调递增,由f′(x)<0得x<0或0<x<1,此时函数单调递减,即当x=1时,函数f(x)取得极小值,此时f(1)==1,即当x>0时,f(x)≥1,当x<0时,函数f(x)单调递减,且f(x)<0,综上f(x)≥1或f(x)<0,即函数的值域为(﹣∞,0)∪[1,+∞),故答案为:(﹣∞,0)∪[1,+∞),12. 盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)参考答案:13. 已知函数若函数有3个不同的零点,则实数k的取值范围是____________.参考答案:()略14. (几何证明选做题)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点 D,CD=,AB=BC=4, 则AC的长为参考答案:C15. 若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是.参考答案:﹣5<m<10考点:简单线性规划.专题:计算题.分析:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,使它们异号,建立不等关系,求出参数m即可.解答:解:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,可得两个代数式,∵在直线2x+y+m=0的两侧∴(5+m)(﹣10+m)<0解得:﹣5<m<10,故答案为﹣5<m<10.点评:本题主要考查了简单的线性规划,属于基础题.16. 已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为_____参考答案:4略17. 已知a,b,c,d R,且a2+b2=2,c2+d2=2,则ac+bd的最大值为___参考答案:2三、解答题:本大题共5小题,共72分。
山东省临沂市2019届高三数学模拟考试试题文(含解析)
山东省临沂市2019届高三数学模拟考试试题 文(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x x x =<+,{}B x x a =<,若A B ⊆,则实数a 的取值范围为( ) A. (],1-∞-B. (],2-∞C. [)2,+∞D.[)1,-+∞【答案】C 【解析】 【分析】先利用一元二次不等式的解法化简集合A ,再根据包含关系列不等式求解即可. 【详解】因为{}{}2212A x x x x x =<+=-<<,{}B x x a =<且A B ⊆, 所以2a ≥,即实数a 的取值范围为[)2,+∞,故选C.【点睛】本题主要考查一元二次不等式的解法以及集合子集的定义,属于基础题. 2.已知11abi i=-+-,其中,a b 是实数,则复数a bi -在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限 【答案】B 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简,利用复数相等的条件求得,a b ,从而可得结果. 【详解】由11abi i=-+-, 得()()()()1111a bi i b b i =-+-=-++,101b a b +=⎧∴⎨=-⎩,即2,1a b =-=-, ∴复数2a bi i -=-+在复平面内对应的点的坐标为()2,1-,位于第二象限,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念以及复数相等的性质,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年级分别抽取的人数是()A. 27 26B. 26 27C. 26 28D. 27 28 【答案】A【解析】【分析】直接根据分层抽样的定义建立比例关系,从而可得到结论.【详解】设从高二、高三年级抽取的人数分别为,m n,则满足28560540520m n==,得27,26m n==,故选A.【点睛】本题主要考查分层抽样的应用,属于基础题. 分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是每个层次,抽取的比例相同.4.已知函数()2log,01,0, 3xx xf xx >⎧⎪=⎨⎛⎫≤⎪⎪⎝⎭⎩则14f f⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭的值为()A. 2- B. 2 C. 19D. 9【答案】D 【解析】【分析】根据分段函数的解析式,先求出14f⎛⎫⎪⎝⎭的值,从而可得14f f⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭的值.