永磁和双馈比较-中英文

合集下载

永磁调速器简介

永磁调速器简介

永磁耦合技术与调速器是美国MagnaDrive 公司的专利技术中达电通为该专利产品在全中国(含台湾地区)的总代理与其在中国全方位合作, 共同推动永磁偶合技术在中国工业市场的发展一、原理永磁耦合器:是通过铜/铝导体和永磁体之间的气隙实现由电动机到负载的转矩传输的装置,可实现电动机和负载间无机械链接的传动方式。

其主要结构为:磁转子组件,由若干稀土永磁体组成,连接于负载侧。

铜/铝导体转子组件,连接于电机侧。

永磁调速驱动器:则是具备调整气隙的机构及其执行器, 可在线随时调整气隙达到调整负载设备的输出转速, 达到调速节能的目的。

二、应用领域永磁耦合器与永磁调速驱动器可广泛应用于发电、冶金、石化、水处理、采矿与水泥、纸浆及造纸、暖通空调、海运、灌溉等行业节能。

在上述行业,应用类型为泵、风机、离心负载、散货处理、及其它机械装置,应用前景非常广阔。

三、典型技术特点1. 通过对负载的转速调整,实现高效节能。

2. 可通过控制器进行控制,可接受压力、流量、液位等控制信号。

3. 实现软启动,解决堵转等问题。

4. 消除系统震动,延长系统设备寿命,提高可靠性。

5. 适应于各种严酷工作环境:电网电压波动较大、谐波含量较高、易燃、易爆、潮湿、粉尘含量高等场所。

6. 不产生谐波, 不受电网电压波动影响。

四、功能特点*可靠/低维护无需外接电源即可工作;可在高温、低温、潮湿;肮脏、易燃易爆、电压不稳及雷电等各种恶劣环境下工作。

*减轻振动~ 实现电动机和负载间无机械链接的传动方式,大幅减轻系统振动;*完全软启动,堵转自动保护。

*安装方便~ 安装时无需激光校准;无需增加空调、防尘等其他设施。

>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。

双馈发电机原理讲解完整版

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一.双馈发电机原理讲解二.风力发电机的主要类型1.异步发电机笼鼠式异步发电机特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。

缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。

一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。

绕线转子异步发电机特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。

风速大的时候多余的能量可以消耗在转子电阻上。

双馈异步发电机特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。

2.同步发电机永磁同步发电机特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。

转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。

一般用于海上风机。

直流励磁同步发电机特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理1.旋转磁场旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。

从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。

三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。

2.旋转磁场的转速和转向以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。

① ωt=0 o 时,合成磁场方向:向下② ωt=60o 时,合成磁场方向顺时针转过60o 。

永磁直驱风电系统建模及其机电暂态模型参数辨识

永磁直驱风电系统建模及其机电暂态模型参数辨识

永磁直驱风电系统建模及其机电暂态模型参数辨识程玮;陈宏伟;石庆均【摘要】Aiming at the characters of direct-driven wind-power system with permanent magnet synchronous generator (PMSG) based on back-to-back pulse width modulation(PWM) converter, the wind turbine, the control strategies of turbine-side converter and grid-side con verter were analyzed. PMSG detail model using Matlah/Simulink was established. Based on this, electromechanical transient model for di rect-driven wind-turbine generator was constructed according to 3 orders synchronous generator model. Particle swarm optimization ( PSO) al gorithm was used to identify the parameter for the mathematical model. The simulation results show that the detail model can reflect direct- driven wind-power system' s operation as wind speed changing, while it can track the maximum power point. The electromechanical transient model coincides with the detail model well. It reflects the active and reactive power of the direct-driven wind-power system when grid voltage is changed. The parameter identification using PSO is effective. The results indicate that the detail model can be used to refine power output control strategy, the electromechanical transient model can be used to study direct-driven wind-power system interacted with the grid.%针对基于双脉宽调制(PWM)变换器的永磁直驱风电系统的运行特性,分析了风力机特性、电机侧变换器和电网侧变换器的控制策略,利用Matla/Simulink建立了反映电力电子开关动作的永磁直驱风电系统详细模型,并在此基础上根据同步电机3阶暂态模型,建立了直驱风机的机电暂态数学模型,采用粒子群算法(PSO)对模型进行了参数辨识.仿真结果表明,该详细模型能够描述永磁直驱风电系统对不同风速的响应,实现风能的最大功率跟踪;机电暂态数学模型与详细模型特性接近,能够从总体上反映永磁直驱风电系统对端电压变化的有功、无功响应,PS0参数辨识有效.研究结果表明,所建立的详细模型能够用于控制方式的研究以改善输出特性,机电暂态模型能够用于研究电网与永磁直驱风电系统的相互影响.【期刊名称】《机电工程》【年(卷),期】2012(029)007【总页数】4页(P817-820)【关键词】双脉宽调制变换器;机电暂态;参数辨识;粒子群算法【作者】程玮;陈宏伟;石庆均【作者单位】浙江大学电气工程学院,浙江杭州310027;浙江大学电气工程学院,浙江杭州310027;浙江大学电气工程学院,浙江杭州310027【正文语种】中文【中图分类】TM6140 引言当前,变速恒频(variable-speed constant-frequency,VSCF)风力发电系统已被广泛应用,其特点是通过先进的变速和变桨技术,在风速变化时调节发电机转速处于相应的最佳值从而最大限度地捕获风能,提高了风力发电的效率,且低风速情况下风机转速下降,从而大大降低了系统的机械应力和装置成本。

