【K12教育学习资料】2017年中考数学试题分项版解析汇编第03期专题09三角形含解析
2017年赣州市中考数学试题与答案(K12教育文档)

2017年赣州市中考数学试题与答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年赣州市中考数学试题与答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年赣州市中考数学试题与答案(word版可编辑修改)的全部内容。
2017年赣州市中考试题—数学科目(试卷满分120分,考试时间120分钟)一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.﹣6的相反数是()A.16B.﹣16C.6 D.﹣62.在国家“一带一路"战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105 B.1.3×104 C.1。
3×105 D.13×1033.下列图形中,是轴对称图形的是()A.B.C.D.4.下列运算正确的是( )A.(﹣a5)2=a10 B.2a•3a2=6a2 C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a35.已知一元二次方程2x2﹣5x+1=0的两个根为x1,x2,下列结论正确的是()A.x1+x2=﹣52B.x1•x2=1 C.x1,x2都是有理数 D.x1,x2都是正数6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.函数y=2x 中,自变量x的取值范围是.8.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 度.9.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是 .11.已知一组从小到大排列的数据:2,5,x ,y ,2x,11的平均数与中位数都是7,则这组数据的众数是 .12.已知点A (0,4),B (7,0),C(7,4),连接AC ,BC 得到矩形AOBC,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 .三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.) 13.(1)计算:21211x x x +÷--; (2)如图,正方形ABCD 中,点E ,F ,G 分别在AB ,BC ,CD 上,且∠EFG=90°.求证:△EBF ∽△FCG .14.解不等式组:263(2)4xx x-⎧⎨-≤-⎩<,并把解集在数轴上表示出来.15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.17.如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分)。
【K12教育学习资料】2017年中考数学试题分项版解析汇编第04期专题12探索性问题含解析

专题12 探索性问题一、选择题1. (2017内蒙古通辽第10题)如图,点P 在直线AB 上方,且90=∠APB ,AB PC ⊥于C ,若线段6=AB ,x AC =,y S PAB =∆,则y 与x 的函数关系图象大致是( )A .B .C .D .【答案】D∴y=12故选:D .考点:动点问题的函数图象2. (2017广西百色第11题)以坐标原点O 为圆心,作半径为2的圆,若直线y x b =-+与O 相交,则b 的取值范围是( )A .0b ≤<.b -≤≤b -< D .b -<<【答案】D考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.3. (2017海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .6【答案】B. 【解析】试题分析:根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可. 如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.考点:等腰三角形的性质.4. (2017新疆乌鲁木齐第9题)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为60,2∠==,则折AFG GE BG痕EF的长为()A.1 B2 D.【答案】C.∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为∴EC=1,EF=GE=2. 故选C .考点:翻折变换(折叠问题);矩形的性质.5.(2017青海西宁第10题)如图,在正方形ABCD 中,3AB cm =,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自D 点出发沿折线DC CB -以每秒2cm 的速度运动,到达B 点时运动同时停止,设AMN ∆的面积为()2y cm ,运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A .B . C. D .【答案】A考点:动点问题的函数图象.二、填空题1. (2017贵州遵义第15题)按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是.【答案】299 201.考点:规律型:数字的变化类.2. (2017贵州遵义第17题)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【解析】试题分析:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,在Rt△ODE 中,由勾股定理得:=,考点:垂径定理;勾股定理;等腰直角三角形.3. (2017内蒙古通辽第15题)在平行四边形ABCD 中,AE 平分BAD ∠交边BC 于E ,DF 平分ADC ∠交边BC 于F .若11=AD ,5=EF ,则=AB . 【答案】8或3考点:平行四边形的性质4. (2017湖南常德第16题)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.5. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片ABC 中,10AB AC ==,12BC =,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm 或或. 