【详解】因为()2log,01,0, 3xx xf xx >⎧⎪=⎨⎛⎫≤⎪⎪⎝⎭⎩,14>,所以211log 2044f ⎛⎫==-< ⎪⎝⎭, 所以()2112943f f f -⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选D. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.5.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点与抛物线220y x =的焦点重合,且其渐近线方程为34y x =±,则该双曲线的方程为( ) A. 221916x y -=B. 221169x y -=C. 2216436x y -=D. 2213664x y -=【答案】B 【解析】 【分析】先求出抛物线220y x =的焦点,即可得双曲线的焦点,可得到c 的值,结合双曲线的渐近线方程可以设双曲线的方程为221169x y t t-=,由双曲线的几何性质可得16925t t += , 可解得1t =,将1t =代入所设双曲线的方程即可得结果. 【详解】因为抛物线220y x =的焦点为()5,0,所以双曲线C 的右焦点也为()5,0,则有5c =, 因为双曲线的渐近线方程为34y x =±, 所以可设其方程为221169x y t t-=,因为5c =,则16925t t += ,解得1t =,则双曲线的方程为221169x y -=,故选B .【点睛】本题主要考查抛物线的方程与与性质,以及双曲线的方程与性质,属于中档题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.6.在ABC ∆中,AB AC AB AC +=-,2AB =,1AC =,E ,F 为AB 的三等分点,则CE CF ⋅=( )A.89B.109C.179D.259【答案】C 【解析】 【分析】由AB AC AB AC +=-可得0AB AC ⋅=,由E ,F 为AB 的三等分点,结合向量运算的三角形法则可得E C CF ⋅uu r uu u r 1233CA AB CA AB ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭,再利用平面向量数量积的运算法则可得结果.【详解】因为AB AC AB AC +=-,所以22AB AC AB AC +=-,化为AB AC 0⋅=uu u r uu u r,因为2AB =,1AC =, 所以224,1AB AC ==,又因为E ,F 为AB 的三等分点,所以()()E C CF CA AE CA AF ⋅=+⋅+uu r uu u r uu r uu u r uu r uu u r1233CA AB CA AB ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭2229CA AB CA AB =++⋅ 21714099=+⨯+=,故选C.【点睛】本题主要考查平面向量的线性运算以及平面向量数量积的运算,属于中档题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.7.某产品近期销售情况如下表:根据上表可得回归方程为 3.8ˆ1ˆy bx =+,据此估计,该公司8月份该产品的销售额为( )A. 19.05B. 19.25C. 19.5D. 19.8【答案】D 【解析】 【分析】由已知表格中的数据求得,x y ,代入线性回归方程求得b ,再在回归方程中取8x =求得y 值即可. 【详解】2345615.116.317.017.218.44,16.855x y ++++++++====,ˆ16.8413.8b∴=+,得0.75b =, ˆ0.7513.8yx ∴=+, 取8x =,得ˆ0.75813.819.8y=⨯+=,故选D. 【点睛】本题考查线性回归方程的求法,考查计算能力,明确线性回归方程恒过样本中心点是关键,属于基础题.8.已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为( ) A. 1B. 12-C. 1或12-D.112-或【答案】C 【解析】 【分析】先验证1q =合题意,1q ≠时,利用等比数列的通项公式与求和公式列方程求解即可. 【详解】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C.【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.9.已知,x y 满足约束条件0,3,3,x y x y ≥⎧⎪≤⎨⎪≤⎩且不等式20x y m -+≥恒成立,则实数m 的取值范围为( )A. 3m …B. 1m …C. 0m …D.3m -…【答案】A 【解析】 【分析】画出可行域,令2t x y =-,利用线性规划求t 的最小值,再由不等式20x y m -+≥恒成立列不等式,求得实数m 的取值范围.