相控阵天线相位中心的时域全波仿真

相控阵天线相位中心的时域全波仿真
相控阵天线相位中心的时域全波仿真

GPS接收机天线相位中心高的推算方法

GPS接收机天线相位中心高的推算方法 无论是现在流行的卫星定位测量,还是传统的全站仪测量,都需要量取仪器高,而这个高并非就是仪器到测量基准点的实际高,而是一个斜距。GPS接收机的仪器高实际上就是天线相位中心沿铅垂线到基准点的距离,在实际工作中天线相位中心不能够直接标定出来,也无法直接量取。文章通过理论推导出实际天线高的计算公式,从理论和实践两方面对公式进行了论证,分析了量取天线高的误差对实际天线高误差精度的影响。 标签:GPS接收机天线相位中心天线高误差传播 1引言 GPS接收机天线主要用来接收卫星信号,是GPS接收机的重要组成部分,GPS接收机天线的相位中心就是GPS定位的中心,而实际工作中,采用对中整平仪器,量取天线高,来计算出GPS接收机所架设测量控制点的坐。这个过程中,由于没有办法用尺子直接量取从天线相位中心沿铅垂线到基准点的距,也就是无法直接量取实际天线高,量取的天线高实际上是控制点标识中心到GPS天线护圈中心(视仪器而定,此处以Trimble R8仪器为例)的斜距,不是真正意义上到天线相位中心的天线高,这个斜距需要经过改正计算才能得到真正意义上的天线高,那么GPS接收机的天线相位中心的高度到底是如何计算的呢? 2 GPS实际天线高推算方法 GPS接收机天线经过对中整平后,它的天线相位中心与测量控制点的连线与过天线相位中心的铅垂线是重合的,与GPS接收机天线相位中心所在的平面是垂直的,他们刚好构成了一个直角三角形,这时天线高的值实际上就是,从天线相位中心沿着铅垂线到测量控制点标识中心的距离,而用尺子量取的天线高是斜距,根据勾股定理,只要再知道GPS接收机天线的半径就可以计算出实际的天线高。而实际工作中,仅仅根据勾股定理还不能直接得到天线高,还必须给计算出的天线高加一个常数,这也就是说天线相位中心所在的水平面与量取天线高标识面所在的水平面上并不重合,两个平面之间的距离就是应该加上的常数。 如图1所示,设量取天线高斜距为s,实际天线高为h,天线半径为r,常数为k,则实际天线高的计算公式为: 式中的r可以通过查阅仪器说明书获得,而k的值仪器说明书则没有提供,这里可以通过数学统计参数估计的方,多次精确地量取天线高s和仪器自己计算出来的实际天线高h的值,来反算出k的值,从而得出完整的计算公式,也就确定了天线相位中心的位置。 3 GPS天线高推算方法验证

