2016届高考数学文一轮复习(人教版)讲义6.2等差数列及其前n项和

合集下载

2022届高考数学一轮复习第六章数列6.2等差数列及其前n项和课件文新人教版202105131226

2022届高考数学一轮复习第六章数列6.2等差数列及其前n项和课件文新人教版202105131226
由通项公式或前n项和公式转化为方程(组)求解.
2.等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,
已知其中三个就能求出另外两个,体现了用方程(组)解决问题的思
想.
3.减少运算量的设元的技巧,若三个数成等差数列,可设这三个数
为a-d,a,a+d;若四个数成等差数列,可设这四个数为a-3d,a-d,a+d,
项为0.
4.等差数列的前n项和公式有两种表达形式,要根据题目给出的
条件判断使用哪一种表达形式.
-12考点1
考点2
考点3
考点 1
考点4
等差数列中基本量的求解
例1(1)在等差数列{an}中,a4=2,且a1+a2+…+a10=65,则公差d的值
是( B )
A.4 B.3
C.1 D.2
(2)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m等
(4)设Sn是等差数列{an}的前n项和,则数列 Sm,2 -Sm,S3m-2 ,…
也是等差
数列.
(5)若等差数列{an}的前n项和为Sn,则S2n-1=(2n-1)an.
(6)若n为偶数,则 S 偶-S 奇= ;若n为奇数,则S奇-S偶=a中(中间项).
2
-4知识梳理
1
双基自测
2
不是等差数列即可.
-23考点1
考点2
考点3
考点4
对点训练2设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足
b1=2,bn+1-2bn=8an.
(1)求数列{an}的通项公式;
(2)证明:数列

2

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(讲)(解析版)

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(讲)(解析版)

专题6.2 等差数列及其前n 项和1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2. (2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd 2; 若n 为奇数,则S 奇-S 偶=a 中(中间项).知识点四 等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【必会结论】等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d.考点一 等差数列基本量的运算【典例1】(2019年全国I 卷)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =- B . 310n a n =- C .228n S n n =- D .2122n S n n =-【答案】A 【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。

2023版高考数学一轮总复习第四章数列第二讲等差数列及其前n项和课件

2023版高考数学一轮总复习第四章数列第二讲等差数列及其前n项和课件
答案:C
2.已知等差数列{an}和{bn}的前 n 项和分别为 Sn 和 Tn,
且有 a1+a9=2,b4+b6=8,则TS99的值为(
)
1
1
A.6
B.4
C.2
D.3
解析:因为等差数列{an}和{bn}中,a1+a9=2a5=2, b4+b6=2b5=8,所以 a5=1,b5=4,则TS99=ab11+ +22 ab99××99= ab11+ +ab99=22ab55=ab55=14.故选 B.
(2)当 a1>0,λ=100 时,由(1)知,an=120n0,则 bn=
lg a1n=lg 120n0=lg 100-lg 2n=2-nlg 2, 所以数列{bn}是单调递减的等差数列,公差为-lg 2,
所以 b1>b2>…>b6=lg
12060=lg
100 64 >lg
1=0,
当 n≥7 时,bn≤b7=lg
在这个问题中,记这位公公的第 n 个儿子的年龄为 an,则 a1=( )
A.23
B.32
C.35
D.38
解析:由题意可知年龄构成的数列为等差数列,其公 差为-3,则 9a1+9×2 8×(-3)=207,解得 a1=35.故选 C.
答案:C
【题后反思】 (1)等差数列的通项公式及前 n 项和公式共涉及五个量 a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称 “知三求二”). (2)确定等差数列的关键是求出两个最基本的量,即首 项 a1 和公差 d.
前 n 项 验证Sn=An2+Bn(A,B是常数)对 和公式法 任意的正整数n都成立⇔{an}是等
差数列
适合题型
选择、填 空题中的 判定问题

