无机光学透明材料 透明陶瓷
透明陶瓷

• 晶界结构
• 透明和不透明陶瓷的晶界结构是不同的。透明材 料晶界清晰, 而非透明材料模糊不清。晶界破坏陶 瓷体光学均匀性,引起光的散射并且当单位体积 晶界数量较多,晶体配置杂乱无序,入射光透过 晶界时必然引起光的连续反射、折射,透光率就 随乊降低。 • 因此晶界应微薄、无气孔及夹杂物、位错等缺陷
透明陶瓷
王丽霞1004020203 王玺斌1004020204 朱立刚1004020211 吴国娣1004020212
• 一、简介 • 二、制备及影响因素 • 三、透明陶瓷的应用
什么是透明陶瓷
• 在特殊应用场合我们需要陶瓷在一定的电磁频率 范围内透明。如果在紫外一可见光范围内,也就 是200~800纳米光波长范围内能透过光波,那么 就是我们人眼可以看见的透明陶瓷;如果仅有红 外频谱某个区域的电磁波能够穿透陶瓷,虽然人 眼看起来陶瓷是白色的,但也可以说该陶瓷对于 特定电磁波“透明”。所以透明的含义并不是按 照人眼所见作为标准,而是需要科学计量手段来 进行表征。
透明陶瓷分类
• • • • • • • • 透明结构陶瓷 高压钠光灯管 高温透视窗 氧化铝, 氧化钇, 氧化锆, 氧化镁 尖晶石透明陶瓷等结 构材料 • 透明功能陶瓷 • 电光透明陶瓷 (PLZT :锆钛酸铅镧) • 激光透明陶瓷 (N d :YA G :掺钕钇 铝石榴石) • 闪烁透明陶瓷 (G G G:掺钕钇镓石 榴石)
功能材料 透明陶瓷(与“陶瓷”有关文档共12张)

而成,因其具有较高的机械强度、良好的化学稳定性和电物理性能,被 认为是有希望的新一代固体激光材料。
第2页,共12页。
陶瓷材料的透光性受其气孔率、晶体结构、原料与添加剂、烧成 气氛和表面加工光洁度等因素的影响
透明陶瓷制备技术关键在于排除陶瓷材料内部大量的气孔,以达
到陶瓷材料的气孔率为零或接近为零。根据透明陶瓷的类型不同,制 备工艺差别较大。
1 850 ℃烧结不第8同页,时共12间页。后样品的显微结构
从结构分析可知:样品基本达到
了理论密度,而且晶界平直,晶界不 存在杂质相,因此,降低了因残余气 孔和晶界引起的散射,使得材料有 较高的透过率。
第9页,共12页。
透明陶瓷材料不仅具有较好的透明性、耐腐蚀性,能在高温高压下工作, 而且还有许多其他材料无可比拟的性能,如:强度高、介电性能优良、 电导率低、热导性好等。
第1页,共12页。
PLZT电光陶瓷是一种典型的透明铁电陶瓷, 这种材料具有较高的光 透过率和电光效应,人工极化后还具有压电、光学双折射等特性。 主要用于制作光调制器、光衰减器、光隔离器、光开关等光电 器件,也可制成PLZT薄膜,在电光和光学方面具有较多的应用。
钇铝石榴石激光透明陶瓷最初是以Al2O3、Y2O3、Nd2O3 为基体制备
目前已经开发的透明陶瓷有氧化铝透明陶瓷、氧化钇透明陶瓷、氧 化锆透明陶瓷以及电光透明陶瓷和激光透明陶瓷等。 第一例透明陶瓷是明陶瓷是最早投入生产的透明陶瓷材料。将MgO、ZnO、 NiO、La2O3 等添加剂掺入高纯细散的Al2O3 粉末中压制成型,并在 氢气保护下或真空中焙烧,即可完全消除气孔,制得具有较高透明度的 陶瓷材料。
透明陶瓷

