循环水进水温度与汽轮机真空度的简单分析
汽轮机真空偏低原因及提高真空的措施

汽轮机真空偏低原因及提高真空的措施1、概述汽轮机凝汽器真空状况不但影响机组运行的经济性,往往还限制机组出力。
例如125MW汽轮机组,当其他运行条件不变,如真空由96KPa降低到93KPa,则耗煤也要增加12.54Kg/Kwh;又如200MW汽轮机组当真空由96KPa降低到93KPa时,则耗煤也要增加12.54Kg/Kwh。
由此看出,在火力发电厂中,应把汽轮机凝汽器真空问题作为重要的节能方式作为研究。
根据各厂的具体情况,制定出提高真空的确实可行措施,以保证机组的安全经济运行。
2、汽轮机凝汽器真空偏低的主要原因汽轮机凝汽器系统的真空问题与热力系统的设计合理与否、制造安装、运行维护和检测的质量等多种因素有关,必须根据每台机组的具体情况进行具体分析。
汽轮机凝汽器真空偏低的主要原因有:1.汽轮机真空系统严密性差,对大型凝汽器的真空系统,其漏入的空气量一般不应超过12Kg/h—15Kg/h。
有的机组运行中,实际漏入的空气量远远超过这个数值,竟达到40Kg/h,升至更大,对汽轮机组的真空影响很大。
电力部部颁标准规定,汽轮机真空下降速度平均每分钟不大于266Pa/min—399Pa/min。
然而,有许多机组在做严密性实验时,其真空下降速度大大超过这个规定,有的竟达1000Pa/min—2000Pa/min,有的国产200MW机组,真空下降速度达到了2700Pa/min—4000Pa/min,还有的个别机组,根本无法做真空严密性实验,这说明真空系统漏气太大。
对200MW汽轮机组,当真空系统每漏入11Kg空气时,则真空度要下降1%。
漏空的主要部位有:低压汽缸两端汽封及低压汽缸的接合面,中低压汽缸之间连接通道的法兰连接处,低压汽缸排气管与凝汽器喉部联接焊缝,处于负压状态下工作的有关阀门、法兰等处。
2.设计考虑不周或循环水泵选择不当。
循环水泵出力小,使实际通过凝汽器的冷却水量远远小于热力计算的规定,从而影响真空。
一般凝汽器的冷却倍率m应为50—60,对大型凝汽器,该冷却倍率还要适当大些。
提高汽轮机组真空度的途径与方法

提高汽轮机组真空度的途径与方法作者:霍建胜来源:《科技创新导报》 2013年第36期霍建胜(青海华电大通发电有限公司青海西宁 810000)摘?要:汽轮机组真空度每下降1KPa,那么汽轮机组热效率就会降低1.1%,而热耗将增加70kj/kw,使得供电煤耗大幅度地增加。
同时,汽轮机组真空度过低,也会使得工业用水和厂用电出现严重的浪费,也会对于汽轮机组的稳定、安全运行造成严重地威胁,因此,提高汽轮机组真空度极为重要。
该文首先分析了影响汽轮机组真空度的原因,其次,结合笔者多年的工作经验,就提高汽轮机组真空度的措施进行了较为深入的探讨,具有一定的参考价值。
关键词:汽轮机组真空度电厂中图分类号:U44文献标识码:A 文章编号:1674-098X(2013)12(c)-0065-01在现代大型电站凝汽式汽轮机组的热力循环中,汽轮机最直接的运行性能考核指标就是其真空度,它会对整个汽轮机组的经济性、稳定性、可靠性、安全性都造成直接的影响。
汽轮机组真空度与汽轮机组的热效率存在着较大的联系,据统计,汽轮机组真空度每下降1?kPa,那么汽轮机组热效率就会降低1.1%,而热耗将增加70?kJ/kW,大幅度地使得供电煤耗增加。
同时,汽轮机组真空度过低,也会使得工业用水和厂用电出现严重的浪费,也会对于汽轮机组的稳定、安全运行造成严重地威胁,近年来凝汽式汽轮机组在生产运行过程频频出现真空下降事故,给电力企业带来了严重的负面影响和经济损失。
因此,提高汽轮机组真空度极为重要。
1 影响汽轮机组真空度的原因为了维持凝汽式汽轮机组的真空度,汽轮机组将凝汽式汽轮机组的不凝结气体抽出通常都以水环真空来实现的,影响汽轮机组真空度的原因主要有以下一些:(1)循环水量不足或中断;(2)凝汽式汽轮机组真空系统不严密,从而使得汽轮机同一负荷长期稳定在某一真空值,且低于正常值,凝汽式汽轮机组真空度会随着负荷的升高而升高,负荷的降低而降低。