等差数列及其前n项和-高考数学复习

等差数列及其前n项和-高考数学复习
等差数列及其前n项和
目录索引
1
2
强基础
固本增分
知识梳理
1.等差数列的有关概念
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于
__________,那么这个数列就叫做等差数列.这个常数叫做等差数列
同一个常数
an+1-an=d(n∈N*,d为常数)
的_______,通常用字母d表示.定义表达式为____________________
13.5尺,芒种日晷长为2.5尺,则一年中立春到夏至的日晷长的和为( C )
A.58.5尺
B.59.5尺
C.60尺
D.60.5尺
解析 设冬至日晷长为a1尺,小寒日晷长为a2尺,以此类推芒种日晷长为a12
尺,
因此a1=13.5,a12=2.5.设相邻两个节气晷长的变化量为d,所以有
2.5=13.5+(12-1)d⇒d=-1.立春日晷长为a4=13.5+3×(-1)=10.5(尺),
微思考在等差数列{an}中,通项an是关于n的一次函数吗?前n项和Sn是关于
n的二次函数吗?
提示 an不一定是关于n的一次函数,事实上,在等差数列{an}中,an=kn+b
(k,b∈R),当k=0,即数列为常数列时,an不是关于n的一次函数.
Sn不一定是关于n的二次函数,当公差不为0时,Sn=An2+Bn(A,B为常数,且
解得
101 + 45 = 40,
= -2,
所以 an=a1+(n-1)d=15-2n.
②由已知得
(1 + )
Sn=
2
=
(13+15-2)

届高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

届高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

[即时应用]
(2015·青岛一模)等差数列{an}中,a2+a3+a4=15,a5=9. (1)求数列{an}的通项公式;
解:设数列{an}的公差为 d,首项为 a1, 由题意得3aa1+1+46d= d=9, 15, 解得ad1==21., 所以数列{an}的通项公式为 an=2n-1.
(2)设
2.若等比数列{an}满足 a1+a4=10,a2+a5=20,则{an}的前 n 项和 Sn=________.
解析:由题意 a2+a5=q(a1+a4),得 20=q×10,故 q=2, 代入 a1+a4=a1+a1q3=10,得 9a1=10,即 a1=190. 故 Sn=19011--22n=190(2n-1). 答案:190(2n-1)
=3+2n-2 1·3n+1, 所以 Sn=3+2n-4 1·3n+1.
考点四 裂项相消法求和 常考常新型考点——多角探明 [命题分析]
把数列的通项拆成两项之差,在求和时中间的一些项可以相 互抵消,从而求得其和.
裂项相消法求和是历年高考的重点,命题角度凸显灵活多 变,在解题中要善于利用裂项相消的基本思想,变换数列 an 的 通项公式,达到求解目的.
推导方法:乘公比,错位相减法.
(3)一些常见的数列的前 n 项和:
nn+1 ①1+2+3+…+n=_____2____; ②2+4+6+…+2n= n(n+1) ; ③1+3+5+…+2n-1= n2
2.几种数列求和的常用方法
(1)分组求和法:一个数列的通项公式是由若干个等差或等比
或可求和的数列组成的,Байду номын сангаас求和时可用分组求和法,分别求
(3)错位相减法:如果一个数列的各项是由一个等差数列和 一个等比数列的对应项之积构成的,那么求这个数列 的前 n 项和即可用错位相减法求解.

高考数学一轮复习 专题6.2 等差数列及其求和(练)

高考数学一轮复习 专题6.2 等差数列及其求和(练)

专题6.2 等差数列及其求和【基础巩固】一、填空题1.(2017·南京模拟)在等差数列{a n}中,已知a1+a7=10,则a3+a5=________.【答案】10【解析】∵{a n}是等差数列,∴a3+a5=a1+a7=10.2.(2017·南通调研)已知数列{a n}是等差数列,a1+a7=-8,a2=2,则数列{a n}的公差d=________.【答案】-33.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.【答案】5【解析】设该数列的首项为a1,根据等差数列的性质可得a1+2 015=2×1 010,从而a1=5. 4.已知等差数列{a n}的前n项和为S n,且S10=10,S20=30,则S30=________.【答案】60【解析】∵S10,S20-S10,S30-S20成等差数列,∴2(S20-S10)=S10+S30-S20,∴40=10+S30-30,∴S30=60.5.(2017·徐州、宿迁、连云港模拟)在等差数列{a n}中,a1+3a8+a15=120,则3a9-a11的值为________.【答案】48【解析】由a1+3a8+a15=5a8=120,得a8=24,故3a9-a11=3(a1+8d)-(a1+10d)=2a1+14d =2(a1+7d)=2a8=48.6.设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37=________. 【答案】100【解析】设{a n},{b n}的公差分别为d1,d2,则(a n+1+b n+1)-(a n+b n)=(a n+1-a n)+(b n+1-b n)=d1+d2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100.7.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =________. 【答案】7【解析】设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎪⎨⎪⎧a 1=-13,d =2.∴a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152.又n 为正整数,∴当S n 取最小值时,n =7.8.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 【答案】19二、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【能力提升】11.(2017·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________. 【答案】53【解析】依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎪⎨⎪⎧5a =100,a +a +m +a +2m =a -2m +a -m ,解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53.12.(2017·泰州模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 【答案】4【解析】在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.【答案】1941【解析】∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0,若{a n }是“H 数列”,求d 的值; (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.。