透明陶瓷【摘要】:透明陶瓷在保持同类陶瓷材料所有的性能外还具有透光性,因而在许多情况下更显其优越性:高密度和没有玻璃相使这种陶瓷材料更能耐腐蚀,【关键词】:可透光性、耐腐蚀、脆性较大、耐火、高电绝缘性。
所谓透明陶瓷就是能透过光线的陶瓷。
通常陶瓷是不透明的,其原因是陶瓷材料内部含有的微气孔等缺陷对光线产生折射和散射作用,使得光线几乎无法透过陶瓷体。
1959年通用电气公司首次提出了一些陶瓷具有可透光性 ,随后美国陶瓷学家 R·LCoble制备得到透明氧化铝陶瓷证实了这一点这种透明氧化铝陶瓷材料不仅具有良好的透光性 ,而且在力学、光学、热学、电学等诸多性能方面优于不透明陶瓷,在光学、照明技术、高温技术、激光技术及特种仪器制造等领域具有特殊的用途。
由于这种材料在保持同类陶瓷材料所有的性能外还具有透光性,因而在许多情况下更显其优越性:高密度和没有玻璃相使这种陶瓷材料更能耐腐蚀,氧化铝透明陶瓷氧化铝透明陶瓷是最早投入生产的透明陶瓷材料。
这种透明陶瓷不仅能有效透过可见光和红外线,而且具有较高的热导率、较大的高温强度、良好的热稳定性和耐腐蚀性。
主要应用于高压钠灯灯管、高温红外探测窗、高频绝缘材料及集成电路基片材料等。
氧化钇透明陶瓷由于氧化钇是立方晶系晶体,具有光学各向同性的性质,使得其具有优越的透光性能。
氧化钇透明陶瓷在宽广的频率范围内,特别是在红外区中,具有很高的透光率。
由于高的耐火度,可用作高温炉的观察窗以及作高温条件应用的透镜。
此外,氧化钇透明陶瓷还可用于微波基板、红外发生器管、天线罩等。
透明铁电陶瓷PLZT电光陶瓷是一种典型的透明铁电陶瓷,是掺镧的锆钛酸铅。
这种材料具有较高的光透过率和电光效应,人工极化后还具有压电、光学双折射等特性。
主要用于制作光调制器、光衰减器、光隔离器、光开关等光电器件,也可制成PLZT薄膜,在电光和光学方面具有较多的应用。
氮化铝透明陶瓷氮化铝陶瓷具有高热导率、高电绝缘性、高硬度、低热膨胀系数、优良的光学性能和声波传播性能、优良的耐金属侵蚀性能,良好的耐化学腐蚀性能等。
功能材料透明陶瓷

当光子能量hν>Eg( 禁带宽度) 时, 电 子吸收光子从价带激发到导带上, 即:
式中h—Plank常数; c—光速; λ—光波波长; 才能吸收光子。 因此, 禁带宽度越大, 紫外吸收端的截止波长就越小。而对 于杂质引起的吸收比Eg小的很多的光子能量, 那么可将电 子和空穴分别激发到导带和价带上。
温度、透过率与折射率之间的关系
1. 光学透明性的影响因素
对于透明材料的红外截 止波段, 随着温度的升 高而使原子能量增大, 原子的振动频率增大, 因而共振吸收截止频率 增大, 因此红外截止波 长缩短, 具有蓝移的趋 势。
Hale Waihona Puke 蓝宝石在不同温度下的透过率
1. 光学透明性的影响因素
1.3 制备影响因素 陶瓷材料制备因素的影响, 这里主要包括杂质、气孔、晶界、 微裂纹以及外表的粗糙度等方面。光通过陶瓷材料会受到一 系列阻碍, 这就导致多晶陶瓷不可能有单晶、玻璃那样的透明, 从而使得多数陶瓷看上去不透明。
1. 光学透明性的影响因素 1.4 显微构造的影响 气孔的尺寸对透光性能的影响主要表达在如下几个方面
当气孔的尺寸小于入射光波长的1/3时,那么气孔尺寸越小个数 越少,陶瓷和气孔的折射率差异越小,散射光的比例就越小, 透光率越高。
1. 光学透明性的影响因素
1.4 显微构造的影响
当散射中心的大小接近或等于光的波长时,那么以Mie散 射为主体的散射。 散射系数Sim为:
原料的纯度是影响透明性诸多 因素中的主要因素之一, 原料中 杂质容易生成异相, 形成光的散 射中心, 如下图, 减弱透射光的 在入射方向的强度, 降低陶瓷的 透过率, 甚至失透。
硅酸锆的作用