5G集成相控阵天线:设计,制造和测试

Received February6,2020,accepted March4,2020,date of publication March13,2020,date of current version March25,2020. Digital Object Identifier10.1109/ACCESS.2020.2980595 Research on Structurally Integrated Phased Array for Wireless Communications QING-QIANG HE1,SHUAI DING2,CHEN XING1,JUN-QUAN CHEN1,GUO-QING YANG1,AND BING-ZHONG WANG2,(Senior Member,IEEE) 1Southwest China Institute of Electronic Technology,Chengdu610036,China 2Institute of Applied Physics,University of Electronic Science and Technology of China,Chengdu610054,China Corresponding authors:Qing-Qiang He(heqingqiang518@https://www.360docs.net/doc/b812732512.html,)and Shuai Ding(uestcding@https://www.360docs.net/doc/b812732512.html,) This work was supported in part by the National Natural Science Foundation of China under Grant61601087,in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2019Z016,and in part by the Sichuan Science and Technology Program under Grant2018GZ0518and Grant2019YFG0510. ABSTRACT Structurally integrated antenna is a kind of highly integrated microwave device with a load-bearing function,and it is usually installed on the structural surface of the air,water and ground vehicles.This paper presents the design,fabrication and testing of a novel structurally integrated Ka-band active antenna for airborne5G wireless communications.The proposed antenna is mainly composed of three parts:a package layer,a control and signal process layer and a RF layer.In the RF layer,the microstrip antenna array,tile transmitting(Tx)modules,micro-channel heat sinks and a stripline feeding network are highly integrated into a functional block with a thickness of2.8mm.Electromechanical co-design methods are developed to design the active antenna array with the superstrates,and two schemes for designing micro-channel heat sinks are evaluated to obtain a uniform temperature distribution.The RF layer is fabricated by using the low-temperature co?red ceramic process,and the three layers are assembled to form the full-size antenna prototype.The mechanical and electromagnetic experiments are carried out,and the results demonstrate the feasibility of the structurally integrated active antenna for airborne wireless communications. INDEX TERMS5G communications,phased array antenna,structurally integrated active antenna,low-temperature co?red ceramic(LTCC),micro-channel heat sinks. I.INTRODUCTION Signi?cant momentum has started to build around the5G wireless communication technologies for delivering mobile experience differentiation by providing higher data rates, lower latency,and improved link robustness[1],[2].In this regard,millimeter-wave phased array antenna is a very promising solution for5G wireless communications,due to the wide bandwidths and steerable beams.The millimeter-wave phased array antenna can be applied to realize the wireless connection between the base stations and wireless terminals in a mobile vehicle such as the aircraft,high-speed train,car,and ship.Moreover,it can be continuously steered to the base stations,which could guarantee reliable connec-tions in these mobile environments[3]–[5].In addition,the multi-gigabits-per-second data speeds in5G will provide new wireless communication applications such as uncompressed video streaming,mobile distributed computing,fast large?le The associate editor coordinating the review of this manuscript and approving it for publication was Yasar Amin.transfer,and of?ce in a high-speed mobile environment[6]. However,because of the limited space in a mobile vehicle like the aircraft,the phased array antenna is usually required to have a compact size,light weight and easy installation[7]. In this condition,it is highly desirable to use structurally integrated active antennas for5G wireless communications in a mobile vehicle. Structurally integrated active antennas can embed an active planar printed antenna into the structural surface of the aircraft,high-speed train,car,ship,and armored vehi-cles[8]–[11].For example,the active microstrip antenna array is integrated into the wing or fuselage of an aircraft. Compared with the antennas mounted on the structural sur-face,structurally integrated active antenna features several advantages such as reduced weight,volume and aerodynamic drag.Structurally integrated active antenna is a kind of highly integrated antenna,which receives great attention in recent years.Antenna-on-chip(AoC)and antenna-in package(AiP) solutions are two commonly used techniques to realize the highly integrated antennas[12]–[14].Compared to AiP,AoC VOLUME8,2020 This work is licensed under a Creative Commons Attribution4.0License.For more information,see https://https://www.360docs.net/doc/b812732512.html,/licenses/by/4.0/52359

相控阵天线的基础理论

第二章相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1相控阵天线扫描的基本原理 2.1.1线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线 性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为 I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向 图函数用fiG,:)表示。 图2.1 N单元线性相控天线阵原理图 阵中第i个天线单元在远区产生的电场强度为: e丸E i =K i I i fip, ) (2.1) 式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离, f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为: (2.2) 式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