【详解】由约束条件033x y x y ≥⎧⎪≤⎨⎪≤⎩,作出可行域如图,令2t x y =-,平移直线2y x t =- 则当直线2y x t =-过点()0,3A 时,直线2y x t =-的纵截距最大,t 有最小值3-, 因为不等式20x y m -+≥恒成立, 所以30m -+≥,即3m ≥,故选A.【点睛】本题主要考查线性规划求最值以及不等式恒成立问题,属于中档题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.下列命题中:①若命题0:p x R ∃∈,2000x x -≤,则:p x R ⌝∀∈,20x x ->;②将sin 2y x =的图象沿x 轴向右平移6π个单位,得到的图象对应函数为sin 26y x π⎛⎫=- ⎪⎝⎭;③“0x >”是“12x x+≥”的充分必要条件; ④已知()0,0M x y 为圆222x y R +=内异于圆心的一点,则直线200x x y y R +=与该圆相交.其中正确的个数是( ) A. 4 B. 3 C. 2 D. 1【答案】C【分析】利用特称命题的否定判断①;利用三角函数图象的平移变换法则判断②;利用基本不等式以及充分条件与必要条件的定义判断③;利用直线与圆的位置关系以及点到直线距离公式判断④.【详解】对于①,若命题0:p x R ∃∈,2000x x -≤,则:p x R ⌝∀∈,20x x ->;故①正确;对于②,将sin 2y x =的图象沿x 轴向右平移6π个单位,得到的图象对应函数为sin 23y x π⎛⎫=- ⎪⎝⎭,故②错误;对于③,“0x >”是“12x x+≥”的充分必要条件,故③正确; 对于④,因为()0,0M x y 为圆222x y R +=内异于圆心的一点,则20022x y R +<,所以圆心()0,0到直线200x x y y R +=的距离d R =>,所以该直线与该圆相离,故④错误,故选C.【点睛】本题主要考查的知识要点:特称命题的否定,直线与圆的位置关系,点到直线的距离公式的应用,三角函数图象的平移变换法则,基本不等式的应用,意在考查对基础知识掌握的熟练程度,属于中档题.11.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,,即()()()()()121,12F F F n F n F n ===-+-()3,n n N *≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( ) A. 672 B. 673C. 1346D. 2019【答案】C 【解析】求出已知数列除以2所得的余数,归纳可得{}n a是周期为3的周期数列,求出一个周期中三项和,从而可得结果.【详解】由数列1,1,2,3,5,8,13,21,34,55,...各项除以2的余数,可得{}n a为1,1,0,1,1,0,1,1,0,1,1,0,...,所以{}n a是周期为3的周期数列,++=,一个周期中三项和为1102=⨯,因为20196733⨯=,所以数列{}n a的前2019项的和为67321346故选C.【点睛】本题主要考查归纳推理的应用,考查了递推关系求数列各项的和,属于中档题.利用递推关系求数列中的项或求数列的和:(1)项的序号较小时,逐步递推求出即可;(2)项的序数较大时,考虑证明数列是等差、等比数列,或者是周期数列.12.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是()A. 2 D. 1【答案】A 【解析】 【分析】首先确定几何体的空间结构特征,然后结合面积公式求解面积的最大值即可.【详解】由三视图可知其对应的几何体是一个半圆锥,且圆锥的底面半径为r =,高1h =,故俯视图是一个腰长为2,顶角为120的等腰三角形,易知过该几何体顶点的所有截面均为等腰三角形,且腰长为2,顶角的范围为(0,120⎤⎦, 设顶角为θ,则截面的面积:122sin 2sin 2S θθ=⨯⨯⨯=, 当90θ=时,面积取得最大值2. 故选:A .【点睛】本题主要考查三视图还原几何体的方法,三角形面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题.13.向量()1,2a =-r,()1,0b =-,若()()a b a b λ-⊥+,则λ=_________.【答案】13【解析】 【分析】先求出a b -与a b λ+的坐标,再利用向量垂直数量积为零列方程求解即可.【详解】向量()1,2a =-r,()1,0b =-,所以()()()2,2,1,2a b a b λλλ-=-+=--,又因为()()a b a b λ-⊥+,所以()()0a b a b λ-⋅+=,即()()21220λλ--⨯-=,解得13λ=,故答案为13. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.14.椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,过2F 的直线交椭圆于A ,B 两点,1ABF ∆的周长为8,则该椭圆的短轴长为__________.【答案】【解析】 【分析】由1ABF ∆的周长为8,利用椭圆的定义可得a 的值,再根据离心率为12求出c 的值,从而求得b 的值,进而可得结果. 【详解】因为1ABF ∆的周长为8, 所以112248,2F A F B F A F B a a +++===,因离心率为12, 所以11,122c c a a ===,由222a b c =+,解得b =则该椭圆的短轴长为【点睛】本题主要考查椭圆的定义以及椭圆的离心率,意在考查对基础知识的掌握与灵活应用,属于中档题.15.正三角形ABC边长为2,将它沿高AD 翻折,使点B ,C A BCD -外接球的表面积为__________.【答案】【解析】 试题分析:四面体在如下图所示的长方体中,其外接球即为长方体的外接球,半径 ,表面积为;故填.考点:1.球与多面体的组合;2.球的表面积公式.16.函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,则实数a 的取值范围为_________. 【答案】1a … 【解析】 【分析】 函数()2x fx ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,转化为()2x f x ae x =-与()21h x x x =-++的图象有交点,等价于()1,1xy e y x a==+的图象有交点,利用导数的几何意义,结合函数图象即可得结果.【详解】()21g x x x =--关于x 轴对称的函数为()21h x x x =-++,因为函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,所以()2xf x ae x =-与()21h x x x =-++的图象有交点,方程221x ae x x x -=-++有解,即1x ae x =+有解,0a =时符合题意,0a ≠时转化为()11x e x a=+有解, 即()1,1xy e y x a==+的图象有交点, ()11y x a=+是过定点()1,0-的直线,其斜率为1a , 设()1,1xy e y x a ==+相切时,切点的坐标为(),m m e ,则111m m e m ae a ⎧=⎪⎪+⎨⎪=⎪⎩,解得1a =,切线斜率为11a =,由图可知,当11a ≥,即1a ≤且0a ≠时,()1,1x y e y x a==+的图象有交点, 此时,()2xf x ae x =-与()21h x x x =-++的图象有交点,函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,综上可得,实数a 的取值范围为1a ≤,故答案为1a ≤.【点睛】本题主要考查函数图象的应用,考查了导数的几何意义、函数与方程思想、转化思想的应用,属于难题. 转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将存在对称点问题转化为函数交点问题是解题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin 2cos cos 02B C B C π⎛⎫+++= ⎪⎝⎭,(1)求证:B C =; (2)若3cos 5A =,ABC ∆的外接圆面积为254π,求ABC ∆的周长. 【答案】(1)见证明;(2) 4. 【解析】【分析】(1)由()sin 2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,利用诱导公式、两角和与差的正弦公式化简可得sin()0B C -=,从而可得结论;(2)利用圆的面积公式可求得三角形外接圆半径52R =,利用同角三角函数的关系与正弦定理可得2sin 4a R A ==,结合(1),利用余弦定理列方程求得b c ==. 【详解】(1)∵sin()2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭, ∴sin()2sin cos 0B C B C +-=,∴sin cos cos sin 2sin cos 0B C B C B C +-=, ∴cos sin sin cos 0B C B C -=, ∴sin()0B C -=. ∴在ABC ∆中,B C =,(2)设ABC ∆的外接圆半径为R ,由已知得2254R ππ=,∴52R =, ∵3cos 5A =,0A π<<,∴4sin 5A =, ∴2sin 4a R A ==, ∵BC =,∴b c =,由2222cos a b c bc A =+-⋅得2261625b b =-,解得b =∴4a b c ++=,∴ABC ∆的周长为4.