【解析】试题分析:如图:,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB=AC=10cm ,BC=12cm ,∴BD=DC=6cm ,∴AD=8cm , 如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10cm , 如图②所示:AD=8cm ,连接BC ,过点C 作CE ⊥BD 于点E ,则EC=8cm ,BE=2BD=12cm ,则, 如图③所示:BD=6cm ,由题意可得:AE=6cm ,EC=2BE=16cm ,故,故答案为:10cm 或或. 考点:图形的剪拼.6. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .【答案】(0,2016)或(0,21008).考点:规律型:点的坐标.7. (2017黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD B C =,则ABC∆的顶角的度数为 . 【答案】30°或150°或90°. 【解析】试题分析:①BC 为腰, ∵AD ⊥BC 于点D ,AD=12BC ,∴∠ACD=30°, 如图1,AD 在△ABC 内部时,顶角∠C=30°,如图2,AD 在△ABC 外部时,顶角∠ACB=180°﹣30°=150°, ②BC 为底,如图3, ∵AD ⊥BC 于点D ,AD=12BC ,∴AD=BD=CD ,∴∠B=∠BAD ,∠C=∠CAD ,∴∠BAD+∠CAD=12×180°=90°, ∴顶角∠BAC=90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.考点:1.含30度角的直角三角形;2.等腰三角形的性质.8. (2017内蒙古呼和浩特第15题)如图,在ABCD 中,30B ∠=︒,AB AC =,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则AOE ∆与BMF ∆的面积比为 .【答案】3:4.∴OE=12m ,∴S △AOE =12OA•OE=12×12mm 2, 作AN ⊥BC 于N ,∵AB=AC ,∴BN=CN=12BC ,∵BN=2AB=2m ,∴,∴BF=BC ﹣﹣3m=3m , 作MH ⊥BC 于H , ∵∠B=30°,∴MH=12BM=m ,∴S △BMF =12BF•MH=12×2,∴234S S ==△AOE △BMF .考点:1.相似三角形的判定与性质;2.平行四边形的性质.9.(2017湖南张家界第14题)如图,在正方形ABCD 中,AD=BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 .【答案】9-考点:旋转的性质;正方形的性质;综合题.三、解答题1. (2017贵州遵义第24题)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【答案】(1).证明见解析;(2)菱形ACBP的面积(2)连接AB 交PC 于D ,,∴PD=32,∴PC=3,∴菱形ACBP 的面积=12AB•PC=2.考点:切线的性质;菱形的判定与性质.2. (2017贵州遵义第26题)边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°到BQ ,连接QP ,QP 与BC 交于点E ,QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ=AP ;(2)设AP=x ,CE=y ,试写出y 关于x 的函数关系式,并求当x 为何值时,CE=38BC ; (3)猜想PF 与EQ 的数量关系,并证明你的结论.【答案】(1)证明见解析;(2)当x=3或1时,CE=38BC ; (3). 结论:PF=EQ ,理由见解析.(2)解:如图1,∵四边形ABCD 是正方形, ∴∠BAC=12∠BAD=45°,∠BCA=12∠BCD=45°, ∴∠APB+∠ABP=180°﹣45°=135°,由勾股定理得:4=,∵AP=x,∴PC=4﹣x ,∵△PBQ 是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴ AP AB CE CP=,∴4x y x =-x (4﹣x )=2x (0<x <4),由CE=38BC=384⨯=,∴y=﹣244x += x 2﹣4x=3=0,(x ﹣3)(x ﹣1)=0,x=3或1,∴当x=3或1时,CE=38BC ;考点:四边形综合题.3. (2017贵州遵义第27题)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=89x+163.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,NPNB始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+34NB)的最小值.【答案】(1)抛物线的函数关系式为:y=﹣89x2﹣409x+163,C(1,0);(2)当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3). 存在,理由见解析;(NA+34NB=(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,89m+163),当DE为底时,作BG⊥DE于G,则EG=GD=12ED,GM=OB=163,∴89m+163+12(﹣89m2﹣409+163+89m+163)=163,解得:m1=﹣4,m2=9(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,∵ON=OM′=4,OB=163,∠NOP=∠BON,∴当△NOP∽△BON时,OP NP ONON NB OB===34,∴NPNB不变,即OP=44163⨯=3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知,NP OPNB ON= =34,∴NP=34NB,∴(NA+34NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+34NB)的最小值=考点:二次函数综合题.4. (2017湖南株洲第24题)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=kx(x>0)的图象上,顶点A、B在函数y=tx(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【答案】①求k的值以及w关于t的表达式;②T min=54.【解析】(2)∵w=﹣124t 2+12t=﹣124(t ﹣6)2+32,∴w max =32, 则T=w max +a 2﹣a=a 2﹣a+32=(a ﹣12)2+54, ∴当a=12时,T min =54. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.5. (2017内蒙古通辽第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,□ABCD 为1阶准菱形.(1)猜想与计算邻边长分别为3和5的平行四边形是 阶准菱形;已知□ABCD 的邻边长分别为b a ,(b a >),满足r b a +=8,r b 5=,请写出□ABCD 是 阶准菱形.(2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD沿BE折叠(点E在AD上),使点A落在BC 边上的点F处,得到四边形ABEF.请证明四边形ABEF是菱形.【答案】(1)3,12(2)证明见解析(2)由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE ,∴∠AEB=∠ABE ,∴AE=AB ,∴AE=BF ,∴四边形ABFE 是平行四边形,∴四边形ABFE 是菱形考点:四边形综合题6. (2017内蒙古通辽第26题)在平面直角坐标系xOy 中,抛物线22++=bx ax y 过点)0,2(-A ,,与y 轴交于点C .(1)求抛物线22++=bx ax y 的函数表达式;(2)若点D 在抛物线22++=bx ax y 的对称轴上,求ACD ∆的周长的最小值;(3)在抛物线22++=bx ax y 的对称轴上是否存在点P ,使ACP ∆是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【答案】(1)y=﹣14x 2+12x+2(2)△ACD 的周长的最小值是3)存在,点P 的坐标为(1,1)或(1,﹣3)(2)y=﹣14x2+12x+2=﹣14(x﹣1)2+94;∴对称轴是:直线x=1,如图1,过B作BE⊥x轴于E,∵C(0,2),B(2,2),对称轴是:x=1,∴C与B关于x=1对称,∴CD=BD,连接AB交对称轴于点D,此时△ACD的周长最小,∵BE=2,AE=2+2=4,OC=2,OA=2,∴∴△ACD的周长答:△ACD的周长的最小值是考点:二次函数综合题7. (2017郴州第25题) 如图,已知抛物线285y ax x c =++与x 轴交于,A B 两点,与y 轴交于C 点,且(2,0),(0,4)A C -,直线1:42l y x =--与x 轴交于D 点,点P 是抛物线285y ax x c =++上的一动点,过点P 作PE x ⊥轴,垂足为E ,交直线l 于点F .(1)试求该抛物线的表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),过点P 作PH x ⊥轴,垂足为H ,连接AC ,①求证:ACD ∆是直角三角形;②试问当P 点横坐标为何值时,使得以点,,P C H 为顶点的三角形与ACD ∆相似?【答案】(1)y=15x 2+85x ﹣4;(2)点P 的坐标为(﹣52,﹣274)或(﹣8,﹣4);(3)①详见解析;②,点P 的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P 、C 、H 为顶点的三角形与△ACD 相似.(2)设P (m ,15m 2+85m ﹣4),则F (m ,﹣12m ﹣4). ∴PF=(﹣12m ﹣4)﹣(15m 2+85m ﹣4)=﹣15m 2﹣2110m . ∵PE ⊥x 轴,∴PF ∥OC .∴PF=OC 时,四边形PCOF 是平行四边形. ∴﹣15m 2﹣2110m=4,解得:m=﹣52或m=﹣8. 当m=﹣52时,15m 2+85m ﹣4=﹣274, 当m=﹣8时,15m 2+85m ﹣4=﹣4. ∴点P 的坐标为(﹣52,﹣274)或(﹣8,﹣4). (3)①证明:把y=0代入y=﹣12x ﹣4得:﹣12x ﹣4=0,解得:x=﹣8.考点:二次函数综合题.8. (2017郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.D E B为顶点的三角形是直角三角形?(3)当点D在射线OM上运动时,是否存在以,,若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.9. (2017湖北咸宁第23题)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使A B C ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由;运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 13),,13).(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得=PM=1×,由勾股定理可求得1 3 =,故点P的坐标(﹣3,13),(3,13).考点:圆的综合题.10. (2017湖北咸宁第24题)如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 【答案】(1)y=12x 2﹣2x ﹣6,D (2,﹣8);(2)F 点的坐标为(7,92)或(5,﹣72);(3)菱形对角线MN 1.设F(x,12x2﹣2x﹣6),则FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴FG AGBE DE=,即21264228x xx--=+=12,当点F在x轴上方时,则有21261222x xx--=+,解得x=﹣2(舍去)或x=7,此进F点坐标为(7,92);当点F在x轴上方时,则有21261222x xx--=-+,得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣72);∴n=12(2+2n )2﹣2(2+2n )﹣6,解得或,∴;当MN 在x 轴下方时,同理可设PT=n ,则M (2+2n ,﹣n ),∴﹣n=12(2+2n )2﹣2(2+2n )﹣6,解得或(舍去),∴1;综上可知菱形对角线MN 1. 考点:二次函数综合题.11. (2017湖南常德第26题)如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.(2)①过G 作GH ∥AD 交BC 于H ,∵AG =BG ,∴BH =DH ,∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2,∵GH ∥AD ,∴21GM HD MC DC ==,∴GM =2MC ; ②过C 作CN ⊥AC 交AD 的延长线于N ,则CN ∥AG ,∴△AGM ∽△NCM ,∴AG GMNC MC=,由①知GM =2MC ,∴2NC =AG ,∵∠BAC =∠AEB =90°,∴∠ABF =∠CAN =90°﹣∠BAE ,∴△ACN ∽△BAF ,∴AF ABCN AC=,∵AB =AG ,∴2AF AG CN AC=,∴2CN •AG =AF •AC ,∴AG 2=AF •AC .