扫描法测量有源相控阵天线方向图及误差分析

扫描法测量有源相控阵天线方向图及误差分析 摘要:本文从单元一致性、地面反射、测量天线相位中心误差和方向图等方面分析了波束扫描法的误差来源,讨论了减小误差的方法,给出了改进后的实测方向图,结果表明,该方法原理简单、实施有效,对外场测量大尺寸阵列天线方向图具有重要意义。 【关键词】有源相控阵扫描法误差分析地面反射 1 引言 随着大规模相控阵天线的应用,在外场不具备精确坐标测量条件时,仅有测量天线情况下,波束扫描法可以准确的测量大型有源相控阵天线方向图,其测量误差主要来自单元一致性、地面反射、测量天线、相位中心等。 2 扫描法测量方向图基本原理 被测天线有N个距离为d的单元组成,如图1所示。根据相控阵天线理论,天线方向图为: 天线方向图F(θ,φ0)是指固定波束指向φ=φ0,阵列天线对不同方向电磁波响应的集合;而扫描方向图F(θ0,φ)是指连续调整波束指向,阵列天线对固定方向θ=θ0电磁波响应的集合。可以证明,不考虑单元方向图、地面反射等影响,天线方向图F(θ,φ0)与扫描方向图F(θ0,φ)

相等。 3 波束扫描法测量方向图误差分析 单元一致性主要通过单元方向图Fi(θ,φ)对扫描法测量精度产生影响,这是由于天线单元一致性差别及阵列中互耦环境的变化引起的。 地面反射通过多径效应影响扫描法测量误差。架设测量天线应满足远场条件,有条件时,在阵面前方的合适位置摆放一定高度的“吸波墙”。 几何中心与相位中心的偏移造成最大电平的偏移,影响扫描法测量的精度,如图2所示。因此,若外场不具备坐标精确测量的条件,可以优先通过扫描法对准测量天线相位中心与被测天线相位中心。 测量天线的方向性及有限的波束宽度影响扫描法在多大的角度范围内有效。为减小这一误差,测量天线方向图不宜过窄,对整个阵面单元的最大张角须控制在一个较小的范围以内。 4 实验与结论 以测量现有的一个全数字有源相控阵方向图验证了波束扫描方法的有效性,该阵列为24×1的线阵,得到接收均匀加权方向图如图3所示。结果均表明,线阵接收扫描方向图与天线实际方向图吻合良好,表明该测试方法在外场测试有较高的精度。

天线相位中心测量

喇叭天线相位中心的测试方法 史够黎 (中国电子科技集团公司第39研究所 西安710065) 摘要 本文介绍了运用远场相位比较法[1]和近场移动参考点法,测量C / X 双频段光壁喇叭天线的相位中心,讲述了如何根据相位方向图寻找喇叭天线的相位中心并对对误差来源进行了分析,将测试计算结果与软件仿真结果进行比较,两者完全一致。 关键词 喇叭天线 相位中心 相位比较法 移动参考点法 Reserch on Phase Center Measurement of Horn Antenna shigouli (The 39th Rserch Institute of CETC xi ’an710065) Abstract: The paper introduced how use comparison method in far field and the changing reference poind method in near field to reserching phase center of C/X tow band horn. Based on the measured of the horn ’s phase patten detailed how to reserching the phase center of horn antenna . The measurement resule and simulationg were filtted extracttly. Keywords: Horn Antenna Phase center comparison method hanging reference poind method 1概述 喇叭天线作为反射面天线的馈源,需要精确测定相位中心位置,使天线可获得最佳相位照射效率。天线相位中心测量一般采用转台旋转比较法,还可以采用近场测量,通过近远场转换移动参考点测量法进行测量,测量中不移动天线实际位置,而使用测试系统软件虚拟移动参考点,计算出参考点位移值。本文运用转台旋转比较法和移动参考点测量法,对C / X 双频段光壁喇叭天线的相位中心进行了测量。 2测量原理 天线的远场辐射方向图可以表示为[2] (,)?(,)jkr j u e E e r ψθ?θ?-=E u (1) 式中(,)u θ?E 为幅度方向图,(,)ψθ?为相位方向图,2/k πλ=为波数。若天线上或邻近区域内存在某点以它为参考点的(,)ψθ?为常数,则该点为天线的相位中心。对于绝大多数天线来说并没有这样一个点,但一般总可以找到某个点,以它为参考点在一个远场截面的主瓣范围内相位函数为常数,定义此点为该截面的相位中心。 当天线参考点偏离测量系统原点时,对于新参考点的远场表达式为