【点睛】本题主要考查余弦定理、正弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.18.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,3ABC π∠=,M 是PC 的中点.(1)求证:平面PAC ⊥平面MBD ;(2)若PB PD ⊥,三棱锥P ABD -,求四棱锥P ABCD -的侧面积.【答案】(1)见证明;(2) 【解析】 【分析】(1)由PA ⊥平面ABCD 可得PA BD ⊥, 由底面ABCD 是菱形可得BD AC ⊥,从而得BD ⊥平面PAC ,进而可得结论;(2)设菱形ABCD 的边长为x ,在ABD ∆中,利用余弦定理求得BD =,利用勾股定理求得2PA x =,由棱锥的体积公式可得2x =,求出各侧面的面积即可得结果.【详解】(1)∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA BD ⊥,又∵底面ABCD 是菱形,∴BD AC ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,又∵BD ⊂平面MBD ,∴平面PAC ⊥平面MBD .(2)设菱形ABCD的边长为x ,∵3ABC π∠=,∴23BAD π∠=, 在ABD ∆中,2222cosBD AD AB AD AB BAD =+-⋅∠22212232x x x ⎛⎫=--=⎪⎝⎭,∴BD =,又∵PA ⊥平面ABCD ,AB AD =,PB PD ⊥,∴PB PD x ==, ∴2PA x ===, 又1sin 2ABD S AB AD BAD ∆=⋅⋅∠2212sin 23x x π=⋅⋅=, ∴13ABD P ABD V S PA ∆-=⋅⋅三棱锥213423x x =⋅⋅=2x = , ∴PA =PB PD ==,∵3ABC π∠=,∴2AC AB ==.又∵PA ⊥平面ABCD ,∴PC PB ==∴四棱维P ABCD -的侧面积等于22PAB PBC S S ∆∆+11222222=⨯+⨯=【点睛】本题主要考查线面垂直的判定定理及面面垂直的判定定理以及棱锥的侧面积,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.19.甲、乙两人参加一个射击的中奖游戏比赛,在相同条件下各打靶50次,统计每次打靶所得环数,得下列频数分布表.比赛中规定所得环数为1,2,3,4时获奖一元,所得环数为5,6,7时获奖二元,所得环数为8,9时获奖三元,所得环数为10时获奖四元,没命中则无奖.(1)根据上表,在答题卡给定的坐标系内画出甲射击50次获奖金额(单位:元)的条形图;(2)估计甲射击1次所获奖至少为三元的概率;(3)要从甲、乙两人中选拔一人参加射击比赛,请你根据甲、乙两人所获奖金额的平均数和方差作出选择.【答案】(1)见解析;(2) 1225; (3)派甲参赛比较好. 【解析】 【分析】(1)根据表格中所给数据可得甲50次获奖金额(单位:元)的频数,从而可画出条形图;(2)甲射击一次所获奖金至少为三元,即打靶所得环数至少为8,由表格得到甲所得环数至少为8的次数,利用古典概型概率公式可得结果;(3)利用平均数公式算出甲、乙50次获奖金的平均数, 利用方差公式算出甲、乙50次获奖金额的方差,根据平均数与方差的实际意义可得结论.【详解】(1)依题意知甲50次获奖金额(单位:元)的频数分布为其获奖金额的条形图如下图所示(2)甲射击一次所获奖金至少为三元,即打靶所得环数至少为8,因为甲所得环数至少 为8的有166224++=(次)所以估计甲射击一次所获奖金至少为三元的概率为24125025=. (3)甲50次获奖金的平均数为15(1122532242)502⨯⨯+⨯+⨯+⨯=,乙50次获奖金的平均数为15(1322132442)502⨯+⨯+⨯+⨯=, 甲50次获奖金额的方差为2222155551122532242502222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+-⨯+-⨯+-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦137********=⨯=. 乙50次获奖金额的方差为2222155551322132442502222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦145950220=⨯=. 甲、乙的平均数相等.甲的方差小,故派甲参赛比较好.【点睛】本题主要考查条形图的应用,古典概型概率公式的应用以及平均数与方差的实际意义,属于中档题. 样本数据的算术平均数12n 1(++...+)x x x x n=,样本方差2222121[()()...