2020九年级数学下册 第二十七章 相似本章中考演练同步练习

合集下载

人教版数学九年级下册 第二十七章 相似 习题练习(附答案)

人教版数学九年级下册 第二十七章  相似  习题练习(附答案)

人教版数学九年级下册第二十七章相似习题练习(附答案)一、选择题1.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有一个B.可以有2个C.可以有3个D.无数个2.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个3.如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是()A.△AED与△ACBB.△AEB与△ACDC.△BAE与△ACED.△AEC与△DAC4.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A 出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A . 6米B . 8米C . 10米D . 12米5.如图所示格点图中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,以原点O 为位似中心,相似比为12,把△ABC 缩小,则点C 的对应点C ′的坐标为( )A . (1,32)B . (2,6)C . (2,6)或(-2,-6)D . (1,32)或(-1,−32)6.如图,AD ∥BC ,∠D =90°,AD =2,BC =5,DC =8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( )A . 1个B . 2个C . 3个D . 4个7.志远要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A . 540元B . 1 080元C . 1 620元D . 1 800元8.△ABC 的三边之比为3∶4∶5,与其相似的△DEF 的最短边是9 cm ,则其最长边的长是( ) A . 5 cm B . 10 cm C . 15 cm D . 30 cm9.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A .CD EF =AD AFB .AB CD =BC ECC.ADBC =AFBED.CEBE =AFAD10.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4∶9B. 2∶5C. 2∶3D.√2∶√311.若a5=b7=c8,且3a-2b+c=3,则2a+4b-3c的值是()A. 14 B. 42 C. 7 D.14312.一个数与3、4、6能组成比例,这个数是()A. 2或8B. 8 或4.5C. 4.5 或2D. 2,8或4.513.两个相似三角形的面积比为1∶4,那么它们的周长比为()A. 1∶√2B. 2∶1 C. 1∶4 D. 1∶2二、填空题14.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM∶MN∶ND等于____________.15.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是________________.(写出一个即可)16.如图,AD =DF =FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=__________.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为______________.18.某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3,…,若△ABC 的边长为a ,则CD 1=√32a ,D 1D 2=√34a ,D 2D 3=√38a ,依此规律,则D 5D 6的长为________.19.如图是测量玻璃管内径的示意图,点D 正对“10 mm”刻度线,点A 正对“30 mm”刻度线,DE ∥AB .若量得AB 的长为6 mm ,则内径DE 的长为____________ mm.三、解答题20.如图,△ABC 在方格纸中.(1)请建立平面直角坐标系.使A 、C 两点的坐标分别为(2,3)、C (5,2),求点B 的坐标.(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′.(3)计算△A ′B ′C ′的面积S .21.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP 的周长为____________.23.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC 的长.图①图②答案解析1.【答案】B【解析】∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或√7.∴x的值可以有2个.故选B.2.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴OCOD =OBOA1,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴F1G =OCOD=OB1OA1=OBOA是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.3.【答案】C【解析】∵斜边中线长为斜边的一半,∴AD=BD=CD,∴∠C=∠DAC,∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,∴∠BAE=∠DAC,∴∠C=∠BAE,∵∠E=∠E,∴△BAE∽△ACE.故选C.4.【答案】B【解析】∵∠APB =∠CPD ,∠ABP =∠CDP ,∴△ABP ∽△CDP ,∴AB CD =BP PD, 即1.4CD =2.112,解得CD =8米.故选B.5.【答案】D【解析】∵以原点O 为位似中心,相似比为12,把△ABC 缩小,∴点C 的对应点C ′的坐标(1,32)或(-1,−32).故选D.6.【答案】C【解析】∵AD ∥BC ,∠D =90°,∴∠C =∠D =90°,∵DC =8,AD =2,BC =5,设PD =x ,则PC =8-x .①若PD ∶PC =AD ∶BC ,则△PAD ∽△PBC ,则x 8−x =25,解得x =167;②若PD ∶BC =AD ∶PC ,则△PAD ∽△BPC ,则x 5=28−x ,解得PD =4±√6,所以这样的点P 存在的个数有3个.故选C.7.【答案】C【解析】∵一块10 cm×5 cm 的长方形版面要付广告费180元, ∴每平方厘米的广告费为180÷50=185元, ∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×185=1 620元故选C.8.【答案】C【解析】∵△ABC 和△DEF 相似,∴△DEF 的三边之比为3∶4∶5,∴△DEF 的最短边和最长边的比为3∶5,设最长边为x ,则3∶5=9∶x ,解得x =15,∴△DEF 的最长边为15 cm ,故选C.9.【答案】C【解析】∵AB ∥CD ∥EF ,∴AD AF =BC BE ,A 错误;AD DF =BC EC ,B 错误;AD AF =BC BE ,∴AD BC =AF BE ,C 正确;CE BE =DF AF ,D 错误,故选C.10.【答案】A【解析】∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA ∶OA ′=2∶3, ∴DA ∶D ′A ′=OA ∶OA ′=2∶3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为(23)2=49, 故选A.11.【答案】D【解析】设a =5k ,则b =7k ,c =8k ,又3a -2b +c =3,则15k -14k +8k =3,得k =13,即a =53,b =73,c =83,所以2a +4b -3c =143.故选D.12.【答案】D【解析】设这个数是x ,则3x =4×6或4x =3×6或6x =3×4, 解得x =8或x =4.5或x =2,所以,这个数是2,8或4.5.故选D.13.【答案】D【解析】∵两个相似三角形的面积比为1∶4,∴它们的相似比为1∶2,∴它们的周长比为1∶2.故选D.14.【答案】5∶3∶2【解析】如图,作PD ∥BF ,QE ∥BC ,∵D 为BC 的中点,∴PD ∶BF =1∶2,∵E ,F 为AB 边三等分点,∴PD ∶AF =1∶4,∴DN ∶NA =PD ∶AF =1∶4,∴ND =15AD ,AQ ∶AD =QE ∶BD =AE ∶AB =1∶3, ∴AQ =13AD ,QM =14QD =14×23AD =16AD , ∴AM =AQ +QM =12AD ,MN =AD -AM -ND =310AD ,∴AM ∶MN ∶ND =5∶3∶2.15.【答案】∠D =∠B【解析】这个条件可能是∠D =∠B ;理由如下: ∵∠DAB =∠CAE ,∴∠DAB +∠BAE =∠CAE +∠BAE ,即∠DAE =∠BAC ,又∵∠D =∠B ,∴△ADE ∽△ABC .16.【答案】1∶3∶5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD =DF =FB ,∴AD ∶AF ∶AB =1∶2∶3,∴S △ADE ∶S △AFG ∶S △ABC =1∶4∶9,∴S Ⅰ∶S Ⅱ∶S Ⅲ=1∶3∶5.17.【答案】113°或92°【解析】∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°. 18.【答案】√364a 【解析】CD 1=√32a =√321a , D 1D 2=√34a =√322a , D 2D 3=√38a =√323a , 则D 5D 6的长为√326a =√364a , 19.【答案】2【解析】由题意可得DE ∥AB ,∴△CDE ∽△CAB ,∴DE AD =DC AC , 即DE 6=1030,解得DE =2,20.【答案】解 (1)如图画出原点O ,x 轴、y 轴,建立直角坐标系,可知B 的坐标为(2,1);(2)如(1)中图,画出图形△A ′B ′C ′,即为所求;(3)S △A ′B ′C ′=12×4×6=12.【解析】(1)根据A ,C 点坐标进而得出原点位置,进而得出B 点坐标;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.21.【答案】解在△ABC与△AMN中,ACAB =3054=59,AMAN=1?0001?800=59,∴ACAB=AMAN,又∵∠A=∠A,∴△ABC∽△AMN,∴BCMN =ACAM,即45MN=301?000,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.22.【答案】解(1)如图所示:点B的坐标为(-2,-5);故答案为(-2,-5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为(-2,1),四边形ABCP的周长为√42+42+√22+42+√22+22+√22+42=4√2+2√5+2√2+2√5=6√2+4√5.故答案为6√2+4√5.【解析】(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.23.【答案】(1)证明∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS);(2)解连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2【解析】。