双馈风力发电机及控制原理

双馈风力发电机及控制原理
• Fourth level 1400
• Fifth le1v200el 1000
装机容量/万千瓦
800 600
400 200
0 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
02090.093-.42-0120
年份
5
风力发电简介
双馈电机原理
• C双li馈ck电to机e工dit作M原as理ter text styles
• 电S机e类c型ond level 同步电机
双馈电机
• 励T磁h方ir式d level转子绕组直流励磁 •气隙F磁功o场角u转rth速 le与v转e子l 惯转性子相转关速(机械)
• 转F子if转th速leve固l定(与电网频率同步)
1980
1990
2000
2010
8
风力发电简介
• C定li速ck到to变e速dit的M原as因ter text styles
• S–e追co求n最d 大lev的e风l 能捕获 • T–h减ird小l机ev组el的机械应力
• F风o能u利r用th系数le与v叶e尖l 速比的关系
最大功率点跟踪
• Fifth level
• Third levPes l
A、超同步速发电

Fourth
level1 sPs sPs
电阻
• Fifth level a
1
Te
0
s0
1 s Ps
Ps
02090.093-.42-0120
发电机运行
1 s Ps
sPs
电阻
1
d
电动机运行
亚同步运行

风力发电系统的控制原理

风力发电系统的控制原理

风力发电系统的控制原理风力涡轮机特性:1,风能利用系数Cp风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:P---风力涡轮实际获得的轴功率r---空气密度S---风轮的扫风面积V---上游风速根据贝兹〔Betz〕理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。

2,叶尖速比l为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。

n---风轮的转速w---风轮叫角频率R---风轮半径V---上游风速在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。

从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。

如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。

图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。

在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。

每条曲线都有一个上升段和下降段,其中下降段是稳定工作段〔若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。

〕它是工作区段。

在工作区段中,倾角越大,l和Cp越小。

3,变速发电的控制变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确〔机组惯量大〕。

三段控制要求:低风速段N<Nn,按输出功率最大功率要求进行变速控制。

联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f〔n〕关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。

图3是风速变化时的调速过程示意图。

设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得与变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。

《无刷双馈电机》课件

《无刷双馈电机》课件

维护与可靠性
永磁同步电机中的永磁体需要特 殊维护以防止退磁,而无刷双馈 电机维护需求较低。
06
无刷双馈电机在新能源领 域的应用
在风力发电中的应用
风力发电是新能源领域的重要应用之一,无刷 双馈电机在风力发电中具有高效、可靠、低维 护等优点,能够提高风能利用率和发电效率。
无刷双馈电机在风力发电中主要应用于风力发 电机组的传动系统,通过调节电机的转速和转 矩,实现风能的最大捕获和高效转化。
未来研究方向
新型拓扑结构研究
探索具有更高性能和更低成本的新型无刷双馈电机拓扑结构。
先进控制策略研究
结合人工智能和机器学习技术,开发更为智能和自适应的控制策略 。
集成化和轻量化研究
优化电机的结构设计,实现更小体积、更轻重量和更高功率密度的 无刷双馈电机。
05
无刷双馈无刷双馈电机》PPT课件
contents
目录
• 无刷双馈电机概述 • 无刷双馈电机的结构 • 无刷双馈电机的性能分析 • 无刷双馈电机的发展趋势与挑战 • 无刷双馈电机与其他电机的比较 • 无刷双馈电机在新能源领域的应用
01
无刷双馈电机概述
定义与特点
总结词
无刷双馈电机的定义和特点
详细描述
无刷双馈电机是一种新型的电机,它具有高效、可靠、低维护等优点,被广泛 应用于各种工业领域。
02
无刷双馈电机的结构
定子结构
绕组结构
无刷双馈电机通常采用三相绕组 结构,包括Y型和△型等。绕组形 式的选择直接影响电机的性能和 运行稳定性。
铁芯材料
定子铁芯一般采用硅钢片叠压而 成,具有良好的导磁性能和较低 的铁损。
转子结构
永磁体
转子上安装有永磁体,其磁极对数决 定了电机的极对数,影响电机的转速 和转矩特性。