考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.12. (2017广西百色第25题)已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若EF DE =,如图1.(1)判断ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.【答案】(1)△ABC 为等腰三角形,证明见解析;(2)AM=3.∵,∴23. 考点:三角形的内切圆与内心.13. (2017广西百色第26题)以菱形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a(1)求BC 边所在直线的解析式;(2)设22y MP OP =+,求y 关于a 的函数关系式; (3)当OPM 为直角三角形,求点P 的坐标.【答案】(1)直线BC 的解析式为y=12x ﹣2; (2)当点P 在边BC 上时, y=10a 2+24a+48; 当点P 在边CD 上时,y= 10a 2﹣40a+48;(3)点P 2,(4,0).(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴ (舍)或a=2,∴P 2,即:当△OPM 为直角三角形时,点P 2,(4,0). 考点:四边形综合题.14. (2017哈尔滨第26题)已知:AB 是O ⊙的弦,点C 是AB 的中点,连接OB 、OC ,OC 交AB 于点D . (1)如图1,求证:AD BD =;(2)如图2,过点B 作O ⊙的切线交OC 的延长线于点M ,点P 是AC 上一点,连接AP 、BP ,求证:90APB OMB -=∠∠°.(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交O ⊙于点Q ,若6MQ DP =,3sin 5ABO =∠,求MP MQ 的值.【答案】(1)证明见解析;(2)证明见解析;(3)518PM MQ .(3)如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°,∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=PHPM,sin∠ABO=35,∴PHPM=35,∴DPPM=35,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴518 PMMQ.考点:圆的综合题.15. (2017哈尔滨第27题)如图,在平面直角坐标系中,点O为坐标原点,抛物线2=++交x轴于y x bx cA、B两点,交y轴于点C,直线3=-经过B、C两点.y x(1)求抛物线的解析式;(2)过点C作直线CD y^轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE x^^轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN AC 于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ PC^于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ 交CD于点S,当ST TD=时,求线段MN的长.【答案】(1)抛物线的解析式为y=x2﹣2x﹣3;(2) t;(3).(2)如图1,y=x 2﹣2x ﹣3,y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AB=4,∵PE ⊥x 轴,∴∠EMB=∠EBM=45°,∵点P 的横坐标为1,∴EM=EB=3﹣t , 连结AM ,∵S △ABC =S △AMC +S △AMB ,∴12 AB•OC=12AC•MN +12AB•EM,∴12×4×3=1212×4(3﹣t ),∴t ; (3)如图2,∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D (2,﹣3),∴CD=2, 过点B 作BK ⊥CD 交直线CD 于点K ,∴四边形OCKB 为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1, ∵BQ ⊥CP ,∴∠CQB=90°,过点O 作OH ⊥PC 交PC 延长线于点H ,OR ⊥BQ 交BQ 于点I 交BK 于点R ,∴∠OHC=∠OIQ=∠OIB=90°, ∴四边形OHQI 为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH ,∴△OBQ ≌△OCH ,∴QG=OS ,∠GOB=∠SOC ,∴∠SOG=90°, ∴∠ROG=45°,∵OR=OR ,∴△OSR ≌△OGR ,∴SR=GR ,∴SR=CS+BR ,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK ,∴tan ∠BOR=tan ∠TBK ,∴BR OB =TKBK,考点:二次函数综合题.16. (2017黑龙江齐齐哈尔第26题)如图,在平面直角坐标系中,把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E .矩形OABC 的边OC ,OA 的长是关于x 的一元二次方程212320x x -+=的两个根,且OA OC >.(1)求线段OA,OC的长;∆≅∆∆,并求出线段OE的长;(2)求证:ADE COE(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【答案】当A 与F 重合时,四边形F 2ECP 2是菱形,∴EF 2∥CP 2,EF 2,=CP 2=5,∴P 2(4,5); 当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,∴EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,则P 4N=OG ,P 4G=ON ,EP 4∥AC ,∴4P N EN =12,设P 4N=x ,EN=2x ,∴P 4E=CP 4,∴P 4G=ON=3﹣2x ,CG=4﹣x ,∴(3﹣2x )2+(4﹣x )2=)2, ∴x=54 ,∴3﹣2x=12 ,∴P 4(54,12),综上所述:存在以点E ,C ,P ,F 为顶点的四边形是菱形,P ),3﹣,(4,5),(54,12).