辽宁岫岩金矿成矿系统分析
辽宁岫岩金矿是中国东北地区重要的大型金矿床之一,位于岫岩县内,分布在三条走向大致相同、倾角为70-80°的石英脉带中。
该矿床为多金属矿床,主要包含金、铅、锌、银等矿物。
该矿床形成于晚奥陶世至早志留世的沉积-变质-侵入作用期间,主要成矿岩石为变质岩、花岗岩和拉斑岩等。
成矿系统主要包括构造、岩浆热液和沉积热液三个方面。
首先,构造对成矿的作用非常明显。
金矿主要位于石英脉带的断层和裂隙中,而该区域处于华北板块东北缘的吕梁-燕山构
造带内,构造活动与金矿的形成密切相关。
在不同阶段的构造作用下,岫岩金矿区形成了不同类型的石英脉。
研究表明,与慈铁至柳岩构造造山运动有关的NNE向断裂和NW向断裂是
岫岩地区金矿出露的主要构造控制。
其次,岩浆热液活动也是岫岩金矿成矿的重要因素之一。
矿床伴生花岗岩、拉斑岩,是岩浆演化过程中产生的,其中含有黄铁矿、方铅矿、闪锌矿等矿物。
同时,这些深源岩浆热液流体在岩石圈活动过程中,向上某一层位上升,与地层元素进行反应,提供了金、铅、银等成分,从而形成金矿床。
最后,沉积热液是岫岩金矿形成的补充因素。
沉积岩石强烈的变形和变质作用诱发了一些地下水流体,使得矿物元素溶解出来,流经裂隙和断层,进入我们看到的石英脉中。
据测算,岫岩矿区的沉积热液灌注时间与上述热液岩浆灌注一致,都是晚奥陶世至早志留世。
综上所述,岫岩金矿成矿系统包括构造、岩浆热液和沉积热液三个方面。
通过多年的研究,我们已经对其成矿机制有了较为完整的认识。
岫岩金矿区的成矿条件相对优越,是探索矿床成因的典型代表。
无机光学透明材料 透明陶瓷

无机光学透明材料——透明陶瓷一、基本概念透明陶瓷(Transparent ceramics)是指采用陶瓷工艺制备的具有一定透光性的多晶材料,又称光学材料。
一般多晶陶瓷的不透明性是由于非等轴晶系的多晶晶粒在排列取向上的随机性,导致晶粒间折射系数不连续,以及晶界效应,气孔等引起的散射等原因所致。
在制备透明陶瓷时,通过采用高纯超细原料,掺入尽可能少的添加剂和工艺上的严格控制,浆砌块石和杂质充分排出并适当控制晶粒尺寸,试制品接近于理理论密度,从而制备出透明陶瓷[1]。
制备透明陶瓷的首要条件是组成陶瓷的单晶体本身是透明的,同时具有高的对称性,一般为立方晶系。
某些非立方晶系的陶瓷材料如六方相的氧化铝,一定条件下可以制的半透明(translucent)陶瓷。
透明陶瓷通常采用压力烧结【包括热压,等离子体压力烧结(SPS),热等静压(HIP)等】和气氛烧结(包括氢气烧结,氧气烧结和真空烧结等)等方法制备而成。
二、透明陶瓷的种类透明陶瓷的种类按材料体系分为氧化物、氟化物、氮化物、氧氮化物、氧硫化物、硫化物、硒化物等透明陶瓷,随着技术的发展很可能出现更多种类的透明陶瓷的材料体系[2]。
按性能分类,可分为透明结构陶瓷、透明功能陶瓷(包括透明激光陶瓷、透明闪烁陶瓷、透明铁电陶瓷、红外透明陶瓷等)。
(一)按组划分(1)氧化物透明陶瓷氧化物透明陶瓷一般在可见光和近红外波段透明。
这类透明陶瓷已经报道的有等材料,其中以透明到的研究最为成熟。
可用于制作高压钠灯的灯管、微波集成电路用基片、轴承材料以及红外光学元件。
透明氧化铝陶瓷1961年由美国首先研制成功,制作工艺是采用纯度为99.99%、平均尺寸为0.3微米的氧化铝细粉作原料,加入质量分数为0.3%的MgO添加剂,在H2保护的高温电炉中烧成[3-5]。
高压钠灯用透明氧化铝陶瓷在高温下与钠蒸汽不发生作用,却能把90%以上的可见光透出来。
(2)氟化物透明陶瓷主要是CaF和MgF2透明陶瓷,20世纪60年代开始,CaF透明陶瓷主要作为一种激光材料使用。
无机非金属材料-透明陶瓷