(3)循环水温度高,从而使得汽轮机组真空度降低。
汽轮机凝汽器的最佳真空度

汽轮机凝汽器的最佳真空度汽轮机凝汽器的真空状态偏低是现实中常常出现的现象,真空状态偏低可能因万分之一的进气量造成巨大的损失,影响汽轮机的正常运行,可能会造成不可估量的经济损失和人员伤亡。
然而,真空状态也不是越高越好。
因为,在汽轮机凝汽器正常运转过程中,真空状态的调节主要依赖于冷却水的控制,而不是依赖于不可调节的由外界负荷调节的排气量,然而,冷却水的调控不仅依赖于循环水泵的容量,而且依赖于循环水泵的运行数量。
循环水泵的容量和数量共同决定了冷却水量。
当在控制条件下冷却水量增加时,汽轮机的排气压力相对降低,汽轮机的功率增加,但是,循坏水泵的功耗也会相应增加,因此,从经济出发,汽轮机凝汽器的真空状态不是越高越好,需要找到一个科学合理的最佳真空状态。
汽轮机凝汽器的最佳真空状态即提高真空所增加的汽轮机功率和为提高真空使循环水泵多消耗的用电功耗相差最大的状态。
汽轮机真空状态的确定需要在科学理论的支撑下,从实际出发,通过反复实验,获得适合本厂机组的最佳运行状态。
确定汽轮机凝汽器最佳真空度常规措施由于汽轮机组真空系统的庞大及设备系统分散复杂,导致在生产运行过程真空下降事故频发,从而给企业带来经济损失和负面社会影响。
因此在分析真空度降低原因后,如何采取有效措施提高汽轮机凝汽器的真空度,也是做为专业工作者需要时刻做好的工作。
1严格执行定期进行汽轮机真空严密性试验制度,对汽轮机真空系统进行查漏,堵漏。
2、加强对汽轮机组循环水供水设备的日常维护保养工作,确保所有设备的正常运行。
3、加强对凝汽器水位和轴封汽压力的监视,维持轴封系统及水封的正常工作;维持好轴封加热器的正常水位。
4、对凝汽器的汽水、水封设备的运行加强监视分析,防止水封设备损坏或水封头失水漏空气。
5、提高抽气器工作性能,准确进行抽气器切换操作。
6、保证凝结水的品质良好。
7、保证低真空保护装置正常运行,整定值的设置要符合设计要求,不得随意改变整定值。
8、保持凝汽器管壁和水侧的清洁度。
汽轮机凝汽器真空降低的原因及措施探析

汽轮机凝汽器真空降低的原因及措施探析发布时间:2022-01-06T03:01:40.187Z 来源:《中国电业》2021年22期作者:闪鹏章[导读] 汽轮机运行的可靠性作为电厂运行的重要手段,对电厂的安全生产至关重要闪鹏章淮沪电力有限公司田集发电厂,安徽淮南 232082摘要:汽轮机运行的可靠性作为电厂运行的重要手段,对电厂的安全生产至关重要。
真空系统在汽轮机部件中起着非常重要的作用。
凝结真空一旦降低,将对汽轮机运行的安全性和效率产生重大影响。
因此,本文从实际凝汽器下降的危害入手,分析了凝汽器真空下降的现象和原因,并继续实施改善系统真空的措施。
关键词:凝汽器真空下降;原因分析;处理前言:汽轮机真空系统在电厂当前的生产和运行过程中至关重要。
在运行过程中,一旦电容器的真空度降低,汽轮机的热耗就会增加,蒸汽消耗就会增加,功率就会降低,从而影响整个电厂运行的效率和安全性。
此外,在机组实际运行过程中,导致电容器真空浪费的原因很多,且发生频率较高。
因此,有必要详细分析各种原因,并采取切实可行的预防措施,以确保电厂的稳定和安全运行。
1.凝汽式汽轮机真空度降低的原因分析1.1凝汽器系统问题(1)凝汽器系统满水凝汽器充水是凝汽式汽轮机真空度降低的主要原因之一。
当凝汽器中的水位升高时,凝汽器管的下部浸入水中,从而减少凝汽器冷却面积,从而增加汽轮机的排气压力,导致汽轮机真空度降低。
随着冷凝器中的水位继续升高,安装在冷凝器上的真空计的指示值将继续降低,而抽气系统上的真空计的指示值将继续升高。
当水位超过排气管的孔口时,排气管中会有水流,这将影响系统的正常功能。
冷凝系统满水的原因有几个:一是冷凝泵故障;二是凝汽器铜管断裂甚至断裂,污染凝结水水质;第三,冷凝备用泵发生故障,或阀门未密封关闭或控制阀损坏,导致水通过备用泵返回冷凝器;第四,在凝汽器系统运行过程中,冷凝水再循环控制阀误开,导致凝汽器水满。