永磁调速器(PMD)的工作原理及特点

2022 年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。

永磁磁力驱动技术首先由美国 MagnaDrive 公司在 1999 年获得了突破性的发展。

该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。

它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到 98.5%。

目前,由 MagnaDrive 公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。

由于该技术创新,使人们对节能概念有了全新的认识。

在短短的几年中, MagnaDrive 获得了很大的发展,现已经渗透到各行各业,在全球已超过 6000 套设备投入运行。

永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。

该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。

其工作原理是一端希有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。

由下图所示, PMD 主要由导体转子、永磁转子和控制器三部份组成。

导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。

这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。

由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。

磁感应原理是通过磁体和导体之间的相对运动产生。

也就是说, PMD 的输出转速始终都比输入转速小,转速差称为滑差。

第四、五章 风力发电机原理与控制 风力发电原理课件

15
3.机组控制系统
主要控制系统
1)变桨距控制系统 2)发电机控制系统 3)偏航控制系统 4)安全保护系统
风轮

增速器
变桨距 风速测量
发电机 转速检测
并网开关
电网 变压器
并网
熔断器
控制系统
发电功率 其它控制
16
3.机组控制系统
控制系统功能要求:
1)根据风速信号自动进入启动状态或从电网自动切除; 2)根据功率及风速大小自动进行转速和功率控制; 3)根据风向信号自动对风; 4)根据电网和输出功率要求自动进行功率因数调整; 5)当发电机脱网时,能确保机组安全停机; 6)运行过程对电网、风况和机组的运行状况进行实时监测 和记录,处理; 7)对在风电场中运行的风力发电机组具有远程通信的功能; 8)具有良好的抗干扰和防雷保护措施。
(塔底急停)
(机舱急停)
Profibus ok
110S1 (振动)
110S2 (扭缆)
110K3 (叶轮超度)
110K4 (发电机超速)
110K5 (变桨安全链)
110K6 (看门狗动作)
110K7
110K8
110K9
(变桨安全链)
110KA (偏航系统安全链)
110KB (变流系统安全连)
安全链系统
直驱型变速恒频风力发电机组的结构示意图
10
2.双馈发电机
双馈异步发电机又称交流励磁发电机,具有定、转子两套绕组。定子结构与异 步电机定子结构相同,具有分布的交流绕组。转子结构带有集电环和电刷。与 绕线式异步电机和同步电机不同的是,转子三相绕组加入的是交流励磁,既可 以输入电能,也可以输出电能。转子一般由接到电网上的变流器提供交流励磁 电流,其励磁电压的幅值、频率、相位、相序均可以根据运行需要进行调节。 转子也可向电网馈送电能,即电机从两端(定子和转子)进行能量馈送,“双 馈”由此得名。

双馈型风机与直驱型风机的比较分析 _2_

双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。

清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。

从20 世纪90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。

世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。

技术创新使风电技术日益成熟。

目前,在发达国家风电的年装机容量以35.7%高速度增长。

一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。

目前单机容量500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。

同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。

风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。

风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。

世界风电正在以33%甚至在部分国家以60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。

1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。

分频风电系统用于直驱式风机和双馈式风机对比

Science and Technology &Innovation ┃科技与创新·151·2017年第13期文章编号:2095-6835(2017)13-0151-03分频风电系统用于直驱式风机和双馈式风机对比孙博力,高桂革,曾宪文(上海电机学院电气学院,上海200240)摘要:分频输电系统是通过降低输电频率、提高输电容量来解决高压直流输电运送距离有限这一问题的一种新的输电方法。