()]n s x x x x x x n=-+-++-,标准差s =20.已知直线l 过圆()22:21M x y ++=的圆心且平行于x 轴,曲线C 上任一点P 到点(0,1)F 的距离比到l 的距离小1.(1)求曲线C 的方程;(2)过点P (异于原点)作圆M 的两条切线,斜率分别为12,k k ,过点P 作曲线G 的切线,斜率为0k ,若102,,k k k 成等差数列,求点P 的坐标.【答案】(1) 24x y =(2) 52⎛⎫ ⎪⎝⎭【解析】 【分析】(1)由已知可得点P 到(0,1)F 的距离等于到直线1y =-的距离,即曲线C 是以F 为焦点,直线1y =-为准线的抛物线,从而可得结果;(2)结合(1)可设200,4x P x ⎛⎫ ⎪⎝⎭,则002x k =,设过点P 所作圆M 的两切线方程为:()20104x y k x x -=-,()2204x y k x x -=-,由圆心到直线的距离等于半径可得()232220001011421024x x x k x k ⎛⎫⎛⎫--+++-= ⎪ ⎪⎝⎭⎝⎭,2k 也适合,由韦达定理,结合102,,k k k 成等差数列,可得3012020421x x k k x x ++==-,解方程即可得结果.【详解】(1)易知直线:2l y =-,∵曲线C 上任一动点P 到点(0,1)F 的距离比到:2l y =-的距离小1, ∴点P 到(0,1)F 的距离等于到直线1y =-的距离,∴曲线C 是以F 为焦点,直线1y =-为准线的抛物线,设抛物线方程22x py =,∵2p =∴曲线C 的方程为24x y =.(2)由(1)知曲线2:4C x y =,设200,4x P x ⎛⎫ ⎪⎝⎭,则002x k =,曲线C 上过P 点的切线方程为()200042x x y x x -=-,即20024x x y x =-,设过点P 所作圆M 的两切线方程为:()20104x y k x x -=-,()2204x y k x x -=-,即:2011004x k x y k x -+-=,222004x k x y k x -+-=,1=,即()232220001011421024x x x k x k ⎛⎫⎛⎫--+++-= ⎪ ⎪⎝⎭⎝⎭,*. 同理2k 也适合*式,故1k ,2k 是方程()2322200001421024x x x k x k ⎛⎫⎛⎫--+++-= ⎪ ⎪⎝⎭⎝⎭的两个不相等的根,∴301220421x x k k x ++=-,∵102,,k k k 成等差数列,∴1202k k k +=∴300020421x x x x +=-,解得0x =052y =,∴点P的坐标为52⎛⎫ ⎪⎝⎭.【点睛】本题主要考查抛物线的轨迹方程以及直线与抛物线的位置关系,属于难题. 求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x ⎧=⎪⎨=⎪⎩代入()00,0f x y =.21.已知函数()ln xf x a x e=+,其中a 为常数. (1)若直线2y x e=是曲线()y f x =的一条切线,求实数a 的值; (2)当1a =-时,若函数()()ln xg x f x b x=-+在[)1+∞,上有两个零点.求实数b 的取值范围.【答案】(1) 1a = (2) 11,b e e ⎡⎫∈-⎪⎢⎣⎭【解析】 【分析】(1)设切点()00,x y , 由题意得000012,2ln a e x ex x a xe e ⎧+=⎪⎪⎨⎪=+⎪⎩,解方程组即可得结果;(2)函数()()ln x g x f x b x =-+在[)1+∞,上有两个零点等价于,函数ln ln x x y x x e=+- 的图象与直线y b =有两个交点,设ln ()ln (0)x xh x x x x e=+->,利用导数可得函数()h x 在x e =处取得极大值1()h e e =,结合1(1)h e=-,()323313h e e e e =+-<-,从而可得结果.【详解】(1)函数()f x 的定义域为(0,)+∞,1()a x aef x e x ex +'=+=,曲线()y f x =在点()00,x y 处的切线方程为2y x e=. 由题意得000012,2ln a e x ex x a xee ⎧+=⎪⎪⎨⎪=+⎪⎩解得1a =,0x e =.