考点:四边形综合题.17. (2017黑龙江绥化第28题)如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分DEB ∠,F 为CE 的中点,连接,AF BF ,过点E 作//EH BC 分别交,AF CD 于G ,H 两点.(1)求证:DE DC =; (2)求证:AF BF ⊥;(3)当28AF GF =g时,请直接写出CE 的长.【答案】(1)证明见解析;(2)证明见解析;(3)考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质. 18. (2017黑龙江绥化第29题)在平面直角坐标系中,直线314y x =-+交y 轴于点B ,交x 轴于点A ,抛物线212y x bx c =-++经过点B ,与直线314y x =-+交于点(4,2)C -.(1)求抛物线的解析式;(2)如图,横坐标为m 的点M 在直线BC 上方的抛物线上,过点M 作//ME y 轴交直线BC 于点E ,以ME 为直径的圆交直线BC 于另一点D .当点E 在x 轴上时,求DEM V 的周长;(3)将AOB ∆绕坐标平面内的某一点按顺时针方向旋转90o,得到111AO B ∆,点,,A O B 的对应点分别是111,,A O B .若111AO B ∆的两个顶点恰好落在抛物线上,请直接写出点1A 的坐标.【答案】(1)抛物线的解析式为:y=﹣12x 2+54x+1; (2)△DEM 的周长=6415 ; (3)点A 1(34 ,3196 )或(﹣712,29288).试题解析:(1)∵直线y=﹣34x+1交y 轴于点B ,∴B (0,1), ∵抛物线y=﹣12x 2+bx+c 经过点B 和点C (4,﹣2).∴1842c b c =⎧⎨-++=-⎩ ,解得:541b c ⎧=⎪⎨⎪=⎩ ,∴抛物线的解析式为:y=﹣12x 2+54x+1; (2)如图1,∵直线y=﹣34x+1交x 轴于点A ,当y=0时,﹣34 x+1=0,x=43,∴A (43,0),∴OA=43,在Rt △AOB 中,∵OB=1,∴AB=53 ,∴sin ∠ABO=45OA AB =,cos ∠ABO=35OB AB =, ∵ME ∥x 轴, ∴∠DEM=∠ABO ,∵以ME 为直径的圆交直线BC 于另一点D , ∴∠EDM=90°,①如图2,当点O1,B1同时落在抛物线上时,点O1,B1的纵坐标相等,∴﹣12x2+54x+1=﹣12(x+1)2+54(x+1)+1,解得:x=34,此时点A1的坐标为(34,3196),②如图3,当点A1,B1同时落在抛物线上时,点B1的纵坐标比点A1的纵坐标大43,﹣12x2+54x+1+43=﹣12(x+1)2+54(x+1)+1,解得:x=﹣7 12,此时A1(﹣712,29288),综上所述,点A1(34,3196)或(﹣712,29288).考点:二次函数综合题.19. (2017湖北孝感第24题)在平面直角坐标系xoy 中,规定:抛物线()2y a x h k =-+的伴随直线为()y a x h k =-+.例如:抛物线()2213y x =+-的伴随直线为()213y x =+-,即2 1.y x =-(1)在上面规定下,抛物线()214y x =+-的顶点为 .伴随直线为 ;抛物线()214y x =+-与其伴随直线的交点坐标为 和 ;(2)如图,顶点在第一象限的抛物线()214y m x m =--与其伴随直线相交于点,A B (点A 在点B 的右侧)与x 轴交于点,.C D ①若90,CAB ︒∠= 求m 的值;②如果点(),P x y 是直线BC 上方抛物线的一个动点,PBC ∆的面积记为S ,当S 取得最大值274时,求m 的值.【答案】(1)(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4);(2)①m=m=﹣2.∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=,∴当∠CAB=90°时,m的值为﹣2;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴23k b mk b+=-⎧⎨-+=⎩,解得k mb m=-⎧⎨=-⎩,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,。
2017年中考数学试题分项版解析汇编(第03期)专题10 四边形(含解析)

专题10 四边形一、选择题1.(2017四川省南充市)已知菱形的周长为6,则菱形的面积为()A.2 B C.3 D.4【答案】D.考点:菱形的性质.2.(2017四川省广安市)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.1【答案】D.【解析】试题分析:∵四边相等的四边形一定是矩形,∴①错误;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有1个,故选D.考点:1.中点四边形;2.平行四边形的性质;3.菱形的判定;4.矩形的判定与性质;5.正方形的判定. 3.(2017四川省眉山市)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A .14B .13C .12D .10 【答案】C .考点:平行四边形的性质.4.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC于E ,F 两点.若AC =AEO =120°,则FC 的长度为( )A .1B .2CD 【答案】A . 【解析】试题分析:∵EF ⊥BD ,∠AEO =120°,∴∠EDO =30°,∠DEO =60°,∵四边形ABCD 是矩形,∴∠OBF =∠OCF =30°,∠BFO =60°,∴∠FOC =60°﹣30°=30°,∴OF =CF ,又∵Rt △BOF 中,BO =12BD =12AC ,∴OF =tan30°×BO =1,∴CF =1,故选A .考点:1.矩形的性质;2.全等三角形的判定与性质;3.解直角三角形.5.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【答案】D.考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.6.(2017山东省枣庄市)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数kyx=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【答案】C.【解析】试题分析:∵A(﹣3,4),∴OA,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.7.(2017广东省)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【答案】C.