GPS天线相位中心消除偏差方法

GPS天线相位中心消除偏差方法 【摘要】本文介绍了GPS接收机相位中心的确定方法和如何减小相位中心偏差的方法,对提高GPS测量精度有一定的作用。该方法在实际应用中已取得了理想的效果。 【关键词】GPS;相位中心;偏差 1.引言 在GPS测量过程中,我们所得到的观测值都是以GPS接收机天线的相位中心位置为准的.而天线的相位中心与其几何中心.在理论上保持一致。可实际上接收机天线的相位中心是随着信号输入的强度和方向不同而时刻变化的,即观测时相位中心的瞬时位置与理论上的相位中心位置将有所不同,这种差别叫天线相位中心的位置偏差,它的影响可达数毫米至数厘米。因此.研究天线相位中心及其变化,找到减小这种偏差的方法,对GPS高精度测量有着重要的意义。 2.GPS天线的相位中心的确定 GPS接收机的相位中心.也就是通常所说的GPS接收机的电气中心,它是一台测量仪的基准点,研究GPS接收机的相位中心的变化规律,是提高测量精度的重要环节。 2.1机内时延 GPS接收机为了使用方便,一般都是天线与主机分开,它们之间通过一根具有一定长度的同轴电缆连接.当信号进入天线经放大、电缆传输、再放大、直到相关解调,于是便有了一个时延,这就是机内时延。

2.2GPS天线的相位中心的确定 在GPS测量过程中.我们一般都是把GPS接收机的天线放在标志点上,通常以天线上表面中心作为GPS接收机的相位中心,而实际上并不是这样。我们知道.GPS接收机在工作时需要同时接收四颗以上GPS卫星信号进行放大、传输、相关解调、运算.求出时间、位置、速度、方向等参数。相关解调点是指卫星信号到GPS接收机时延的参考点,对于每一颗卫星信号而言,相关解调点是测量的参考点(或起算点)。如此看来GPS接收机的相位中心不在天线上,具体在哪?分析如下: 总路程

天线相位中心

天线的相位中心 天线的相位中心概念:天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心。 一、天线等效相位中心的坐标的推导: 1、利用远场格林函数公式,可以得到磁矢势的表达为 (1) 2、对方程(1)在整个求解空间进行积分,可以得到远场电场的表达式为 E(r)=(2) 方程(2)中的表示辐射源的坐标,即确定的坐标可得等效相位中心点坐标。 3、如果方程(2)中和电场相关量都是已知的,我们就可以分别确定的分 量。 对于电场远场的相位,可以表示为: 在直角坐标系下,矢量可以表示为: 4、在x-z平面,电场远场的相位可以表示为 (3) 5、对方程(3)的左右两边同乘以,再对在0到的范围内进行积分,由于 三角函数的正交性,消去了和相关的分量,得到表达式 (4) 6、波数,其中是自由空间的光速,f是天线的工作频率,我们可以 得到的表达式为 (5) 我们只需要将暗室测试所得到的电场相位,代入方程(4),就可以确定出的z方向分量,即相位中心的坐标。 7、和确定的方法类似,我们可以分别得出的和分量的表达式,也即确 定了天线等效相位中心点的坐标。最终的相位中心表达式如下所示

坐标取值范围截面表达式 二、天线等效相位中心的程序实现 上面的分析中,我们已经得到了等效相位中心的x,y,z坐标公式,只需要将微波暗室得到的远场相位数据在相应的面上导出,代入软件中计算即可得出相位中心坐标结果。该软件采用MATLAB语言编写,可在安装了MATLAB 的MCRinstaller工具环境下运行。以下是使用新益技术SY24系统测量天线辐射数据,采用该软件计算中心频率为940MHz的一款dipole天线相位中心结果如下图所示: 图一软件及多频段相位数据 图二软件自动输出的txt文本结果