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

第2讲等差数列及其前n项和[考纲解读]1。

理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。

(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。

2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。

3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。

4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。

高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1

第二节 等差数列及其前n 项和等差数列(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数的关系. 知识点一 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N +,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.易误提醒1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.[自测练习]1.现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4解析:①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②因为1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不一定是等差数列.故等差数列的个数为2.答案:B2.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公式d =9-25-1=74,所以c -a =2d =72.答案:72知识点二 等差数列的通项及求和公式 等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 必记结论1.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.2.前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.[自测练习]3.(2016·日照模拟)已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,那么a 4+a 5+a 6等于( )A .40B .42C .43D .45解析:设等差数列公差为d ,则有a 2+a 3=2a 1+3d =4+3d =13,解得d =3,故a 4+a 5+a 6=3a 5=3(a 1+4d )=3×(2+4×3)=42,故选B.答案:B4.(2015·兰州诊断)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54D .72解析:由S 8=8×(a 1+a 8)2,又a 4+a 5=a 1+a 8=18,∴S 8=8×182=72.答案:D5.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0, 所以S 5a 5=5a 1+5×42d a 1+4d =5a 1+10da 1+4d =155=3.答案:3考点一 等差数列的基本运算|1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:法一:数列{a n }为等差数列,设公差为d ,∴a 1+a 3+a 5=3a 1+6d =3,∴a 1+2d =1,∴S 5=5a 1+5×42×d =5(a 1+2d )=5.法二:数列{a n }为等差数列,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5×2a 32=5.答案:A2.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d 为________.解析:∵a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 015+(m -1)1mn =1n ,解得1mn =12 015,即d =12 015. 答案:12 0153.(2015·通州模拟)已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5=________.解析:将已知条件代入公式易得S 5=5(a 2-d )+5×42d =-20.答案:-20等差数列的基本运算的两个解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明|已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. [解] (1)证明:1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.等差数列的四种判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52,∴数列{b n }是以-52为首项,1为公差的等差数列.考点三 等差数列的性质及最值|(1)(2016·泉州质检)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18=( )A .20B .60C .90D .100[解析] 因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90,故选择C.[答案] C(2)(2015·广州模拟)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[解析] 本题考查等差数列的性质.这个数列的项数为2n ,于是有2×n =25-15=10,2n =10,即这个数列的项数为10,故选A.[答案] A(3)已知在等差数列{a n }中,a 1=31,S n 是它的前n 项的和,S 10=S 22. ①求S n ;②这个数列前多少项的和最大?并求出这个最大值.[解] ①∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.②法一:由①知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由①知,令⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.2.(2015·深圳调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:C3.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=18,则a 8=________.解析:等差数列性质可得S 3=3,S 6-S 3=15,S 9-S 6=a 7+a 8+a 9=3a 8成等差数列,故有2(S 6-S 3)=S 3+S 9-S 6⇒2×15=3+3a 8,解得a 8=9.答案:917.整体思想在等差数列中的应用【典例】 已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4[思路点拨] 若利用a ,d 基本计算较繁,可考虑S 2,S 4-S 2,S 6-S 4成等差数列,采用整体求值较简便.[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4,得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.