所以a 的值为1. (2)当1a =-时,()ln x f x x e =-,则11()x ef x e x ex-'=-=, 由()0f x '>,得x e >,由()0f x '<,得0x e <<,则()f x 有最小值为()0f e =,即()0f x …,所以ln ()ln x xg x x b e x=--+,(0)x >, 由已知可得函数ln ln x xy x x e=+- 的图象与直线y b =有两个交点, 设ln ()ln (0)x xh x x x x e=+->, 则211ln 1()x h x x x e -'=+-22ln ex e e x x ex +--=, 令2()ln x ex e e x x ϕ=+--,22()2e ex e x x e x x xϕ--'=--=,由220ex e x --<,可知()0x ϕ'<,所以()x ϕ在(0,)+∞上为减函数, 由()0e ϕ=,得0x e <<时,()0x ϕ>,当x e >时,()0x ϕ<, 即当0x e <<时,()0h x '>,当x e >时,()0h x '<, 则函数()h x 在(0,)e 上为增函数,在(,)e +∞上为减函数, 所以,函数()h x 在x e =处取得极大值1()h e e=, 又1(1)h e=-,()322331341h ee e e e=+-<-<-<-, 所以,当函数()g x 在[1,)+∞上有两个零点时,b 的取值范围是11b ee-<…, 即11,b e e ⎡⎫∈-⎪⎢⎣⎭.【点睛】本题主要考查利用导数求切线斜率及利用导数研究函数的零点,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.22.在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为cos 1ρθθ⎫+=⎪⎪⎝⎭.(1)求C 的极坐标方程和直线l 的直角坐标方程; (2)射线11,63ππθθθ⎛⎫⎡⎤=∈-⎪⎢⎥⎣⎦⎝⎭与圆C 的交点为O ,M ,与直线l 的交点为N ,求OM ON ⋅的取值范围.【答案】(1)圆C 的极坐标方程为2cos ρθ=.直线l的直角坐标方程为10x y +-=.(2)[1,3] 【解析】 【分析】(1)首先化为直角坐标方程,然后转化为极坐标方程可得C 的极坐标方程,展开三角函数式可得l 的普通方程;(2)利用极坐标方程的几何意义,将原问题转化为三角函数求值域的问题,据此整理计算可得OM ON ⋅的取值范围.【详解】(1)圆C 的普通方程是22(1)1x y -+=,将cos x ρθ=,sin y ρθ=代入上式:222(cos 1)sin 1ρθρθ-+=,化简得:2cos ρθ=,所以圆C 的极坐标方程为2cos ρθ=.直线l的极坐标方程为cos 1ρθθ⎫+=⎪⎪⎝⎭,将cos x ρθ=,sin y ρθ=代人上式,得:10x y -=, ∴直线l的直角坐标方程为10x y +-=. (2)设()11,M ρθ,因为点M 在圆:2cos C ρθ=上,则有112cos ρθ=,设()21,N ρθ,因为点N在直线:sin cos 13l ρθθ⎛⎫+= ⎪ ⎪⎝⎭,则有2ρ=, 所以12||||OM ON ρρ⋅===, ∵1,63ππθ⎡⎤∈-⎢⎥⎣⎦,∴1tan 3θ-12tan 1233θ+剟,∴13,即1||||3OM ON ⋅剟,故||||OM ON ⋅的范围为[1,3].【点睛】本题主要考查极坐标方程与普通方程的转化,极坐标的几何意义与应用等知识,意在考查学生的转化能力和计算求解能力.23.已知函数()()22,12f x x a x g x x =-+-=-+. (1)求不等式()5g x <的解集;(2)若对任意1x R ∈都存在2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围. 【答案】(1){|24}x x -<<(2)(,0][8,)-∞+∞ 【解析】 【分析】(1)由题意求解绝对值不等式可得不等式的解集;(2)将原问题转化为函数值域之间的包含关系问题,然后分类讨论可得实数a 的取值范围. 【详解】(1)由()5g x <得|1|25x -+<, ∴|1|3x -<, ∴313x -<-<, ∴24x -<<,∴不等式()5g x <的解集为{|24}x x -<<.(2)设函数()f x 的值域为M ,函数()g x 的值域为N ,∵对任意1x ∈R 都存在2x ∈R ,使得()()12f x g x =成立,. ∴M N ⊆, ∵()|1|2g x x =-+,∴[2,)N =+∞,①当4a =时,()3|2|f x x =-,此时[0,)M =+∞,不合题意;②当4a >时,23,2()2,2232,2a x x a f x a x x a x a x ⎧⎪+-⎪⎪=--<<⎨⎪⎪--⎪⎩……,此时2,2a M ⎡⎫=-+∞⎪⎢⎣⎭,∵M N ⊆,∴2224aa ⎧-≥⎪⎨⎪>⎩,解得8a …; ③当4a <时,23,2()2,2232,2a a x x a f x x a x x a x ⎧+-⎪⎪⎪=+-<<⎨⎪--⎪⎪⎩……,此时2,2a M ⎡⎫=-+∞⎪⎢⎣⎭,∵M N ⊆,∴2224aa ⎧-⎪⎨⎪<⎩…,解得0a …. 综上所述,实数a 的取值范围为(,0][8,)-∞+∞. 【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。