有源相控阵天线G-T测量及误差分析

有源相控阵天线G/T值测量及误差分析 任冀南秦顺友陈辉吴伟伟 (中国电子科技集团公司第54研究所,河北石家庄050081 ) 摘要:简述了地面站天线系统G/T值测量的传统方法。论述了室外远场直接法测量有源相控阵天线G/T值的原理方法,推导出测量的原理方程。分析了G/T值测量误差,其均方根误差小于或等于±0.422dB。最后给出了S波段19元阵天线系统G/T测量结果,实测结果与预算结果吻合很好。 关键词:有源相控阵天线;G/T测量;误差分析 G/T Measurement and Error Analysis for Active Phased Array Antenna REN Ji-nan, QIN Shun-you, CHEN Hui, WU Wei-wei (The Fifty Fourth Institute of CETC, Shijiazhuang Hebei 050081, China ) Abstract: In this paper, traditional measurement methods are described simply for earth station system G/T value. Measuring principle and procedure of active phased array antenna G/T value are discussed using outdoor direct far-field method, and measuring principle equation is derived. Error of G/T value measurement is analyzed, and results show that RMS error of G/T value measurement is less than or equal to ±0.422dB. Measuring result of S-band 19-unit array antenna G/T value is given, test result agrees with prediction result. Key words:active phased array antenna; G/T measurement; error analysis 引言 G/T是地面站系统的重要性能参数之一,其性能好坏直接影响系统的灵敏度。目前G/T值传统的测量方法有间接法和直接法[1][2][3]。所谓间接法就是分别测量出天线接收增益和系统噪声温度,从而计算系统G/T值的方法;直接法又可细分为卫星载噪比法和射电源法。卫星载噪比法就是直接测量地面站天线接收卫星信号的载噪比,从而确定G/T值的方法,该方法非常适合卫星通信地面站天线系统G/T测量;射电源法就是测量地面站天线指向射电星和冷空时的Y因子,从而计算G/T值的方法。由于射电源的信号很微弱,对于小型地面站,其系统G/T很小,则很难观测到射电源的信号[4]。 对于有源相控阵天线,因其射频单元与天线单元集成在一起,其天线测试方法不同于常规的无源天线测量[5][6]。对于有源相控阵天线系统G/T 值测量,无法采用间接法测量系统G/T值;另外如果天线工作频段与卫星频段不符,且系统G/T 值较小,则采用卫星载噪比或射电源法测量其G/T值具有局限性。为此我们提出了在室外远场直接法测量有源相控阵天线G/T值的方法。实践证明:该方法是切实可行的,在G/T值测量中值得推广和应用。 1 测量原理和方法 图1所示为室外远场法测量有源相控阵天线G/T值原理方框图。 图1 室外远场法测量相控阵天线G/T值原理方框图图1中,R为测试距离,R应满足远场测试距离条件,即R≥2D2/λ(D为待测天线最大尺寸,λ为工作波长)。由功率传输方程可得:频谱分析仪测量的载波功率C为[7]: RF P net S t L L GG G P C (1) 式中: 相控阵天线 标准天线 R