现在市场上主要有2种风机——直驱式风力发电机和双馈式风力发电机,分频输电系统可以用于这2种风机的海上风电并网。

对比直驱式、双馈式风力发电机,将分频海上风电系统用于直驱式风机和双馈式风机,从经济性、风能利用和系统与风机的配合上进行对比,证明分频海上风电系统更适用于永磁直驱式风力发电机。

关键词:分频输电系统;直驱式风力发电机;双馈式风力发电机;分频海上风电系统中图分类号:TM614文献标识码:ADOI :10.15913/ki.kjycx.2017.13.151能源问题一直是世界各个领域不可忽视的问题。

随着世界人口的不断增加和社会文明的不断进步,全球用电量也在不断增加,煤炭石油等化石能源并非可再生的能源,其面临枯竭的问题已众所周知,而解决这个问题最有效的途径就是开发和利用新能源。

目前,出现了大量的可再生新能源,比如风能、太阳能、潮汐能、波浪能、生物能、地热能和氢能等。

其中,风能是较为理想的能源之一,大多地区都有较为丰富的风力资源,而且风力发电技术也在不断发展,且技术较为成熟。

近年来,世界各地的风能发电发展迅速,这也是相关部门和人员要研究的热点问题之一。

风力发电分为陆上风力发电和海上风力发电2种。

陆上的风力资源和土地资源有限,且噪声、阴影、阻碍信号等都会对人们的日常生活造成一定的影响,所以发展有限。

而海上的风力资源更加丰富、稳定,对周围居住和生态环境的影响比较小,且可以大大提高风机功率和装机量,因此,海上风力发电发展速度十分快,特别是欧洲和我国一些地区发展尤为迅速,海上风机的比例逐年增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
噪音
(Noise Level)
永磁直驱风机噪音更低
(Lower Noise Level for PMDD)
永磁直驱风机省去了齿轮箱,噪音低(The noise level is much lower due to the removal of the gearbox.)
效率
(Efficiency)
永磁直驱风机效率更高,发电效率平均提高5-10% (Higher Efficiency for PMDD with approximate 5-10% than Double Fed turbine)
双馈式风机支持齿轮箱工作,本身也耗电(There are much power loss on the operaiton of the gearbox for the double fed turbine)
运输难度(Transportation)
永磁直驱风机运输难度更大
( Difficulter than Double Fed for Transporation)
永磁直驱风机技术较新,电子化程度高(Adavanced technique and electronization for the PMDD)
相较于双馈式电机,永磁直驱风机更能适应低风速,且能耗较少、后续维护成本低.
So compare with the double fed turbine, PMDD is more suitable with the low speed area,the power loss and subsequent maintenance cost is much lower than double fed turbine.
永磁直驱风机要求更高
(Higer Request for PMDD)
永磁直驱风机省去齿轮箱,全功率逆变(PMDD removed the gearbox and can be full power invertered)
改进空间
(Room for Improvement)
永磁直驱风机改进空间更大
(Much More Room can be Improved for PMDD)
特性
(Features)
永磁直驱式和双馈式风机比较
(the comparasion between PMDD and Doube Fed )
分析
(Analysility)
永磁直驱风机更强
(Better Compatibility for PMDD)
永磁直驱风机具备较强电容补偿、低电压穿越能力,对电网冲击小(PMDD is well equipped with the stronger capacitor compensation and low voltage ride through ability and there is only a minor impact on the grid)
维护成本(Maintenance Cost)
永磁直驱风机更低
(Lower Cost for PMDD)
永磁直驱风机省去齿轮箱维修费用( the maintenance cost for the gear box can be saved for the PMDD)
空气动力学性能(Aerodynamics Performance)
永磁直驱式受风速限制较小
(Lower Speed Limit for PMDD)
永磁直驱风机通过电磁感应原理发电,在额定的低转速下输出功率较大、效率较高(PMDD generated the power by electromagnetic induction and the output power and output efficiency much higher under the rated low rotational speed)
永磁直驱风机体积较大,运输难度更大(It is a little bit more difficut than double fed turbine for the PMDD for the transportation due to its volume size)
电控要求(Electronic Control Requirement)
相关文档
最新文档