人教版 九年级数学下册 第27章相似综合测试卷及答案

人教版 九年级数学下册  第27章相似综合测试卷及答案

2020年九年级27章相似综合测试卷学校:___________姓名:___________班级:___________一、单选题(每题3分,共36分) 1.下列图形一定是相似图形的是( ) A.两个矩形 B.两个等腰三角形 C.两个直角三角形 D.两个正方形 2.下列不相似的是( )A.同一张底片冲洗出来的两张大小不同的照片B.粘在投影仪镜头上的标签投出的不同的像C.某人的侧身照片和正面照片D.比例为1 : 10的C929模型和C929远程宽体客机3.在比例尺是1:40000的地图上,若某条道路长约为5cm,则它的实际长度约为( ) A.0.2km B.2km C.20km D.200km4.若如图27-1-1所示的两个四边形相似,则α∠的度数是( )A.87°B.60°C.75°D.120°5.如图 27-2-1-25,.////,//,AB EF DC AD BC EF 与AC 交于点G ,则图中的相似三角形共有( )A.3对B.5对C.6对D.8对6.若ABC A B C '''△△~,相似比为12∶,则ABC △与A B C '''△的周长的比为( ) A.2 : 1B.1 : 2C.4 : 1D.1 : 47.如图 27-2-1-18,在 ABC △ 中,点,D E 分别在边,AB AC 上,下列条件中不能判定ADE ACB △△~的是( )A.AED ABC ∠=∠B.ADE ACB ∠=∠C.AD EDAC BC=D.AD AEAC AB=8.如图27-2-1-24,在ABC △中,//,932DE BC AD DB CE ===,,, 则AC 的长为( )A.6B.7C.8D.99.如图27-2-1-13,点D E 、分別在ABC △的边AB AC 、上,且9,6,3,AB AC AD ===若ADE △与ABC △相似, 则AE 的长为( )A.2B.92C.2或92D.3或9210.学校门口的栏杆如图27 -2-3-15所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知,,AB BD CD BD ⊥⊥垂足分别为,,4m, 1.6m,1m,B D AO AB CO ===则栏杆C 端下降的垂直距离 CD为( )A.0.2mB.0.3mC.0.4mD.0.5m11.在直角坐标系中,已知点(6,3)A -,以原点O 为位似中心,相似比为13,把线段OA 缩小为OA ',则点A '的坐标为( ) A.(2,-1)或(-2,-1) B.(-2,1)或(2,1) C.(2,1)或(-2,-1) D.(2,-1)或(-2,1)12.如图27-3-13,在ABC △所在平面上任意取一点O (与A B C 、、不重合), 连接OA OB OC 、、,分别取OA OB OC 、、的中点111A B C 、、, 连接111111A B AC B C 、、,得到111A B C △,则下列说法不正确的是( )A. ABC △与111A B C △是位似图形B. ABC △与111A B C △是相似图形C. ABC △与111A B C △的周长比为21∶D. ABC △与111A B C △的面积比为21∶二、填空题(每题3分,共18分)13.已知a 、b 、c 、d 是成比例线段,其中 5?a cm =,6? 3?cm =, 6?c cm =,则线段d =____cm . 14.若两个相似三角形的面积比为1 : 4,则这两个相似三角形的周长比是_________. 15.如图 27-2-2-7,,////,AD DF FE FB DE FG BC ===则S S S =ⅠⅡⅢ∶∶__________.16.已知111ABC A B C △△~,ABC △的周长与111A B C △的周长的比值是1132BE B E ,、分别是它们对应边上的中线,且6,BE =则11B E =________.17.如图27-3-5,四边形ABCD 与四边形EFGH 是位似图形,位似中心是点O ,若12OE OA =,则FGBC=__________.18.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)三、解答题(共66分)19. (6分)如图,在平行四边形ABCD 中,DE AB ⊥于点E ,BF AD ⊥于点F .1.,,,AB BC BF DE 这四条线段能否成比例?如果不能,请说明理由;如果能,请写出比例式.2.若10AB =, 2.5DE =,5BF =,求BC 的长20. (6分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB AD ⊥,ED AD ⊥,测得1m BC =, 1.5m DE =,8.5m BD =.测量示意图如图所示.请根据相关测量信息,求河宽AB .21. (8分)已知''',ABC A B C :△△1''2AB A B =,ABC △的中线4CD =cm ,其周长为20cm, '''A B C △的面积为642cm ,求:(1 )''A B 边上的中线''C D 的长; (2)'''A B C △的周长; (3)ABC △的面积.22. (8分)如图,把矩形ABCD 对折,折痕为MN,矩形DMNC 与矩形ABCD 相似,已知AB=4.1.求AD 的长2.求矩形DMNC 与矩形ABCD 的相似比23. (8分)如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA :△△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24. (8分)如图,点M 的坐标为()13,0,点A 在第一象限,AB x ⊥轴.垂足为B ,3.2AB OB =(1)如果AOM △是等腰三角形,求点A 的坐标;(2)设直线MA 与y 轴交于点N ,则是否存在OMN △与AOB △相似的情形?若存在,请直接写出点A 的坐标;若不存在,请说明理由.25. (10 分)如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标.26. (12分)从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图27-4-16①,在ABC △中,CD 为角平分线, 40,60,A B ∠=∠=°°,求证:CD 为ABC △的完美分割线;(2)在ABC △中,48,A CD ∠=°是ABC △的完美分割线,且ACD △为等腰三角形,求ACB ∠的度数; (3)如图 27-4-16②,在ABC △中,2,2,AC BC CD ==是ABC △的完美分割线,且ACD △是以CD 为底边的等腰三角形.求完美分割线CD 的长.参考答案1.答案:D解析:A 项,两个矩形,角对应相等,边不一定对应成比例,故不符合题意;B 项,两个等腰三角形顶角不一定对应相等,故不 符合题意;C 项,两个直角三角形,只有一个直角相等,锐角不 一定对应相等,故不符合题意;D 项,两个正方形,形状相同, 角对应相等,边对应成比例,符合相似多边形的定义,故符合题意.故选D. 2.答案:C解析:A 中,同一张底片冲洗出来的两张大小不同的照片,形状相同,相似;B 中,同一个标签投出的不同的像,形状相同,相似;C 中,侧身照片和正面照片,照片中人的形状不同,不相 似;D 中,C929远程宽体客机与其模型,形状相同,相似.故选C. 3.答案:B 解析: 4.答案:A解析:如图,Q 两个四边形相似, 138∴∠=°,Q 四边形的内角和等于360°,3607513887α∴∠=--=°-60?°°°,故选A.5.答案:C解析:////,//,AB EF DC AD BC Q AEG ADC CFG CBA ∴△△△~~~,四个三角形两两相似,分别为,,AEG ADC AEG CFG △△△△~~,,AEG CBA ADC CFG △△△△~~,ADC CBA CFG CBA △△△△~~,共6 对.故选 C. 6.答案:B解析:ABC A B C '''Q △△~相似比为12∶,ABC ∴△与A B C '''△的周长的比为12∶.故选B. 7.答案:C解析:A ∠为公共角,A 中,添加ABC AED ∠=∠,可判定ADE ACB △△~,故A 不符合题意;B 中,添加ADE ACB ∠=∠,可判定ADE ACB △△~,故B 不符合题意;C 中,添加AD EDAC BC=,不能判定,ADE ACB △△~故C 符合题意;D 中,添加AD AEAC AB=,能判定ADE ACB △△~,故D 不符合题意.故选C. 8.答案:C解析://,DE BC Q AD AE DB EC ∴=即9,32AE=6AE ∴=,628.AC AE EC ∴=+=+= 9.答案:C解析:①当ADE ACB △△~时,,AE AD AB AC =即3,96AE =解得92AE =. ②当ADE ABC △△~时,,AD AE AB AC =即396AE=,解得2AE =. 故选C. 10.答案:C 解析:由题意可知,ABO CDO △△~,AO AB CO CD ∴=4m, 1.6m,1m,AO AB CO ===Q 4 1.6, 1.6140.4m,1CD CD∴=∴=⨯÷=故选C. 11.