数字相控阵天线测试平台

龙源期刊网 https://www.360docs.net/doc/b812732512.html, 数字相控阵天线测试平台 作者:戴海青胥志毅吴鸿超 来源:《电子技术与软件工程》2017年第15期 摘要:现代大型数字相控阵天线中,天线内的TR组件数目庞大同时工作频带很宽,阵面的暗室测试工作十分繁琐,工作量巨大。为简化测试过程,提高测试效率,文中对数字相控阵天线阵面的测试方案进行了研究,提出并搭建了一套测试平台,通过对天线阵面样机的试验,验证了测试方法的高效率和正确性。 【关键词】相控阵天线天线测试波控 在现代雷达领域,数字相控阵雷达相比较传统的模拟相控阵雷达,在波束扫描的灵活性、系统时问资源利用率以及多功能应用等多个方而有着明显优势。 为了保证数字相控阵天线性能,需完成天线组件的通道数据采集,对整个天线系统的组件相位幅度配平,以及完成对相控阵雷达天线的方向图测试。尤其对于大型相控阵雷达天线而言,测试工作量(尤其在近场测试)按TR组件数目、工作频点数目乘积激增,测试过程非常繁琐。所以建立一种能够快速、准确地测量出数字相控阵天线的特性参数的天线测试平台,对于满足新型数字相控阵雷达的研制十分重要。 1 数字相控阵天线阵面 数字相控阵天线阵而都包含天线罩、天线阵列、结构骨架和高频箱(内部包含了T/R组件、综合网络、阵而电源、阵而监测设备等),其主要功能是: (1)发射时,阵而对发射前级送来的信号进行放大、辐射和空问功率合成。 (2)接收时,阵而将天线接收到的目标回波信号放大,经过数字接收通道转换成数字信号,交由数字波束形成(DBF)形成自适应波束。 数字相控阵天线阵而的测试主要特点:数字相控阵天线阵而,收发波瓣测试时,天线阵而与测试探头之问一个是发射模拟信号,一个则是经过AD采样之后的接收数字IQ信号,二者之问的同步相参需要额外的硬件设备,并经过特殊的数据处理,同时数字相控阵天线阵而控制接口、下行数据接口一般采用光纤形式,需要测试系统满足该要求。 2 测试系统组成和原理框图 根据数字相控阵天线阵而暗室测试的特点,本文设计了一套测试系统,系统框图如图1所示。

利用HFSS优化法快速确定天线的相位中心详细教程

利用HFSS优化法快速确定天线的相位中心详细教程 1.什么是天线相位中心天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,如下图(虚线表示该天线的等相位面,在离开天线一定距离后,虚线近似为圆形(最外面一圈),其圆心即为天线的等效相位中心): 2.HFSS优化法快速确定天线的相位中心(1)用后处理变量定义相对坐标系 A.HFSS》Design ProperTIes,打开DesignProperTIes 对话框; B.点击AddVariable,显示定义设计变量的属性对话框,例如定义为PhaseCenterZ,变量类型设定为PostProcessing variable,单位类型Length,本例初值设为1in; C.用Modeler》CoordinateSystem》Create》RelaTIve CS》Offset 命令定义一个相对坐标系,用前面设定的变量作为Z坐标。 后面的优化过程中可以通过变量改变坐标系定义,而无需重新求解模型。 (2)将相对坐标系用于远场设置计算 点击HFSS》RadiaTIon》InsertFar Field Setup》Infinite Sphere ,定义合适的角度范围与间隔,在坐标系选项卡中,选择定义好的采用了后处理变量的相对坐标系; 当相对坐标系位置改变时(通过改变变量PhaseCenterZ的值),远场量会重新计算,而无需重新仿真模型。 (3)设置优化求解 A.添加一个优化(Optimization)设置 B.点击SetupCalculations按钮,打开计算表达式定义的对话框,定义优化目标用于寻找相位中心,这里将优化的是场量rEPhi的峰峰连续角度。 Geometry选择前面定义的InfiniteSphere。 计算表达式为cang_deg(rEPhi),本例中的天线在Phi=0平面是Phi极化(电场沿着y轴)

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍 相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一 图一 N单元相阵 远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐 射场强叠加:

图二线性相控阵天线 这一天线阵的方向图函数为: 图三平面相控阵天线 相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。 一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。 相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