考点:正方形的性质.8.(2017河北省)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【答案】B.【解析】试题分析:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.考点:菱形的性质.9.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()A. B. C. D.【答案】A.考点:1.正方形的性质;2.勾股定理.10.(2017浙江省丽水市)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A B.2C.D.4【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD;故选C.考点:平行四边形的性质.11.(2017浙江省台州市)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A . 53 B .2 C . 52 D .4【答案】A .考点:1.翻折变换(折叠问题);2.菱形的性质;3.矩形的性质.12.(2017重庆市B 卷)如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .42π-B .82π- C .82π- D .84π-【答案】C .试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣12π×22=8﹣2π,故选C . 考点:1.扇形面积的计算;2.矩形的性质. 二、填空题13.(2017四川省南充市)如图,在▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S ▱AEPH = .【答案】4.考点:平行四边形的性质.14.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是 (填序号)【答案】①②③. 【解析】试题分析:设BE ,DG 交于O ,∵四边形ABCD 和EFGC 都为正方形,∴BC =CD ,CE =CG ,∠BCD =∠ECG =90°,∴∠BCE +∠DCE =∠ECG +∠DCE =90°+∠DCE ,即∠BCE =∠DCG ,在△BCE 和△DCG 中,∵BC =DC ,∠BCE =∠DCG ,CE =CG ,∴△BCE ≌△DCG (SAS ),∴BE =DG ,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC =90°,∴BE ⊥DG ;故①②正确;连接BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+b 2,故答案为:①②③.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.15.(2017四川省绵阳市)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .【答案】(7,4). 【解析】试题分析:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4);故答案为:(7,4). 考点:1.平行四边形的性质;2.坐标与图形性质.16.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB =6,BC =则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④S 阴影.其中正确结论的序号是 .【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC =DF =3,∴F 是CD 中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x-=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OH S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG =312(222⨯⨯=2.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题. 17.(2017山东省枣庄市)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE 的长为 .【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.18.(2017山东省枣庄市)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC 交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】3.考点:1.矩形的性质;2.等腰三角形的判定;3.相似三角形的判定与性质.19.(2017广东省)一个n边形的内角和是720°,则n= .【答案】6.【解析】试题分析:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.考点:多边形内角与外角.20.(2017广东省)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为.考点:1.翻折变换(折叠问题);2.矩形的性质;3.综合题.21.(2017广西四市)如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .【答案】7. 【解析】试题分析:∵四边形ABCD 是菱形,AC =2,BD =ABO =∠CBO ,AC ⊥BD ,∵AO =1,BO tan ∠ABO =AOBO ABO =30°,AB =2,∴∠ABC =60°,由折叠的性质得,EF ⊥BO ,OE =BE ,∠BEF =∠OEF ,∴BE =BF ,EF ∥AC ,∴△BEF 是等边三角形,∴∠BEF =60°,∴∠OEF =60°,∴∠AEO =60°,∴△AEO 是等边三角形,∴AE =OE ,∴BE =AE ,∴EF 是△ABC 的中位线,∴EF =12AC =1,AE =OE =1,同理CF =OF =1,∴五边形AEFCD 的周长为=1+1+1+2+2=7.故答案为:7.考点:1.翻折变换(折叠问题);2.菱形的性质;3.综合题.22.(2017江苏省连云港市)如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,则∠B= .【答案】60°.考点:平行四边形的性质.23.