金属有机物化学气相沉积法:
Yanhui Li 等人以硝酸钇、硝酸铝、硝酸铕为原料, 加入四甲基 庚烷聚酯作为螯合剂和燃烧助剂, 将原始溶液蒸发后分别以氮气作为 载体并混合氧气后在管。式反应器内于650~ 700℃ 沉积, 经过 1200℃ 3h 煅烧制备的YAG 粉体为球形, 粒度约1~ 2μm, 存在轻微 团聚现象。其MOCVD 工艺及所制备的YAG 粉体形貌如图。
米粉体。1998年,T. Yanagitami 等, 用AlCl3、YCl3 在NH4HCO3 中沉淀, 沉淀物经1200℃
处理得到200nm 左右的均匀粉体,真空烧结得到了质量和单晶媲美的 透明陶瓷,使得共沉淀法成为合成YAG 纳米粉体的最有竞争力的方法。 为了提高颗粒的分散性,法国的Y. Rabinovitch等,采用冷冻干 燥的方法处理共沉淀得到的前驱体,经1200℃煅烧得到的粉料,在 1700℃真空烧结3h 后再热等静压烧结 1.5h,得到了透明陶瓷材料。 国内学者也作了相应的实验,李江等添加聚乙二醇在1000℃煅烧得到
溶剂, 505℃制得了分散性极好, 尺寸较大的YAG 小单晶
体。2003 年, 李霞、张旭东等选择醇-水混合热法在 280℃的低温下反应制得了分散性好的YAG纳米粉体。
溶剂(水)热法能够实
现相对无煅烧制备单晶化 的YAG 粉体,但是根据前
期研究发现,溶剂热法能
够得到纯相的、分散性极 好的粉体,其烧结性能和
导致晶界裂缝。
同时,Si4+ 掺入引起的空位能提高微气孔外扩散的速 度,其较小的离子半径可减少由Nd3+ 掺入而引起的晶 格畸变,有利于陶瓷的致密和稳定。 不同的烧结技术,需要对应适宜的烧结制度,包括
温度、压力和气氛等的设定,他们直接影响晶粒生长,
氧化铝透明陶瓷氧化镁透明陶瓷、氧化钇透明陶瓷

氧化铝透明陶瓷氧化镁透明陶瓷、氧化钇透明陶瓷标题:探索透明陶瓷:氧化铝、氧化镁和氧化钇在现代科技和工业领域,透明陶瓷已经成为一个备受关注的材料。
氧化铝、氧化镁和氧化钇作为透明陶瓷的重要代表,它们在光学、电子、航空航天等领域都有着广泛的应用。
本文将从深度和广度两个方面进行全面评估,以帮助读者更好地理解透明陶瓷的特性和应用。
一、氧化铝透明陶瓷1. 氧化铝的基本特性氧化铝是一种常见的陶瓷材料,具有高强度、抗腐蚀性、耐磨损等优点。
其透明陶瓷具有良好的光学性能和化学稳定性,被广泛应用于光学窗口、激光器件等领域。
2. 氧化铝透明陶瓷的制备方法通过热压、热等静压等方法可以制备出高密度、均匀结构的氧化铝透明陶瓷。
在制备过程中,控制晶粒尺寸和杂质含量对于提高透明度和力学性能至关重要。
3. 氧化铝透明陶瓷的应用氧化铝透明陶瓷广泛应用于高温、高压、强腐蚀环境下的光学元件、传感器、航天器件等领域。
其在光学窗口、透镜、激光窗口等方面具有独特的优势。
二、氧化镁透明陶瓷1. 氧化镁的基本特性氧化镁是一种重要的陶瓷材料,具有高熔点、高硬度、高热导率等特点。
透明陶瓷具有较好的透明度和热稳定性,在光学和高温环境下有着重要应用。
2. 氧化镁透明陶瓷的制备方法氧化镁透明陶瓷的制备可以通过热等静压、热同步处理等方法进行。
在制备过程中,要控制晶粒尺寸和晶界的清晰度,以获得更好的透明度和性能。
3. 氧化镁透明陶瓷的应用氧化镁透明陶瓷在激光窗口、红外透镜、高温传感器等领域有着广泛的应用。
其在光学、电子等高技术领域有着独特的地位和作用。
三、氧化钇透明陶瓷1. 氧化钇的基本特性氧化钇是一种重要的稀土陶瓷材料,具有优良的光学、电学性能和磁学特性。
透明陶瓷具有良好的透明度和光学性能,在激光器件、光学窗口等方面有着广泛应用。
2. 氧化钇透明陶瓷的制备方法氧化钇透明陶瓷的制备可以通过固相反应、热等静压等方法进行。
在制备过程中,要控制杂质含量、晶界结构等因素,以提高透明度和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。