相位中心测试

SATIMO系统升级相位中心测试 随着通信、雷达、人造卫星和宇航技术的发展,对天线的跟踪、定位精确度要求越来越高,单靠幅度波束来搜索定位已不能满足要求,必须以天线的相位中心为基准进行精确定位或测量.而天线的相位中心问题无论在其相位测量应用、形成波束侦收应用、作为干涉仪阵列单元还是作为抛物面天线的馈源使用都很重要.新益根据天线远场辐射场理论,通过改变参考点法来精确测定天线的相位中心,研制了一套基于SATIMO系统上天线相位中心测试模块,使得传统的SATIMO暗室适用范围更广、更能服务客户多元化的需求。 1测量原理 对任意天线,其远区辐射场的某个分量在球坐标系可写为E=^uFu(θ,)exp(j φ(θ,))(exp(-jkr)/r),(1)图1移动参考点示意图式(1)中的Fu(θ,)为幅度方向图,函数φ(θ,)为相位方向图函数,k=2π/λ.相位中心定义为:在天线上或邻近若有一参考点,在给定频率下,使φ(θ,)等于常数,则这个使φ(θ,)为常数的点称为天线的相位中心.对绝大多数天线来说没有这样一个相位中心,但是许多天线可以找到这样一个参考点,使得在主瓣某一范围内场的相位保持相对恒定,则这个参考点称为“视在相位中心”.有的天线可能在不同截面有不同相位中心,而且它们可能不重合,因此测量的相位中心是指某个截面上的相位中心[1~3].天线在进行相位中心测量时或在使用时,它的相位中心可能偏离了旋转中心(几何中心),如图1所示,即天线的参考点移动到O′,根据远场近似,得到以O′为参考点的远场表达式为[2,4] 令ψ(θ,)=φ(θ,)-kr′?^r,天线的相位中心与转动中心的偏差用小矢量r′表示为 而单位矢^r可表示为 所以 此式为以O′为参考点的相位中心方向图函数,而φ(θ,)为参考中心与旋转中心重合时的相位方向图函数.相位中心测定就是通过改变Δx,Δy,Δz(即移动参考点O′),使ψ(θ,)-φ(θ,)的变化率最小,从而来寻找相位中心[5].该式表明测量的相位ψ(θ,)只对该测量面内的相位中心偏移比较敏感,也就是说当=0,测量的相位ψ(θ,0°)只受Δx,Δz变化的影响,而=90°的测量面的相位ψ(θ,90°)只受Δy,Δz的影响,基于这个关系可用来测定Δx,Δy,Δz 2相位中心的测定 当被测天线是理想的球面波源时,则φ(θ,)等于常数,而实际天线多数不是理想的球面波源,而是有相散的.但可以认为在某一截面内,在主瓣某范围内φ(θ,)等于常数,来测量视在相位中心[5].现假设相位方向图测量是在=0°和=90°面进行,则式(5)化为

浅述相控阵天线波束控制的基本原理及波控系统的任务

浅述相控阵天线波束控制的基本原理及波控系统的任务 摘要现阶段我国科学技术发展速度的不断加快,为天线波束研究水平的逐渐提升提供了重要的技术支持。实践过程中为了实现天线波束的定向控制,需要充分地发挥出相控阵天线波束控制优势,并了解其基本原理及波控系统的任务,优化该系统实践应用中的服务功能。基于此,本文就相控阵天线波束控制的基本原理及波控系统的任务展开论述。 关键词相控阵天线波束;控制;基本原理;波控系统;任务 结合当前的形势变化,注重相控阵天线波束控制的基本原理及波控系统的任务分析,有利于提升天线波束实践应用中的控制水平,最大限度地满足雷达扫描的实际需求,从而为雷达扫描技术所需的波控系统性能优化提供科学保障。因此,需要加强天线波束控制的基本原理分析,提高对其相关的波控系统任务的正确认识,使得天线波束应用成本得以降低。 1 相控阵天线波束控制的基本原理分析 实践过程中结合相控阵雷达的要求,注重天线波束控制方式的合理使用,有利于保持良好的雷达扫描效果,丰富其所需的扫描技术内涵。因此,需要根据实际情况,从不同的方面入手,加强相控阵天线波束控制的基本原理分析,从而为其使用中实际作用的充分发挥提供保障。具体表现在以下方面: 借助计算机网络与信息技术的优势,结合相控阵天线波束的功能特性,在其控制作用发挥中需要确定相应的空间位置,并了解其跟踪情况,最终通过计算机三维空间的动态模拟分析作用,得到所需的相控阵天线波束在雷达扫描控制中的方位角与仰角初始值,并对相控阵雷达阵面中的天线元对应的相位值进行分析。此时,为了达到移相的目的,需要注重性能可靠的移相器使用,并处理好波控系统运行中产生的波控码。当这些举措实施到位后,有利于实现相控阵天线定向,确定相应的波束方向。 (2)在确定天线元所对应的相位值过程中,需要在单元集中配相法與初始向量计算方式的共同作用下予以应对,且在行列分离方法的作用下,确定相控阵天线波束控制中所需的平面阵列。当天线元所对应的相位值确定后,则可通过计算机系统的作用,得到相应的点阵相位值。 基于相控阵天线波束控制下的雷达扫描,在保持其良好的移相器计算位数作用效果过程中,可借助虚算方式的优势,确定移相位数,确保移相器应用有效性[1]。 2 实践中的相控阵天线波控系统的设计分析 为了实现对雷达扫描过程的科学控制,保持其扫描技术良好的应用效果,则