答案:D解析:Q 点A 的坐标为(6,3)-,以原点O 为位似中心将线段OA 缩小为OA ',相似比为13,∴点A 的对应点A '的坐标为11(63)33-⨯⨯,或11(6(),3())33-⨯⨯,即(2,1)-或(2,1)-故选D.12.答案:D解析:Q 点111A B C 、、分别是OA OB OC 、、的中点,111111A B B C AC ∴、、分别是,,OAB OBC OAC △△△的中位线,111111,,22A B AB AC AC ∴==111,2B C C =又对应顶点的连线交于一点,ABC ∴△与111A B C △是位似图形,则A 种说法正确,不符合题意;ABC △与111A B C △是相似图形,则B 中说法正确,不符合题意;ABC △与111A B C △的周长比为21;∶则C 中说法正确,不符合题意;ABC △与111A B C △的面积之比为41∶,则D 中说法错误.故选D. 13.答案:185解析:∵a 、b 、c 、d 是成比例线段,∴a c b d =,即563d =,∴185d cm =. 14.答案:12∶解析:Q 两个相似三角形的面积比为14∶,∴这两个相似三角形的相似比为12∶,∴这两个相似三角形的周长比是12∶. 15.答案:135∶∶解析:////DE FG BC Q,ADE AFG ABC ∴△△△~~ ,AD DF FB ==Q123AD AF AB ∴=,∶∶∶∶ 149ADE AFG ABC S S S ∴=,△△△∶∶∶∶ 13 5.S S S ∴=ⅠⅡⅢ∶∶∶∶16.答案:4解析:111ABC A B C Q △△~,ABC △的周长与111A B C △的周长的比值是了,1133,,22BE B E ∴=即1163,2B E =解得11 4.B E = 17.答案:12解析:Q 四边形ABCD 与四边形EFGH 是位似图形,1.2FG OE BC OA ∴== 18.答案:324n⎛⎫⎪⎝⎭解析:在正三角形ABC 中1AB BC ⊥,根据题意可得211AB B AB B :△△,记1AB B △的面积为S ,19.答案:1.能,理由如下:ABCD Q Y 在,DE AB ⊥,BF AD ⊥ABCD S AB DE AD BF ∴=⋅=⋅YAB BFBC DE∴=即,,,AB BC BF DE 这四条线段成比例 2.AB DE BC BF ⋅=⋅Q 10 2.55BC ∴⨯= 解得:5BC = 解析:20.答案:解:,,90,CB AD ED AD CBA EDA ⊥⊥∴∠=∠=Q °,CAB EAD ∠=∠Q ,ABC ADE ∴:△△,AB BCAD DE∴=又,8.5,1, 1.5,AD AB BD BD BC DE =+===Q 1,17,8.5 1.5AB AB AB ∴=∴=+即河宽为17m.解析:21.答案:解:(1)Q ''',ABC A B C :△△1''2AB A B =,1.''''2CD AB C D A B ∴== 又Q 4CD =cm ,''428(cm)C D ∴=⨯=. (2) Q ''',ABC A B C :△△1''2AB A B =,'''1.2ABC A B C C C ∴=△△又ABC Q △的周长为20 cm,'''20240(cm),'''A B C C A B C ∴=⨯=∴△△的周长为40 cm. (3) Q ''',ABC A B C :△△1''2AB A B =,'''1.4ABC A B C S S ∴=△△又'''A B C Q △的面积为642cm ,264416(cm )ABC S ∴=÷=△,ABC ∴△的面积为162cm .解析: 22.答案:1. 若设AD=x(x>0),则DM=2x. ∵矩形DMNC 与矩形ABCD 相似,∴AD CDAB DM =. ∴44x x=,即x=舍负). ∴AD的长为2.矩形DMNC 与矩形ABCD 的相似比为:2=解析: 23.答案:(1)证明:Q四边形ABCD是矩形,,,AD BC DC AB ∴==90.DAB B C D ∠=∠=∠=∠=°由折叠可得,,,AP AB PO BO ==,PAO BAO ∠=∠90,APO B ∠=∠=°90,APD CPO POC ∴∠=-∠=∠°.OCP PDA ∴:△△ (2)解:OCP Q △与PDA △的面积比为1:4,1.2OC OP CP PD PA DA ∴====2,2,PD OC PA OP ∴==2.8,DA CP AD ==Q 4,8.CP BC ∴== 设AB x =,则AP BP x ==.在Rt ADP △中,90,8,4D AD DP x ∠===-Q ,° 2228)4(.AP x x x =∴=+-,解10.x =即10AB =.解析:24.答案:解:(1)设3(,),.2y A x y x =①当AO AM =时,则22,AO AM = 即2222(13).x y x y +=-+②由①②得3,22222(13),y x x y x y ⎧=⎪⎨+=-+⎪⎩解得13,239.4x y ⎧=⎪⎨⎪=⎩即1339(,);24A 当OA OM =时,则22,OA OM =即22169.x y +=③由①③得13,222169,y x y ⎧=⎪⎨+=⎪⎩解得x y ⎧=⎨=⎩即A ; 当MA OM =时,则22,MA OM =,即22(13)169.x y -+=④由①④得3,222(13)169,y x x y ⎧=⎪⎨-+=⎪⎩解得{8,12x y ==或{0,0x y ==(舍去),即(8,12)A 综上所述,AOM △是等腰三角形,点A的坐标是1339(,24(2)存在点A ,使以M,O,N 为顶点的三角形与AOB △相似.当OBA MON :△△时,3,,2AB OB ON AB ON OM OM OB ===339,22ON OM ==39(0,),2N 直线MN :339,22y x =-+⑤ 由①⑤得3,233922y x y x ⎧=⎪⎨⎪=-+⎩,解得13,239,4x y ⎧=⎪⎨⎪=⎩1339(,)24A ; 当OAB NMO :△△时,,,AB OB OM AB OM ON ON OB ==22613,33OB ON OM AB =⋅=⨯=26(0,)3N ,直线MN :326,23y x =-+⑥由①⑥得3,2326,23y x y x ⎧=⎪⎨⎪=-+⎩解得{4,6,x y ==(4,6)A综上所述,当点A 为()4,6,1339(,)24时,以M,O,N 为顶点的三角形与AOB △相似. 解析:25.答案:解:(1)设直线AD 的解析式为y kx b =+.将45(,)33A ,1(0)D ,代入得45,331,k b b ⎧+=⎪⎨=⎪⎩解得1,21.k b ⎧=⎪⎨=⎪⎩ 故直线AD 的解析式为11.2y x =+(2) 直线AD 的表达式为11.2y x =+令0y =,得2x =-.(2,0)B ∴-2.OB ∴=直线AC 的表达式为3y x =-+. 令0y =,得3x =.(3,0)C ∴3.OC ∴=设1(,1)2E x x + ①当1E C BC ⊥时,如图,1190,.BOD BCE DBO E BC ∠=∠=∠=∠°1BOD BCE ∴:△△此时点C 和点1E 的横坐标相同.将3x =代入112y x =+,解得155.(3,)22y E =∴. ②当2CE AD ⊥时,如图,2290,.BOD BE C DBO CBE ∠=∠=∠=∠°2BOD BE C ∴:△△乙DBO 二乙CBE2, …LBOD-tBE2C.过点2E 作2E F x ⊥轴于点F ,则2290.E FC BE F ∠=∠=°2290.E BF BE F ∴∠+∠=°又2290,CE F BE F ∠+∠=Q °22.E BF CE F ∴∠=∠22E BF CE F ∴:△△,则22.E F CFBF E F= 22,E F CF BF ∴=⋅即21(1)(3)(2)2x x x +=-+解得122,2x x ==- (舍去).2(2,2).E ∴当90EBC ∠=°时,此情况不存在. 综上所述,点E 的坐标为5(3,)2或(2,2).解析:26.答案:答案:(1)证明: 40,60,A B ∠=∠=Q °°80,ACB ∴∠=°ABC ∴△不是等腰三角形. CD Q 平分,ACB ∠140,2ACD BCD ACB ∴∠=∠=∠=°40,ACD A ∴=∠=△°ACD ∴△为等腰三角形.40,,DCB A CBD ABC ∠=∠=∠=∠Q °.BCD BAC ∴△△~CD ∴是ABC △的完美分割线.(2)当AD CD =时(如图①),48ACD A ∠=∠=°.,BDC BCA Q △△~ 48,BCD A ∴∠=∠=°96ACB ACD BCD ∴∠=∠+∠=°.当AD AC =时(如图②),1804866,2ACD ADC -∠=∠==°°° ,BDC BCA Q △△~ 48,BCD A ∴∠=∠=°114ACB ACD BCD ∴∠=∠+∠=°.当AC CD =时(如图③),48ADC A ∠=∠=°.,BDC BCA Q △△~48BCD A ∴∠=∠=°,ADC BCD ∴∠=∠其与ADC BCD ∠>∠矛盾,舍去.96ACB ∴∠=°或114°(3)由题意知2,AC AD == ,,BC BD BCD BAC BA BC∴=Q △△~ 设(0),BD x x => 2(2)(2),x x ∴=⋅+解得13,x =-±0,31,x x >∴=Q,BCD BAC Q △△~CD BD∴=AC BC∴=== CD21)解析:。