[答案] A[方法点评] 利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算烦琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[跟踪练习] 已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, 且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-S 20=10+2×10=30, ∴S 30=60.答案:60A 组 考点能力演练1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选择B.答案:B2.(2016·宝鸡质检)设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n=336,则n 的值为( )A .18B .19C .20D .21解析:因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选择D.答案:D3.(2015·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21解析:a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.答案:C4.在等差数列{a n }中,a 2+a 3+a 4+a 5=40,则3a 1+a 11=( ) A .20 B .30 C .40D .60解析:本题考查等差数列的通项公式及性质的应用.由等差数列的性质得a 2+a 3+a 4+a 5=2(a 3+a 4)=40,解得a 3+a 4=20,即a 3+a 4=2a 1+5d =20,又3a 1+a 11=4a 1+10d =2(2a 1+5d )=40,故选C.答案:C5.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=( ) A.345 B .5 C.314D.315解析:法一:令S n =(7n +1)n ,T n =(n +3)n ,则a n =14n -6,b n =2n +2,所以a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=22+64+232+30218+22+26+34=315.法二:设等差数列{a n },{b n }的公差分别为d 1,d 2,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=4a 1+42d 14b 1+42d 2=2a 1+21d 12b 1+21d 2=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案:D6.(2015·广州一模)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 解析:因为{a n }是等差数列,所以S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,所以a 6=4,所以S 11=11(a 1+a 11)2=11a 6=44.答案:447.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式为a n =________.解析:设b n =nS n +(n +2)a n ,则b 1=1×S 1+(1+2)a 1=1×a 1+3a 1=4,b 2=2×S 2+(2+2)a 2=2×(a 1+a 2)+(2+2)a 2=8,所以等差数列{b n }的首项为4,公差为4,所以b n =4+(n -1)×4=4n ,即nS n +(n +2)a n =4n .当n ≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0,所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝⎛⎭⎫12n -1,所以a n =n2n -1. 答案:n 2n-18.设等差数列{a n }满足公差d ∈N *,a n ∈N *,且数列{a n }中任意两项之和也是该数列的一项.若a 1=35,则d 的所有可能取值之和为________.解析:本题考查等差数列的通项公式.依题意得a n =a 1+(n -1)d ,a i +a j =2a 1+(i +j -2)d =a 1+(m -1)d (i ,j ,m ∈N *),即(m -i -j +1)d =a 1,kd =a 1=35(其中k ,d ∈N *),因此d 的所有可能取值是35的所有正约数,即分别是1,3,32,33,34,35,因此d 的所有可能取值之和为1-35×31-3=364. 答案:3649.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{b n }满足:b 1=a 1且b n =a n +b n -1(n ≥2,n ∈N *),求数列{b n }的通项公式.解:(1)由题意得:⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16,∵公差d >0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n ≥2,n ∈N *), ∴b n -b n -1=2n -1(n ≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n ≥2,n ∈N *),且b 1=a 1=1, ∴b n =2n -1+2n -3+…+3+1=n 2(n ≥2,n ∈N *). ∴b n =n 2(n ∈N *).10.(2015·南昌一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1(n ≥2),②①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n . (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n 2n ,则c n +1c n =n +12n, 当n ≥2时,c n <1,数列{c n }单调递减,∴(c n )max =12,故λ>12. B 组 高考题型专练1.(2015·高考重庆卷)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质知a 2+a 6=2a 4,所以a 6=2a 4-a 2=0,故选B. 答案:B2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12解析:设等差数列{a n }的首项为a 1,公差为d .由题设知d =1,S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=12+9=192,选B. 答案:B3.(2015·高考北京卷)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:若{a n }是递减的等差数列,则选项A ,B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 答案:C4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:275.(2015·高考北京卷)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n }的公比为q .因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63.所以b 6与数列{a n }的第63项相等.6.(2015·高考重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 即a 1+2d =2,a 1+d =32, 解得a 1=1,d =12, 故通项公式为a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.。

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(讲)(原卷版)