(2017浙江省绍兴市)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE ⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.【答案】4600.【解析】试题分析:小敏走的路程为AB+AG+GE=1500+(AG+GE)=3100,则AG+GE=1600m,小聪走的路程为BA+AD+DE+EF=3000+(DE+EF).连接CG,在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,在△ADG和△CDG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△ADG≌△CDG,∴AG=CG.又∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形GECF是矩形,∴CG=EF.又∵∠CDG=45°,∴DE=GE,∴小聪走的路程为BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).故答案为:4600.考点:1.全等三角形的判定与性质;2.正方形的性质.24.(2017重庆市B卷)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是..【解析】试题分析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD 是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=12BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CERt△DAF中,DFDE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EFPD,如图2,∵DC∥AB,∴△DGC∽△FGA,∴CG DC DGAG AF FG== =42=2,∴CG=2AG,DG=2FG,∴FG=13⨯=3,∵AC,∴CG=23⨯=3,∴EG=3-3,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FHEH=EF﹣FH,∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GHDE EH==12,∴EN=2,∴NH=EH﹣EN=3﹣2=6,Rt△GNH中,GNMN=GN,EM=EG,∴△EMN的周长=EN+MN+EM;.考点:1.翻折变换(折叠问题);2.正方形的性质;3.综合题. 三、解答题25.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB . (1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△PAB 周长的最小值.【答案】(1)证明见解析;(2)成立;(3)45+. 【解析】(2)证明△AEF ∽△BAG ,得出∠AEF =∠BAG ,再由角的互余关系和三角形内角和定理即可得出结论; (3)过O 作MN ∥AB ,交AD 于M ,BC 于N ,则MN ⊥AD ,MN =AB =4,由三角形面积关系得出点P 在线段MN 上,当P 为MN 的中点时,△PAB 的周长最小,此时PA =PB ,PM =12MN =2,连接EG ,则EG ∥AB ,EG =AB =4,证明△AOF∽△GOE,得出OF AFOE EG= =14,证出AM OFEM OE= =14,得出AM=15AE=25,由勾股定理求出PA,即可得出答案.试题解析:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠EAF=∠ABG=90°,∵点E、G分别是边AD、BC的中点,AF=14AB,∴AFAE=12,BGBA=12,∴AF BGAE BA=,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(2)解:成立;理由如下:根据题意得:AFBG=12,∵AEAB=12,∴AFBG=AEAB,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,当S△PAB=S△OAB,∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=12MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴OF AFOE EG==14,∵MN∥AB,∴AM OFEM OE= =14,∴AM=15AE=15×2=25,由勾股定理得:PA,∴△PAB周长的最小值=2PA+AB4.考点:1.四边形综合题;2.探究型;3.动点型;4.最值问题.26.(2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.【答案】证明见解析.考点:1.正方形的性质;2.全等三角形的判定与性质.27.(2017四川省眉山市)如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交BC 于G . (1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值.【答案】(1)证明见解析;(2)53. 【解析】试题分析:(1)由于BF ⊥DE ,所以∠GFD =90°,从而可知∠CBG =∠CDE ,根据全等三角形的判定即可证明△BCG ≌△DCE ,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG ,由易证△ABH ∽△CGH ,所以BHHG=2,从而可求出HG 的长度,进而求出HGGF的值. 试题解析:(1)∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE ,在△BCG 与△DCE 中,∵∠CBG =∠CDE ,BC =CD ,∠BCG =∠DCE ,∴△BCG ≌△DCE (ASA ),∴BG =DE ;(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG ≌△DCE (ASA ),∴CG =CE =1,∴由勾股定理可知:DE =BG ∵sin ∠CDE =CE GF DE GD =,∴GF =5,∵AB ∥CG ,∴△ABH ∽△CGH ,∴21AB BH CG HG ==,∴BH ,GH HG GF =53.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.正方形的性质.28.