九年级数学下册《第二十七章 相似三角形》同步练习及答案-人教版

九年级数学下册《第二十七章 相似三角形》同步练习及答案-人教版

九年级数学下册《第二十七章相似三角形》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3 B.4 C.6 D.102.如图,下列不能判定△ABD与△ACB相似的是()A.BDBC =ABACB.ADAB=ABACC.∠ABD=∠ACB D.∠ADB=∠ABC3.如图,已知△ABC,点D是BC边中点,且∠ADC=∠BAC若BC=6,则AC=( )A.3 B.4 C.4√2D.3√24.如图,AB∥CD,AD,BC相交于点O.若AB=1,CD=2,BO∶CO=( )A.1∶2 B.1∶4 C.2∶1 D.4∶15.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m6.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为( )A.6cm B.12cm C.18cm D.24cm7.如图,△ABC内接于⊙O,若AB=√10,AC=3√5,BC=7,则⊙O的半径是()A.5√22B.2√105C.2√55D.3√1028.如图,路灯距地面8m,身高 1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m 二、填空题9.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,若AB=3,BC=5,则DFEF的值为.10.如图,利用标杆DE测量楼高,点A,D,B在同一直线上DE⊥AC,BC⊥AC垂足分别为E,C.若测得AE=1m,DE=1.5m,CE=5m则楼高BC=m.BC=2,D在AC上,且∠APD=∠B,则11.如图,在等腰△ABC中AB=AC=9,BP=13CD=.12.如图,小明为了测量高楼MN的高度,在离点N18米的点A处放了一个平面镜,小明沿NA方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC 是1.6米,则高楼MN的高度是.13.如图,BC是⊙O的切线,D是切点.连接BO并延长,交⊙O于点E、A,过A作AC⊥BC,垂足为C.若BD=8,BE=4,则AC=.三、解答题14.已知如图,Rt △ABC 中,∠C =90°,CD 是斜边上的高,求证:CD 2=AD •BD.15.如图,已知 △ABC ∽△ADE ,求证: △ABD ∽△ACE .16.如图,CD 是⊙O 的弦,AB 是直径,CD ⊥AB ,垂足为P ,求证:PC 2=PA ·PB17.如图,D ,E ,F 是△ABC 边上的点ED ∥BC,∠ABC =∠EDF .(1)求证:∠A =∠CDF ;(2)若D 是AC 的中点.直接写出S △CDFS △ABC 的值.18.如图,AB 是半圆O 的直径,C 是AB⌢的中点,过点C 作弦BD 的垂线,垂足为E.(1)求证:CE =DE ;(2)若AD=DE=1,求AB的长.参考答案1.B2.A3.D4.A5.A6.C7.A8.C9.8510.911.8912.19.2米13.9.614.证明:∵CD是斜边AB上的高. ∴∠ADC=∠CDB=90°又∵在Rt△ABC中∠ACB=90°∴∠ACD+∠BCD=90°∴∠A+∠ACD=90°∴∠A=∠BCD∴△ACD∽△CBD∴ADCD =CDBD∴CD2=AD•BD.15.证明:∵△ABC∽△ADE∴ABAD =ACAE∠BAC=∠DAE∴ABAC =ADAE∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∴△ABD∽△ACE .16.证明:连接AC,BD∵∠A=∠D,∠C=∠B∴△APC∽△DPB.∴CPBP =APDP∴CP•DP=AP•BP.∵AB是直径,CD⊥AB∴CP=PD.∴PC2=PA•PB.17.(1)证明:∵ED∥BC∴∠AED=∠ABC∵∠ABC=∠EDF∴∠AED=∠EDF∴DF∥AB∴∠A=∠CDF(2)解:∵DF∥AB,且D为AC中点∴∠A=∠CDF,∠CFD=∠B∴△CDF∽△CAB∴CDAC =CFCB=DFAB∵D为AC中点∴S△CDFS△CAB =(CDAC)2=(12)2=1418.(1)证明:连接OD、DC、OC,OC交BD于点F,如图所示∵CE⊥BD,C是AB⌢的中点∴∠CEF=90°,∠COB=90°∵∠4=∠5∴∠3=∠2;由题意知OD=OB=OC∴∠1=∠2,∠ODC=∠OCD ∴∠1=∠3∴∠EDC=∠ECD∴CE=DE.(2)解:由(1)知CE=DE∵AD=DE=1∴AD=DE=CE=1过点O作OG∥AD,如图所示∴△OGB∼△ADB∴BOBA =OGAD=BGBD=12解得OG=12∵AB是圆的直径∴AD⊥BD∴OG⊥BD∵CE⊥BD∴OG ∥CE∴△OGF ∼△CEF∴GF EF =OG CE =121=12设FG =x ,EF =2x 则BG =GD =3x +1 由(1)知∠ECF =∠OBG ,且∠CEF =∠BGO =90° ∴△CEF ∽△BGO∴BG CE =OG EF ,即3x+11=122x解得x =16或x =−12(舍去)∴BD =2(3x +1)=3在Rt △ADB 中根据勾股定理: AB =√AD 2+BD 2=√12+32=√10.。