专题6.2等差数列及其前n 项和1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知识点一等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).知识点二等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).知识点三等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd 2;若n 为奇数,则S 奇-S 偶=a 中(中间项).知识点四等差数列的前n 项和公式与函数的关系S n =d 2n 21.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).知识点五等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【必会结论】等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)等差数列{a n }的前n 项和为S n,则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d .考点一等差数列基本量的运算【典例1】(2019年全国I 卷)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则()A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-【方法技巧】解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.【变式1】(2018年全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于()A .-12B .-10C .10D .12考点二等差数列的判定与证明【典例2】(2019年全国II 卷)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(I )证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(II )求{a n }和{b n }的通项公式.【方法技巧】判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一常数.(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1.(3)通项公式法:对任意n ∈N *,都满足a n =pn +q (p ,q 为常数).(4)前n 项和公式法:对任意n ∈N *,都满足S n =An 2+Bn (A ,B 为常数).【变式2】(江西省九江一中2019届模拟)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)(2)求数列{a n }的通项公式.考点三等差数列的性质与应用【典例3】(2019年高考全国III 卷)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.【方法技巧】等差数列的常用性质和结论(1)在等差数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m +a n =a p +a q =2a k .一般地,a m +a n ≠a m +n ,等号左右两边必须是两项相加,当然也可以是a m -n +a m +n =2a m .(2)在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.【变式3】(安徽省阜阳一中2019届模拟)(1)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=()A .72B .88C .92D .98(2)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=__________.(3)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=__________.考点四等差数列前n 项和的最值问题【典例4】(2019年北京卷)设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.2 等差数列及其前n项和 1.等差数列的定义 如果一个数列从第2项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d__表示. 2.等差数列的通项公式 如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d. 3.等差中项

如果A=a+b2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an. (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d. (4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列. (5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. 5.等差数列的前n项和公式

设等差数列{an}的公差为d,其前n项和Sn=na1+an2或Sn=na1+nn-12d. 6.等差数列的前n项和公式与函数的关系 Sn=d2n2+a1-d2n. 数列{an}是等差数列⇔Sn=An2+Bn(A、B为常数). 7.等差数列的前n项和的最值 在等差数列{an}中,a1>0,d<0,则Sn存在最__大__值;若a1<0,d>0,则Sn存在最__小__值. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( √ ) (3)等差数列{an}的单调性是由公差d决定的.( √ ) (4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.( × ) (5)数列{an}满足an+1-an=n,则数列{an}是等差数列.( × ) (6)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列.( √ )

1.(2014·福建)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于( ) A.8 B.10 C.12 D.14 答案 C

解析 由题意知a1=2,由S3=3a1+3×22×d=12, 解得d=2, 所以a6=a1+5d=2+5×2=12,故选C. 2.设{an}为等差数列,公差d=-2,Sn为其前n项和,若S10=S11,则a1等于( ) A.18 B.20 C.22 D.24 答案 B 解析 因为S10=S11,所以a11=0. 又因为a11=a1+10d,所以a1=20. 3.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于( ) A.58 B.88 C.143 D.176 答案 B

解析 S11=11a1+a112=11a4+a82=88. 4.(2013·课标全国Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________. 答案 -49

解析 由题意知a1+a10=0,a1+a15=103.

两式相减得a15-a10=103=5d, ∴d=23,a1=-3. ∴nSn=n·na1+nn-12d=n3-10n23=f(n), 令f(x)=x3-10x23,x>0, f′(x)=13x(3x-20). 令f′(x)=0得x=0(舍)或x=203. 当x>203时,f(x)是单调递增的; 当0故当n=7时,f(n)取最小值,f(n)min=-49. ∴nSn的最小值为-49.

题型一 等差数列基本量的运算 例1 (1)在数列{an}中,若a1=-2,且对任意的n∈N*有2an+1=1+2an,则数列{an}前10项的和为( )

A.2 B.10 C.52 D.54 (2)(2013·课标全国Ⅰ)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于( ) A.3 B.4 C.5 D.6 答案 (1)C (2)C

解析 (1)由2an+1=1+2an得an+1-an=12,

所以数列{an}是首项为-2,公差为12的等差数列, 所以S10=10×(-2)+10×10-12×12=52. (2)由题意得am=Sm-Sm-1=2, am+1=Sm+1-Sm=3,故d=1,

因为Sm=0,故ma1+mm-12d=0,

故a1=-m-12, 因为am+am+1=Sm+1-Sm-1=5, 故am+am+1=2a1+(2m-1)d =-(m-1)+2m-1=5, 即m=5. 思维升华 (1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题. (2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法. (1)若等差数列{an}的前5项和S5=25,且a2=3,则a7等于( ) A.12 B.13 C.14 D.15

(2)记等差数列{an}的前n项和为Sn,若a1=12,S4=20,则S6等于( ) A.16 B.24 C.36 D.48 (3)已知等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )

A.12 B.1 C.2 D.3 答案 (1)B (2)D (3)C 解析 (1)由题意得S5=5a1+a52=5a3=25,故a3=5,公差d=a3-a2=2,a7=a2+5d=3+5×2=13. (2)∵S4=2+6d=20,∴d=3,故S6=3+15d=48.