(2)凝汽器冷却面结垢。
150MW汽轮机组真空低原因分析及处理方案

150MW汽轮机组真空低原因分析及处理方案作者:李丹来源:《商品与质量·学术观察》2013年第07期摘要:150MW汽轮机组正常运行中真空度偏低,导致汽轮机运行的安全性和经济性降低。
本文分析了机组在制造、安装、调试、运行中存在的一些主要问题以及造成机组真空度偏低的因素,有针对性地提出了应对措施,保证机组在合理的背压下安全、经济运行。
关键词:凝汽器真空度原因分析预防措施1、引言凝汽真空系统是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。
而凝汽器真空度是汽轮机运行的重要指标之一,也是反映凝汽器综合性能的一项主要考核指标。
一般运行经验表明,凝汽器真空每下降1kPa,机组汽耗会增加1. 5% ~2. 5%;而传热端差每升高1度,供电煤耗增加1. 5~2. 5g/(kWh)。
经计算表明:在蒸汽初参数为9. 0MPa、490度,排汽温度每降低10度,热效率增加3.5%,排汽压力从0.006MPa降到0.004MPa,热效率增加2.2%。
由此可见,汽轮机排汽压力越低,工质放热过程的平均温度也越低(即增加了吸热与放热的平均温度差),工质循环的热效率也越高。
因此,保持凝汽器良好的运行工况,保证凝汽器的最有利真空,是每个发电厂节能的重要内容。
本文针对150MW机组真空度偏低的状况,通过对机组正常运行参数及指标的实际值与基准值的偏差比较,从中找出了一些影响150MW机组真空度的因素。
近几年来,努力解决了一些影响机组真空度的关键问题,从而逐步提高了机组运行的安全性和经济性。
2、影响真空度的主要因素及采取的措施2.1 循环水进水温度循环水进水温度是影响凝汽器真空的最直接因素。
在其它参数不变的情况下,循环水进水温度低,凝汽器排汽压力降低,凝汽器真空升高。
有些沿海沿江河发电公司机组使用开式循环系统,所以,循环水进水温度主要取决于环境温度与冷却水源。
环境温度低,则循环水进水温度低。
浅析运行中汽轮机组真空低的原因及处理措施

浅析运行中汽轮机组真空低的原因及处理措施【摘要】汽轮机真空是运行人员日常监视的重要参数和经济指标之一,真空低也是汽轮机组运行过程中常见的异常情况。
由于汽轮机组负压系统复杂、造成真空低原因的多样性,且同一参数由于不同时间存在差异。
使得生产实践过程中,查找真空往往不能一蹴而就,需要运行人员对于造成真空低的真正原因进行反复思考,不断琢磨和排除干扰因素。
本文针对广州市旺隆热电有限公司#2机真空运行中偏低的情况,结合本厂生产实际以及造成真空低的理论因素,着重分析、反复讨论,提出对策并实施,最终取得预期的效果,以供参考借鉴。
【关键词】汽轮机;真空;排气受阻2运行影响#2机组今年2月6日B修投产。
4月20日以后,在其他工况参数没有变化的情况下,真空缓慢下降。
至5月1日,真空由95.1kPa缓慢降至90.7kPa,降幅为5kPa。
这一情况引起了运行人员的注意。
3原因分析:常见的真空低原因3.1循环水量不足、进水压力低、进水温度偏高造成运行中真空缓慢下降。
常见的循环水水量不足通常表现为在机组同一负荷下,凝汽器循环水进出口温差过大。
其原因可能是由于开式循环水系统进口滤网堵塞、江水水位过低造成循环水出水管虹吸破坏等。
3.2汽轮机抽空气系统工作不正常。
#2机组采用工业ELMO闭环真空泵,造成真空泵组抽真空能力下降的原因有:1)真空泵分离器液位偏低,如分离器排水门误开。
2)真空泵密封水温度偏高,如换热器冷却水量少或换热器脏。
3)真空泵组密封水管路滤网堵塞,或密封水泵运行不正常出水压力偏低。
4)第二级真空泵排气分配管内逆止门卡涩,不能关闭。
5)真空泵盘根磨损,轴端漏空气或进气管道堵塞。
3.3机组负压系统漏入不凝结气体或空气造成真空下降;负压系统漏入空气的主要原因有:1)汽轮机组膨胀不均匀或机械碰撞造成真空系统管路或管件破裂。