2020年春人教版九年级数学下册第27章相似测试题课后巩固提升及答案

2020年春人教版九年级数学下册第27章相似测试题课后巩固提升及答案
图 27-3-15
10.某出版社的一位编辑在设计一本书的封面时, 想把封面划分为四个矩形,其中左上角的矩 形与右下角的矩形位似 ( 如图 27-3-16) ,以给人一种和谐的感觉,这样的两个位似矩形该怎样画出 来?该编辑认为只要 A,P,C三点共线,那么这两个矩形一定是位似图形,你认为他的说法对吗? 请说明理由.
100 m,同时高为 2 m 的测竿,其影长为 5 m,那么古塔的高为多少?
8.两个相似的五边形的对应边的比为 1∶ 2,其中一个五边形的最短边长为 3 cm,则另一个五
边形的最短边长为 (
)
A. 6 cm B . 1.5 cm
C. 6 cm 或 1.5 cm D . 3 cm 或 6 cm
9. ( 中考改编 ) 如图 27-1-5 ,在长为 8 cm 、宽为 4 cm 的矩形中,截去一个矩形,使得留下的
27 81 A. 2 B. 8 C . 24 D . 32 2.若把△ ABC的各边长分别扩大为原来的 5 倍,得到△ A′B′ C′,则下列结论不可能成立的 是( ) A.△ ABC∽△ A′ B′C′
1 B.△ ABC与△ A′ B′C′的相似比为
6 C.△ ABC与△ A′ B′C′的各对应角相等
图 27-3-11 1
6.如图 27-3-12 ,五边形 ABCDE与五边形 A′ B′ C′D′ E′是位似图形,且相似比为 2. 若五 边形 ABCDE的面积为 17 cm2, 周长为 20 cm,那么五边形 A′B′ C′ D′ E′的面积为 ________,周长 为 ________.
图 27-3-12 7.已知,如图 27-3-13 ,A′ B′∥ AB,B′C′∥ BC,且 OA′∶ A′ A=4∶ 3,则△ ABC与 ________ 是位似图形,位似比为 ________;△ OAB与________是位似图形,位似比为 ________.

九年级数学下册第27章相似同步练习(共12套新人教版)

九年级数学下册第27章相似同步练习(共12套新人教版)

九年级数学下册第27章相似同步练习(共12套新人教版)课时作业[27.1 第2课时相似多边形]一、选择题.下列四条线段中,不能成比例的是链接听课例1归纳总结A.a=3,b=6,c=2,d=4B.a=1,b=2,c=6,d=3c.a=4,b=6,c=5,d=10D.a=2,b=5,c=15,d=23.五边形ABcDE相似于五边形A′B′c′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′c′D′E′与五边形ABcDE的相似比是A.5∶4 B.4∶5 c.5∶25 D.25∶5.若一个多边形的各边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边长为24,则另一个多边形的最短边长为A.6B.8c.10D.12.下面给出了一些关于相似的命题,其中真命题有菱形都相似;等腰直角三角形都相似;正方形都相似;矩形都相似;正六边形都相似.A.1个B.2个c.3个D.4个.如图-7-1,有三个矩形,其中是相似形的是链接听课例3归纳总结图-7-1A.甲和乙B.甲和丙c.乙和丙D.甲、乙和丙二、填空题.若2c,3c,xc,6c是成比例线段,则x=________;链接听课例2归纳总结在比例尺是1∶46000的城市交通游览图上,某条道路的图上长度约为8c,则这条道路的实际长度约为________c..下列说法中,正确的是________.①对应角相等的两个多边形相似;②对应边成比例的两个多边形相似;③若两个多边形不相似,则对应角不相等;④若两个多边形不相似,则对应边不成比例;⑤边长分别为3,5的两个正方形是相似多边形;⑥全等多边形一定是相似多边形..如图-7-2,已知在矩形ABcD中,AB=1,在Bc上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F 处.若四边形FDcE与矩形ABcD相似,则AD=________.图-7-2三、解答题.如图-7-3,把矩形ABcD对折,折痕为N,矩形DNc 与矩形ABcD相似,已知AB=4.求AD的长;求矩形DNc与矩形ABcD的相似比.链接听课例4归纳总结图-7-3如图-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′c′D′与矩形ABcD相似?图-7-4详解详析[课堂达标].[解析]c A.3∶6=2∶4,即a∶b=c∶d,故a,b,c,d成比例.B.1∶2=3∶6,即a∶b=d∶c,故a,b,d,c成比例.c.四条线段中,任意两条的比都不相等,因而不成比例.D.5∶2=15∶23,即b∶a=c∶d,故b,a,c,d 成比例.故选c..[解析]B 相似多边形的相似比等于对应边的比,五边形A′B′c′D′E′与五边形ABcDE的相似比是A′B′∶AB,即40∶50=4∶5..[解析]B 设另一个多边形的最短边长为x.根据题意,得x2=246,解得x=8.故选B..[解析]c 根据相似多边形的判定条件“对应角相等,对应边成比例”可得正确.故选c..[解析]B 三个矩形的各个角都相等,但只有甲和丙的对应边成比例,故甲和丙相似..[答案]4 3.68×105[解析]依题意,得2×6=3x,解得x=4.设这条道路的实际长度为xc,则146000=8x,解得x=368000.000c=3.68×105c..[答案]⑤⑥[解析]对应角相等、对应边成比例的两个多边形相似,所以①②错误;两个多边形不相似时,对应角可能相等,如矩形和正方形不相似,但对应角相等,所以③错误;两个多边形不相似时,对应边可能成比例,如菱形和正方形不相似,但对应边成比例,所以④错误;任意两个正方形的对应角相等,对应边成比例,故任意两个正方形都相似,所以⑤正确;全等多边形是相似多边形的特例,所以⑥正确.故填⑤⑥.5+12.解:设矩形ABcD的长AD=x,则D=12AD=12x.∵矩形DNc与矩形ABcD相似,∴ADAB=cDD,即x4=412x,∴x=42或x=-42.即AD的长为42.矩形DNc与矩形ABcD的相似比为4∶42=1∶2.[素养提升][解析]若矩形A′B′c′D′与矩形ABcD相似,由相似多边形的性质可知,这两个矩形的对应边成比例,即可求出相似比,再由相似比求出x与y的比值.解:由题意可知,矩形A′B′c′D′与矩形ABcD相似,则应有ABA′B′=BcB′c′,即2020+2y=3030+2x,从而有20=30,解得xy=32.。