(3)∵Sn=na1+an2,∴Snn=a1+an2,又S33-S22=1,

得a1+a32-a1+a22=1,即a3-a2=2, ∴数列{an}的公差为2. 题型二 等差数列的性质及应用 例2 (1)设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9等于( ) A.63 B.45 C.36 D.27 (2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( ) A.13 B.12 C.11 D.10

(3)已知Sn是等差数列{an}的前n项和,若a1=-2 014,S2 0142 014-S2 0082 008=6,则S2 016=________. 答案 (1)B (2)A (3)2 016 解析 (1)由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列. 即2(S6-S3)=S3+(S9-S6), 得到S9-S6=2S6-3S3=45,故选B. (2)因为a1+a2+a3=34,an-2+an-1+an=146, a1+a2+a3+an-2+an-1+an=34+146=180, 又因为a1+an=a2+an-1=a3+an-2, 所以3(a1+an)=180,从而a1+an=60, 所以Sn=na1+an2=n·602=390,即n=13. (3)由等差数列的性质可得{Snn}也为等差数列,设其公差为d. 则S2 0142 014-S2 0082 008=6d=6,∴d=1. 故S2 0162 016=S11+2 015d=-2 014+2 015=1, ∴S2 016=1×2 016=2 016. 思维升华 在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m也成等差数列;{Snn}也是等差数列.等差数列的性质是解题的重要工具. (1)设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7等于( ) A.14 B.21 C.28 D.35 (2)已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________. 答案 (1)C (2)60 解析 (1)∵a3+a4+a5=3a4=12,∴a4=4, ∴a1+a2+…+a7=7a4=28. (2)∵S10,S20-S10,S30-S20成等差数列, ∴2(S20-S10)=S10+S30-S20, ∴40=10+S30-30,∴S30=60. 题型三 等差数列的判定与证明

例3 已知数列{an}中,a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn}满足bn=1an-1(n∈N*). (1)求证:数列{bn}是等差数列; (2)求数列{an}中的最大项和最小项,并说明理由.

(1)证明 因为an=2-1an-1(n≥2,n∈N*),

bn=1an-1(n∈N*), 所以bn+1-bn=1an+1-1-1an-1 =12-1an-1-1an-1=anan-1-1an-1=1.

又b1=1a1-1=-52. 所以数列{bn}是以-52为首项,1为公差的等差数列. (2)解 由(1)知bn=n-72, 则an=1+1bn=1+22n-7. 设f(x)=1+22x-7, 则f(x)在区间(-∞,72)和(72,+∞)上为减函数. 所以当n=3时,an取得最小值-1,当n=4时,an取得最大值3. 思维升华 等差数列的四个判定方法: (1)定义法:证明对任意正整数n都有an+1-an等于同一个常数. (2)等差中项法:证明对任意正整数n都有2an+1=an+an+2后,可递推得出an+2-an+1=an+1-an=an-an-1=an-1-an-2=…=a2-a1,根据定义得出数列{an}为等差数列. (3)通项公式法:得出an=pn+q后,得an+1-an=p对任意正整数n恒成立,根据定义判定数列{an}为等差数列. (4)前n项和公式法:得出Sn=An2+Bn后,根据Sn,an的关系,得出an,再使用定义法证明数列{an}为等差数列. (1)若{an}是公差为1的等差数列,则{a2n-1+2a2n}是( ) A.公差为3的等差数列 B.公差为4的等差数列 C.公差为6的等差数列 D.公差为9的等差数列

(2)在数列{an}中,若a1=1,a2=12,2an+1=1an+1an+2(n∈N*),则该数列的通项为( )

A.an=1n B.an=2n+1 C.an=2n+2 D.an=3n 答案 (1)C (2)A 解析 (1)∵a2n-1+2a2n-(a2n-3+2a2n-2) =(a2n-1-a2n-3)+2(a2n-a2n-2) =2+2×2=6, ∴{a2n-1+2a2n}是公差为6的等差数列.

相关文档
最新文档