2)抽汽管路与汽缸的法兰、人孔门、安全门、与排汽管连接法兰、中、低压缸排汽连接管与汽缸连接法兰,低加管路法兰等部位因系统不严密漏入空气。
汽轮机真空下降原因及解决办法

汽轮机真空下降原因及解决办法摘要:汽轮机真空的变化,对汽轮机的安全与经济运行有极大的影响。
机组真空高排汽压力就会降低,那么汽轮机的汽耗量也将相应的减少,从而就获得了较好的经济性。
一般情况下当真空每降低1%时,汽轮机的热耗就增加0.7%~0.8%。
正因为如此,所以对凝汽式机组来讲通常要维持较高的真空。
凝汽器内真空的产生,是依靠汽轮机排气在凝汽器内迅速凝结成水,体积急剧缩小而造成的。
例如排气冷却而凝结成30度左右的水,相应的饱和压力只有0.04绝对大气压,这时如果蒸汽的干度为90%时,每公斤蒸汽的容积为31.9m3。
而蒸汽凝结后容积只有0.001m3。
即缩小到原来蒸汽的三万分之一左右。
汽轮机带负荷运行中抽气器的作用,只是抽出凝汽器中不凝结的气体,不至于积存在凝汽器内影响蒸汽的凝结。
关键词:汽轮机;真空下降;原因1凝汽器真空凝汽器是汽轮机真空系统的最主要部件,其作用是当汽轮机排汽进入低压缸时,遇循环水冷却凝结成水,体积骤然缩小,形成高度真空,使汽轮机内的蒸汽膨胀到低于大气压力从而多做功。
真空越高,排汽温度越低,汽轮机热循环效率越高。
一般运行经验表明,凝汽器真空每下降1KPa,机组汽耗会增加1.5%~2.5%。
2凝汽式汽轮机真空下降的象征及危害2.1凝汽式汽轮机真空下降的主要象征(1)排气温度升高;(2)真空表指示降低;(3)凝汽器端差增大(3)在调速气门开度不变的情况下,汽轮机负荷下降;(4)当采用射汽抽气器时通常还会看到抽气器冒汽量增大。
2.2汽轮机真空下降给机组带来的危害(1)由于排气温度增高将会使固定在排气缸上的轴承座中心上移,破坏了原有的支撑状态和轴承的负荷分配,如果变化过大,往往会引起机组的振动。
(2)汽轮机真空降低,在进气量不变的情况下,将会使汽轮机的出力降低。
对于凝汽式汽轮机组,一般来说,真空每降低1%,出力降低也将近1%。
如果保持汽轮机出力不变,必须要增加进气量,以致引起通流部分过负荷,同时还会引起轴向推力增加。
汽轮机凝汽器真空下降的原因分析及处理

故障维修—226—汽轮机凝汽器真空下降的原因分析及处理孙 剑(内蒙古京能双欣发电有限公司,内蒙古 鄂尔多斯 016014)引言由于内部机械损耗和非标准运行的影响,蒸汽轮机的冷凝器经历了不同程度的真空降落。
真空下降对电源系统的危害性非常的大,一方面,真空下降会消耗一定量的热能,从而影响电力系统的发电效率;另一方面,真空度的降低损害了整个单元的操作,因此,有效的解决此问题尤为重要,因为从经济和安全角度来看都存在一些问题。
1、概况该公司的甲醇工厂具有三套空气分离器,其中第一种用于空气分离的空分配箱类型KDONAr30000 / 16160/930由杭州EHNKS40 / 50/20型旋转蒸汽轮机提供动力。
自2007年以来,运行状况一直比较良好,保证了空气分离装置的正常运行。
在下文中,对甲醇工厂中第一套空气分离装置中冷凝器挡板掉落引起的真空下降进行分析,介绍处理方案。
2、凝汽器真空下降的危害冷凝器内部的真空度如果下降,则蒸汽输出能力将会随之降低,如果设备上的负载不变,则蒸汽流量将变大,增加的蒸汽流量将使叶片产生过载。
真空下降,会使机组轴向推力增大,机组轴向位移增大,严重时会造成推力瓦过负荷磨损。
随着真空度的降低,装置的轴向推力会变大,并且机器的轴向位移增加,在严重的情况下,这可能导致推力垫圈过载和磨损。
降低真空度会升高低压缸中废气的温度,从而又升高低压缸的温度,从而导致低压缸和低压转子的热膨胀和热变形增加,结果就会导致低压缸的中心线改变,单元的振动增加,并且低压降扩展,还容易减少或消除低压缸的动态和静态间隙,从而导致静态和动态摩擦事故。
真空降低,循环水入口和出口的温度会上升,这将增加冷凝器铜管的温度。
由于传热系数以及铜、钢的膨胀系数不同,冷凝器铜管的膨胀会减弱,最终导致冷凝器泄漏,温度升高时可能不会流动,但温度降低时会流动。