2020年人教版九年级数学下《第27章相似》专项训练含答案

2020年人教版九年级数学下《第27章相似》专项训练含答案

2020年第27章相似专项训练专训1 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC 的平分线BE交AC于E,交AD于F.求证:BFBE=ABBC.(第8题)9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.(第9题)等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF 于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2 巧用“基本图形”探索相似条件名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.(第1题)相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE与△ABC相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:ABAC =DFAF .(第3题)旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.(第4题)专训3 利用相似三角形巧证线段的数量和位置关系名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.(第1题)2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE CE=BF CF.求证:AD=DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12 BC.(第3题)4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.(第4题)证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.(第5题)6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.(第7题)8.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A,B,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标.(第2题)3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN 垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB 对应的函数解析式.(第4题)专训5 全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE ⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O为位似中心,把△ABC 缩小为原来的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题)1.证明:如图,过点C作CM∥AB交DF于点M. ∵CM∥AB,∴△CMF∽△BDF.∴BFCF =BD CM.又∵CM∥AD,∴△ADE∽△CME.∴AEEC=ADCM.∵D为AB的中点,∴BDCM =ADCM.∴BFCF=AEEC,即AE·CF=BF·EC.2.证明:过点D作DG∥BC,交AC于点G,∴△DGF∽△ECF,△ADG∽△ABC.∴EFDF=CEDG,ABBC=ADDG.∵AD=CE,∴CEDG =ADDG.∴ABBC=EFDF,即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A”型或“X”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题) 5.证明:如图,连接PM,PN. ∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°. ∴∠5=∠7.∴△BPM∽△CNP.∴BPCN =BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DG DE=DE DF,∴DE 2=DG ·DF ,∴DG ·DF =DB ·EF.7.证明:∵BG ⊥AP ,PE ⊥AB , ∴∠AEP =∠BED =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠ABG =90°. ∴∠P =∠ABG.∴△AEP ∽△DEB. ∴AE DE =PE BE,即AE ·BE =PE ·DE.又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE.∴△AEC ∽△CEB.∴AE CE =CEBE,即CE 2=AE ·BE.∴CE 2=DE ·PE. 8.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BFBE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA. ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =ABBC.9.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D.∵AM⊥BC,AN⊥CD,∴∠AMB=∠AND=90°,∴△AMB∽△AND.(2)由△AMB∽△AND得AMAN=ABAD,∠BAM=∠DAN.又AD=BC,∴AMAN=ABBC.∵AM⊥BC,AD∥BC,∴∠AMB=∠MAD=90°. ∴∠B+∠BAM=∠MAN+∠NAD=90°,∴∠B=∠MAN.∴△AMN∽△BAC,∴AMAB=MNAC.10.证明:∵AD⊥BC,DE⊥AB,∴∠ADB=∠AED=90°.又∵∠BAD=∠DAE,∴△ADE∽△ABD,得AD2=AE·AB,同理可得AD2=AF·AC,∴AE·AB=AF·AC,∴AEAF=ACAB.11.证明:连接PC,如图.∵AB=AC,AD⊥BC,∴AD垂直平分BC,∠ABC=∠ACB,∴BP=CP,∴∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4.∵CF∥AB,∴∠3=∠F,∴∠4=∠F.又∵∠CPF=∠CPE,∴△CPF∽△EPC,∴CPPE=PFCP,即CP2=PF·PE.∵BP=CP,∴BP2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA,则PA=PD,∴∠PDA=∠PAD.∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC∽△PBA,∴PAPB=PCPA,即PA2=PB·PC,∴PD2=PB·PC. 专训21.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC.∴AE AC=DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC. ∵ED ∥BC ,∴∠DEB =∠EBC. ∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC ,即AE ·BC =BD ·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S△ADE S△BDE=h △ADEh△BDE=32. ∴h △ADE h△ABC=35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE=∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DNMC=ONOM.∴DNMC=NEBM.∴DNNE=MCBM.∵DE∥BC,∴△ANE∽△AMC.∴ANAM=NEMC.同理可得ANAM=DNBM,∴DNBM=NEMC.∴DNNE=BMMC.∴MCBM=BMMC.∴MC2=BM2.∴BM=MC.(第2题) 2.证明:如图,过C作CG∥AB交DF于G点.∵CG∥AB,∴ADCG=AECE,BDCG=BFCF,∵AECE=BFCF,∴ADCG=BDCG,∴AD=BD.3.证明:∵BD⊥AC,CE⊥AB,∠A=60°,∠ABD=∠ACE=30°,∴ADAB=12,AEAC=12,∴ADAB=AEAC.又∠A=∠A,∴△ADE∽△ABC,∴DEBC=ADAB=12,∴DE=12BC.4.证明:如图,延长CE,交AM的延长线于F.∵AB∥CF,∴∠BAM=∠F,△BDM∽△CEM,△BAM∽△CFM,∴BD CE=BMMC,BACF=BMMC,∴BDCE=BACF.又∵BA=2BD,∴CF=2CE.又AM平分∠BAC,∴∠BAM=∠CAM,∴∠CAM=∠F,∴AC=CF,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C作CO⊥AB于点O.∵DE=CD,DE⊥CD,∴∠ECD=∠CED=45°.∵△ABC是等腰直角三角形,∴∠CAB=∠B=45°.∴∠CAB=∠CED.又∵∠AOC=∠EDC=90°,∴△ACO∽△ECD.∴ACCO=ECCD.又∵∠ACE+∠ECO=∠OCD+∠ECO=45°,∴∠ACE=∠OCD.∴△ACE∽△OCD.∴∠CAE=∠COD=90°.又∵∠ACB=90°,∴∠CAE+∠ACB=180°.∴AE∥BC.6.解:(1)MN∥AC∥ED.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC.∵E为AB的中点,EF∥BC,∴F为AC的中点.又∵DF∥AB,∴D为BC的中点,∴EM=MF.∵F为AC的中点,FN∥AE,∴N为EC的中点,从而MN∥AC.又∵D为BC的中点,E为AB的中点,∴ED∥AC,∴MN∥AC∥ED.(2)MN∥AC.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC,∴EMMF=BDDC.又∵DF∥AB,∴BDDC=ENNC,∴EMMF=ENNC,∴EMEF=ENEC.又∵∠MEN=∠FEC,∴△MEN∽△FEC.∴∠EMN=∠EFC.∴MN∥AC.7.证明:∵AC2=AB·AD,∴ACAD=ABAC.又∵∠A=∠A,∴△ACD∽△ABC.∴∠ADC=∠ACB.又∵BC2=BA·BD,∴BCBD=BABC.又∵∠B=∠B,∴△BCD∽△BAC.∴∠BDC=∠BCA.∴∠ADC=∠BDC.∵∠BDC+∠ADC=180°,∴∠ADC=∠BDC=90°. ∴CD⊥AB.8.证明:∵AD=13AB,点E,F把AB三等分,∴设AE=EF=FB=AD=k,则AB=CD=3k. ∵CD∥AB,∴∠DCG=∠FAG,∠CDG=∠AFG.∴△AFG∽△CDG,∴FGDG=AFCD=23.设FG=2m,则DG=3m,∴DF=FG+DG=2m+3m =5m.在Rt△AFD中,DF2=AD2+AF2=5k2,∴DF=5k.∴5m=5k.∴m=55k.∴FG=255k.∴AFFG=2k255k=5,DFEF=5kk= 5.∴AFFG=DFEF.又∠AFD=∠GFE,∴△AFD∽△GFE. ∴∠EGF=∠DAF=90°.∴EG⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0)将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎪⎨⎪⎧b =153=43k +b 解得⎩⎪⎨⎪⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C(3,0),即BC =5设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.此时点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝ ⎛⎭⎪⎫3,52.②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F.∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F.即E 2F 2=CF ·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去) ∴E 2(2,2)当∠EBC =90°时,此情况不存在.综上所述:E 1⎝ ⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线经过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎪⎨⎪⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AO AD =OB DP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m. 把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎪⎨⎪⎧m =2,k +m =0,解得⎩⎪⎨⎪⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c. ∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧c =2,-9+3b +c =-4,解得⎩⎪⎨⎪⎧b =1,c =2.∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN 2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO,即ON2=MN1,∴MN =12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在这样的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =kx 经过点D(1,3),∴3=k1,∴k =3,∴y =3x .∵点E 在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y =32,∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.(2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BDCF=BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝ ⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A ′B ′C ′D ′相似.由已知条件知,∠DAB =∠D ′A ′B ′,∠B =∠B ′,∠BCD =∠B ′C ′D ′,∠D =∠D ′,且AB A ′B ′=BC B ′C ′=CD C ′D ′=DAD ′A ′=56,所以四边形ABCD与四边形A ′B ′C ′D ′相似.4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B ′作B ′N ⊥x 轴于点N ,则△CBM ∽△CB ′N.所以MC NC =BMB ′N =BC B ′C.又由已知条件知NC =a +1,B ′N =-b ,BCB ′C =12,所以MC(a +1)=BM (-b)=12.所以MC =12(a +1),BM =-b2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x ·y =12·2x ·⎝ ⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE 有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD.由(1)知△ABC ∽△FCD ,∴S△ABC S△FCD=⎝ ⎛⎭⎪⎫BC CD 2=41. 又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC ·AM ,∴AM =2S△ABCBC=2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM=BD BM.由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE 4=55+52,∴DE =83.点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB为等腰直角三角形,AB为斜边,∴∠CAB=45°.∵CO⊥AB.∴∠AOC=90°.又∵DE⊥CD,DE=CD,∴∠CED=45°,∠CDE=90°.∴∠CAO=∠CED,∠AOC=∠EDC.∴△ACO∽△ECD.∴∠ACO=∠ECD,ACCO =CE CD.∴∠ACE=∠OCD.∴△ACE∽△OCD.8.(1)证明:由四边形APCB内接于圆O,得∠FPC=∠B.又∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,所以∠APD=∠FPC,所以∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∠PAC=∠PDC,所以△PAC∽△PDF.(2)解:由(1)知△PAC∽△PDF,所以∠PCA=∠PFD.又∠PAC=∠CAF,所以△PAC∽△CAF,所以△CAF∽△PDF,所以PDAC=DFAF,则PD·AF=AC·DF.由AB=5,AC=2BC,∠ACB=90°,知BC=5,AC =2 5.由OE⊥CD,∠ACB=90°知CB2=BE·AB,CE=DE.所以BE=CB2AB=55=1.所以AE=4,CE=CB2-BE2=5-1=2,所以DE=2.又=,∠AFD=∠PCA,所以∠AFD=∠PCA=45°. 所以FE=AE=4,AF=42,所以PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,所以△ABM∽△DCM∽△FGH,所以ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,所以2CM=1.22,解得CM=103m.因为BC=4 m,所以BM=BC+CM=4+103=223(m).所以AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.所以AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG =1.2 m,GH=2 m,所以AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G.∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O,先连接CO,因为要把原三角形缩小为原来的一半,可确定C′O=12CO,由其确定出C′的位置,再根据同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD为平角直接可得.(2)由于线段PM,CM,BM在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM=AM,从而证明△ACM与△ABM相似即可.(1)解:∵AP平分∠BAC,∴∠PAC=12∠BAC.又∵AQ平分∠CAD,∴∠CAQ=12∠CAD.∴∠PAC+∠CAQ=12∠BAC+12∠CAD=12(∠BAC+∠CAD).又∵∠BAC+∠CAD=180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.(2)证明:由(1)知∠PAQ=90°,又∵M是线段PQ的中点,∴PM=AM,∴∠APM=∠PAM.∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,∠BAP=∠PAC,∴∠B=∠CAM.又∵∠AMC=∠BMA,∴△ACM∽△BAM.∴CMAM =AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。