相控阵天线方向图推导及仿真

相控阵天线方向推导及仿真 1、推导线阵天线方向图公式 一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相 邻单元接收信号的相位差为Ф=2πd λsinθ,线阵排列情况如图1所示。 图1 线阵排列示意图 因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢 量叠加而得出,故各单元电压和为: E a =sin (ωt )+sin (ωt +?)+sin (ωt +2?)+?+sin?[ωt +(N ?1)?] 将等式两边同时乘以2sin?(? 2),根据积化和差、和差化积等相关数学公式,可得到如下公式: 2sin (?2)E a =cos (ωt ??2)?cos (ωt +?2)+cos (ωt +?2)?cos (ωt ?32 ?) +?+cos (ωt +2N ?32?)?cos?(ωt +2N ?1 2?) 整理得,2sin (? 2)E a =cos (ωt ?? 2)?cos (ωt + 2N?12 ?) ??=2sin?(ωt + N ?12?)sin?(N 2 ?) 最终得到场强方向图,E a =sin?[ωt +(N ?1)?2?]sin?(N?2?) sin?(?2?) 平方归一化后,得到辐射方向图(阵列因子): |G a (θ)|=sin 2[Nπ(d λ)sinθ] N 2sin 2[π(d λ )sinθ]

上式中,当(d λ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们 只期望看到(d λ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。 前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元 线阵的归一化辐射方向图为: G (θ)=sin 2[Nπ(d λ)(sinθ?sinθ0)] N 2sin 2[π(d λ )(sinθ?sinθ0)] 此时,由于?2≤sin (θ)?sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2?。 当来波方向与主瓣指向相近时sinθ?sinθ0很小,有: sin 2[π(d λ)(sinθ?sinθ0)]≈[π(d λ )(sinθ?sinθ0)]2 这时的辐射方向图是sin 2μμ2?的形式,式中μ=(d λ)(sinθ?sinθ0),当μ=±0.443π时,天线方向图被衰减到最大值的一半,又因为sinθ?sinθ0项可以写成 sinθ?sinθ0=sin (θ?θ0)cos (θ0)?[1?cos (θ?θ0)]sin (θ?θ0) 当θ0很小时,方程右边第二项可以忽略,所以sinθ?sinθ0≈sin (θ? θ0)cos (θ0)。最终我们可以得到天线的半功率波束宽度为θB ≈0.886λ Ndcosθ0 (rad )。 2、电子扫描阵列天线方向图仿真 ·1、不同参数情况下的栅瓣现象及分析 由前面的分析可知,归一化后的天线方向图可以表示为: G a (θ)= sin 2(Nπd λ (sin θ?sin θ0)) N 2sin 2(πd λ (sin θ?sin θ0)) 其中d 表示天线长度, N 表示天线阵元个数,λ表示信号波长。 当πd λ(sin θ?sin θ0)=0,±1,±2,?,±n,???n ≥1,n ∈Z 时,G a (θ)的分子、分母均为0,由洛毕达法则可知,当sin θ?sin θ0=±n λ d 时,G a (θ)取最大值1,其中sin θ?sin θ0=0,即θ=θ0时,是主瓣,sin θ?sin θ0=±n λ d 的解对应的是

相关文档
最新文档