当真空度发神降落的时候,低压缸末级叶片的体积流量大大减少,末级叶片的设计条件明显偏离,该激振力不会与刀片或刀片组产生共振,但是很容易损坏刀片并引起安全事故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环水进水温度与汽轮机真空度的简单分析
一、循环水进水温度与汽轮机真空度的关系
汽轮机的真空是一直影响着机组的安全经济运行的关键参数。
循环水进水温度的高低,是决定汽轮机真空的一主要因素,而汽轮机的真空,影响到凝汽器循环水出水温度,进而再影响到循环水进水温度,两者紧密相联,相互影响。
影响这两者的因素主要有:
(1)、冷却塔循环水冷却效果
包括外界气温、风速,风机出力大小、配水均匀情况及水量、水温大小等。
(2)、凝汽器循环水量
包括循环水泵台数、循环水二次滤网清洁程度、凝汽器循环水进出口各电动门开度、循环水系统漏水及其它冷却系统用水量的大小等,具体体现在凝汽器进出口循环水压力上。
(3)、凝汽器的换热能力
包括凝汽器中换热面(铜管)的洁净程度、真空系统漏空气量、汽机进汽量、各段抽汽量大小(主要变化量是供热量的大小)、循环水水质及胶球清洗系统的投运效果等,具体体现在凝汽器真空度、排汽温度、及凝汽器进出口循环水温及负荷等参数上。
二、数据的采集:
1、考虑#1机工况点变化较快,带供热,造成负荷变化较大,故选取#2机4月15--29日生产报表数据进行统计、分析。
2、每天循环水进水温度低点在5:00~8:00,高点在21:00~24:00,根据运行方式变更及抄表实际情况,选取8:00、23:00两
各时段中的生产报表参数进行统计、分析。
具体数据见附表1。
3、另附上“2011年4月25-29日汽机负荷、真空情况一览表”及“2006年4月份#1、#2机负荷、真空情况一览表”, 具体数据见附表1、2、3,供参分析。
三、数据统计
1、负荷25M 、30M 时不同时间段的参数对比
2、数据简单分析
(1)、同样是25MW 的负荷, 21日与25日8:00
,循环水进水温
度相差较大,分别为27.1℃、28.6℃,相差1.5℃,而真空度、排汽温度却相等,分别为96及39℃,不同的是发电量,分别为62.96万度、60.94万度,相差2.32万度,占比3.849%。
真空度、排汽温度相等,说明下半夜间#2机低负荷时的循环水量足以带走乏汽的汽化潜热,较小的蒸汽增量对凝汽器真空度的影响较小;发电量的相差较明显,说明进汽量及热效率的差别,因无两侧主汽流量累计数的对比,只能简单的认为进汽量增大,发电量增加,真空度、排汽温度不变,热效率提高。
(2)、同样是25MW、30MW的负荷, 23:00时循环水进水温度的变化,较明显的体现在真空度、排汽温度及发电量上。
简单比较上面的数据,循环水进水温度每降低1~2℃,真空度上升1百分点左右、排汽温度降低2℃左右,发电量随循环水进水温度的降低而提高。
(3)、2006年4月份,我司#1、#2机组真空系统存在多处漏点、凝汽器铜管积垢、胶球系统有缺陷等因素,具体数据见附表3、4,造成机组真空度低,排汽温度高,热效率下降。
(4)、汽机的真空度、排汽温度紧跟机组的负荷变化最快,而循环水进水温度随外部环境温度及全天凝汽器出口循环水温、水量等因素的综合影响,水温的变化缓慢。
(5)、生产报表中负荷、真空度、排汽温均采用整数,给统计分析带来较大的误差。
四、小结:
从生产报表及日常运行中环境温度的变化时,机组的真空度比较明显地随着循环水进水温度的降低(相同负荷)而提高,反之则降低。
从生产报表中的统计数据,无法定量循环水进水温度与汽轮机真空度的变化关系,只能大概估计,循环水进水温度每降低1~2℃,真空度上升1百分点左右、排汽温度降低2℃左右,发电量随循环水进水温度的降低而提高,所以,有效的降低循环水进水温度,将较好的提高机组的热效率;另外,#1、#2炉改造后机组出力增加,随之夏季高温时节的到来,循环水进水温度将很高,两台汽机润滑油温将超过规程规定的45℃(去年最高达到52℃),严重影响机组的安全运行。