九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版

相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。

2020-2021学年人教版数学九年级下学期《第27章 相似》测试卷及答案解析

A.(6﹣2 )B.(2 ﹣2)C.( ﹣1)D.(3﹣ )
9.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是( )
A.3:2B.4:3C.2:1D.2:3
10.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )
A.(﹣22019,22019)B.(22019,﹣22019)
C.(﹣22018,22018)D.(22018,﹣22018)
20.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF.则BC的长为( )
A.12B.10C.8D.6
21.如图,在⊙O中,CD是直径,且CD⊥AB于P,则下列结论中①AP=PB②PO=PD③∠BOD=2∠ACD④AP2=PC•PD,正确的个数有( )
A.①和②B.②和③C.①和③D.①和④
11.下面不是相似图形的是( )
A. B.
C. D.
12.观察下列每组图形,相似图形是( )
A. B.
C. D.
13.如图,下列条件中,不能判定△ACD∽△ABC的是( )
A.∠ADC=∠ACBB.∠B=∠ACDC.∠ACD=∠BCDD.
14.如图,点D、E分别在△ABC的边AB、AC上,且AB=9,AC=6,AD=3,若使△ADE与△ABC相似,则AE的长为( )
2020-2021学年人教版数学九年级下学期
《第27章相似》测试卷
一.选择题(共27小题)
1.已知 ,则 等于( )
A. B. C.2D.3
2.若 ,则 =( )
A. B.﹣ C.7D.﹣7
3.如图,用图中的数据不能组成的比例是( )

(完整word)人教版九年级数学下册第二十七章相似单元测试试题(含答案),推荐文档

12 12.[答案] 7 或 2 13.解:(1)△A1B1C1 如图所示. (2)△A2B2C2 如图所示,点 A2 的坐标为(-1,-4).
14.解:(1)当 CD2=AC·DB 时,△ACP∽△PDB. ∵△PCD 是等边三角形, ∴∠PCD=∠PDC=60°, ∴∠ACP=∠PDB=120°.
3 /7
人教版九年级数学下册第二十七章 相似 单元测试试题(含答案)
图 10
14.(12 分)如图 11 所示,点 C,D 在线段 AB 上,△PCD 是等边三角形. (1)当 AC,CD,DB 满足怎样的关系时,△ACP∽△PDB? (2)当△ACP∽△PDB 时,求∠APB 的度数.
图 11
4 /7
图8 12.将三角形纸片(△ABC)按图 9 所示的方式折叠,使点 B 落在边 AC 上,记为点 B′, 折痕为 EF.已知 AB=AC=3,BC=4.若以点 B′,F,C 为顶点的三角形与△ABC 相似,则 BF 的长是__________.
图9 三、解答题(本大题共 4 小题,共 47 分) 13.(11 分)如图 10,方格纸中的每个小方格都是边长为 1 个单位长度的正方形,△ABC 的顶点都在格点上,建立如图所示的平面直角坐标系. (1)将△ABC 向左平移 7 个单位长度后再向下平移 3 个单位长度,请画出经过两次平移 后得到的△A1B1C1; (2)以原点 O 为位似中心,将△ABC 缩小,使变换后得到的△A2B2C2 与△ABC 对应边的比 为 1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点 A2 的坐标.
图6
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题(本大题共 5 小题,每小题 5 分,共 25 分)

人教版九年级数学下册第27章(精选)相似测试卷及答案【新】

第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32B .41C .31 D .212.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DEB .21=∆∆的周长的周长ABC ADE C .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC中,DE∥BC,AE∶EB=2∶3,若△AED的面积是4m2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.三、解答题13.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S . (1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?第二十七章 相似全章测试答案与提示1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ;(2)△ABC ∽△CDE ,DE =1.5. 14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x当∠ADE 为底角时:⋅=21AE19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y (2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章 相似一、选择题1.2018·内江已知△ABC 与△A 1B 1C 1相似,且相似比为1∶3,则△ABC 与△A 1B 1C 1的面积比为( ) A .1∶1 B .1∶3 C .1∶6 D .1∶92.2018·绍兴学校门口的栏杆如图1所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO =4 m ,AB =1.6 m ,CO =1 m ,则栏杆C 端应下降的垂直距离CD 为( )图1A .0.2 mB .0.3 mC .0.4 mD .0.5 m3.2018·临沂如图2,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m ,则建筑物CD 的高是( )图2A .9.3 mB .10.5 mC .12.4 mD .14 m4.2018·潍坊在平面直角坐标系中,P(m ,n)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( )A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)5.2018·宜宾如图3,将△ABC 沿BC 边上的中线AD 平移到△A′B′C′的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA′=1,则A′D 等于( )图3A .2B .3 C.23 D.326.2018·泰州如图4,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB ⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )图4A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点 二、填空题7.2018·嘉兴如图5,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE=________.图58.2018·南充如图6,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD =1,BD =2,BC =4,则EF =________.图69.2018·岳阳《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“如图7,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.图7三、解答题10.2018·杭州如图8,在△ABC 中,AB =AC ,AD 为BC 边上的中线,DE ⊥AB 于点E. (1)求证:△BDE ∽△CAD ;(2)若AB =13,BC =10,求线段DE 的长.图811.2018·安徽如图9,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B 的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是________个平方单位.图9︵12.2018·衢州如图10,已知AB为⊙O的直径,AC是⊙O的切线,连接BC交⊙O于点F,取BF的中点D,连接AD交BC于点E,过点E作EH⊥AB于点H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.图1013.2018·宁波若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长;(2)如图11①,在四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC ,∠BAC =∠ADC.求证:△ABC 是比例三角形;(3)如图②,在(2)的条件下,当∠ADC =90°时,求BDAC的值.图11详解详析1.[解析] D ∵△ABC 与△A 1B 1C 1相似,且相似比为1∶3,∴S △ABC S △A 1B 1C 1=(13)2=19.故选D.2.[解析] C 由题意可知△ABO ∽△CDO ,根据相似三角形的性质可得AO CO =ABCD,又AO =4 m ,AB=1.6 m ,CO =1 m ,∴41=1.6CD,解得CD =0.4(m).故选C.3.[解析] B 由题意知BE ∥CD ,∴△ABE ∽△ACD ,∴BE CD =AB AC ,即1.2CD = 1.61.6+12.4,解得CD =10.5(m).故选B.4.[解析] B 当放大后的△A′O′B′与△AOB 在原点O 的同侧时,点P 的对应点的坐标为(2m ,2n);当放大后的△A′O′B′与△AOB 在原点O 的异侧时,点P 的对应点的坐标为(-2m ,-2n).故选B.5.[解析] A 如图,∵S △ABC =9,S △A′EF =4,且AD 为BC 边上的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92.∵将△ABC 沿BC 边上的中线AD 平移得到△A′B′C′, ∴A′E∥AB ,∴△DA′E∽△DAB ,∴⎝ ⎛⎭⎪⎫A′D AD 2=S △A′DE S △ABD, 即⎝ ⎛⎭⎪⎫A′D A′D+12=292, 解得A′D=2或A′D=-25(舍去).故选A.6.[解析] B 解法一:如图,连接C 作CD ⊥AB 于点D , ∵AB ⊥y 轴, ∴AB ∥x 轴,∴∠A =∠COP ,∠AQC =∠OPC , ∴△AQC ∽△OPC , ∴AC OC =AQOP =2, ∴AC AO =23. 同理可得CD =23BO =4,AD =23AB =6.∵点A 的坐标为(9,6), ∴点C 的坐标为(3,2).即线段PQ 始终经过点(3,2).故选B.解法二:当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的解析式为y =kx +b(k ≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b ,得⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的解析式为y =23-t x +2tt -3.当x =3时,y =2,∴直线PQ 始终经过点(3,2). 故选B.7.[答案] 2[解析] 由AB AC =13得AB BC =13-1=12,则BCAB=2.因为直线l 1∥l 2∥l 3,所以EF DE =BCAB=2.故答案为2.8.[答案] 23[解析] ∵DE ∥BC ,AD =1,BD =2,BC =4,∴AD AB =DE BC ,即13=DE 4,解得DE =43.∵BF 平分∠ABC ,∴∠ABF =∠FBC.又∵DE ∥BC ,∴∠FBC =∠F ,∴∠ABF =∠F ,∴BD =DF =2.∵DF =DE +EF ,∴EF=2-43=23.故答案为:23.9.[答案] 6017[解析] 如图.设该直角三角形能容纳的正方形边长为x ,则AD =12-x ,FC =5-x. 根据题意,得△ADE ∽△EFC , ∴AD EF =DE FC , 即12-x x =x 5-x ,解得x =6017.故答案为6017.10.解:(1)证明:∵AB =AC ,∴∠ABC ∵AB =AC ,AD 是BC 边上的中线,∴BD =CD ,AD ⊥BC.又∵DE ⊥AB ,∴∠DEB =∠ADC , ∴△BDE ∽△CAD.(2)∵BC =10,∴BD =12BC =5.在Rt △ABD 中,有AD 2+BD 2=AB 2,∴AD =132-52=12.∵△BDE ∽△CAD ,∴BD CA =DE AD ,即513=DE 12,∴DE =6013.11.解:(1)如图所示,线段A 1B 1即为所求. (2)如图所示,线段A 2B 1即为所求.(3)由图可得,四边形AA 1B 1A 2∴四边形AA 1B 1A 2的面积是(22+42)2=(20)2=20. 故答案为:20.12.[解析] (1)根据切线的性质可证明∠CAB =∠EHB ,由此即可解决问题;(2)连接AF.由△CAF ∽△CBA ,推出AC 2=CF·CB=36,可得AC =6,AB =BC 2-AC 2=3 5,AF =AB 2-BF 2=2 5,由Rt △AEF ≌Rt △AEH ,推出AF =AH =2 5.设EF =EH =x.在Rt △EHB 中,可得(5-x)2=x 2+(5)2,解方程即可解决问题.解:(1)证明:∵AC 是⊙O 的切线,∴CA ⊥AB. ∵EH ⊥AB ,∴∠EHB =∠CAB.又∵∠EBH =∠CBA ,∴△HBE ∽△ABC. (2)如图,连接AF.∵AB 是⊙O 的直径,∴∠AFB =90°. ∵∠C =∠C ,∠CAB =∠AFC ,∴△CAF ∽△CBA ,∴AC CB =CFAC,∴AC 2=CF·CB=36,∴AC =6,AB =BC 2-AC 2=3 5,AF =AB 2-BF 2=2 5. ∵DF ︵=BD ︵,∴∠EAF =∠EAH. ∵EF ⊥AF ,EH ⊥AB ,∴EF =EH.又∵AE =AE ,∴Rt △AEF ≌Rt △AEH , ∴AF =AH =2 5.设EF =EH =x.在Rt △EHB 中,(5-x)2=x 2+(5)2, ∴x =2,∴EH =2.13.解:(1)AC 的长为43或92或 6.(2)证明:∵AD ∥BC ,∴∠ACB =∠CAD. 又∵∠BAC =∠ADC , ∴△ABC ∽△DCA , ∴BC CA =CA AD ,即CA 2=BC·AD. ∵AD ∥BC ,∴∠ADB =∠CBD. ∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴∠ADB =∠ABD , ∴AB =AD ,∴CA 2=BC·AB,∴△ABC 是比例三角形.(3)如图,过点A 作AH ⊥BD 于点H. ∵AB =AD ,∴BH =12BD.∵AD ∥BC ,∠ADC =90°, ∴∠BCD =90°,∴∠BHA =∠BCD =90°. 又∵∠ABH =∠DBC ,∴△ABH ∽△DBC , ∴AB BD =BH BC, ∴AB·BC=DB·BH,∴AB·BC =12BD 2.又∵AB·BC=AC 2, ∴12BD 2=AC 2, ∴BDAC= 2.。

相关文档
最新文档