(2017四川省绵阳市)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1c m/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t tyt t t⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)10.【解析】试题分析:(1)由已知得出CN=CM=t,FN∥BC,得出AN=8﹣t,由平行线证出△ANF∽△ACB,得出对应边成比例求出NF=12AN=12(8﹣t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,由正方形的性质得出OE=ON=FN,得出方程,解方程即可;(3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,得出方程,解方程求出CN =CM =2,AN =6,得出BM =2,NF =12AN =3,因此EM =2BM =4,作FD ⊥NE 于D ,由勾股定理求出EB==,求出EF =12EB=,由等腰直角三角形的性质和勾股定理得出DF=2HF,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值. 试题解析:(1)能使得四边形MNEF 为正方形;理由如下: 连接ME 交NF 于O ,如图1所示:∵∠C =90°,∠NMC =45°,NF ⊥AC ,∴CN =CM =t ,FN ∥BC ,∴AN =8﹣t ,△ANF ∽△ACB ,∴84AN AC NF BC == =2,∴NF =12AN =12(8﹣t ),由对称的性质得:∠ENF =∠MNF =∠NMC =45°,MN =NE ,OE =OM =CN =t ,∵四边形MNEF 是正方形,∴OE =ON =FN ,∴t =12×12(8﹣t ),解得:t =85;即在点M 的运动过程中,能使得四边形MNEF 为正方形,t 的值为85;(2)分两种情况:①当0<t ≤2时,y =12×12(8﹣t )×t =2124t t -+,即2124y t t =-+(0<t ≤2); ②当2<t ≤4时,如图2所示:作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,∴GH =23NF =13(8﹣t ),∴y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t -,即21(8)12y t =-(2<t ≤4); 综上所述:2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩ .考点:1.四边形综合题;2.最值问题;3.动点型;4.存在型;5.分类讨论;6.压轴题.29.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型.30.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(3:1,45°.【解析】试题分析:(1)由正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PA E=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(2)△ACE 是直角三角形,理由是:如图2,∵P 为AB 的中点,∴PA=PB ,∵PB =PE ,∴PA=PE ,∴∠PA E =45°,又∵∠BAC =45°,∴∠CAE =90°,即△ACE 是直角三角形;(3)设CE 交AB 于G ,∵EP 平分∠AEC ,EP ⊥AG ,∴AP =PG =a ﹣b ,BG =a ﹣(2a ﹣2b )=2b ﹣a ,∵PE ∥CF ,∴PE PG BC GB =,即2b a ba b a-=-,解得:a b ,∴a :b :1,作GH ⊥AC 于H ,∵∠CAB =45°,∴HG =2AG =2(b ﹣2b )=(2)b ,又∵BG =2b ﹣a =(2)b ,∴GH =GB ,GH ⊥AC ,GB ⊥BC ,∴∠HCG =∠BCG ,∵PE ∥CF ,∴∠PEG =∠BCG ,∴∠AEC =∠ACB =45°.考点:1.四边形综合题;2.探究型;3.变式探究. 31.(2017山东省济宁市)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开;再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2,折叠该纸片,探究MN 与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【答案】(1)∠MBN=30°;(2)MN=12 BM.【解析】试题分析:(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=12 BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=12∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=12BM,∴MN=12BM.考点:1.翻折变换(折叠问题);2.矩形的性质;3.剪纸问题.32.(2017广东省)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°.【解析】试题分析:(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.考点:菱形的性质.33.(2017广西四市)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)【解析】试题分析:(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.试题解析:(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC=ABCD的面积=AB•BC=6×考点:1.矩形的性质;2.全等三角形的判定与性质.34.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【答案】(1)证明见解析;(2)∠ABE=30°.【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.考点:1.矩形的性质;2.平行四边形的判定与性质;3.菱形的判定;4.探究型.35.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=43,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】【探索发现】12;【拓展应用】4ab;【灵活应用】720;【实际应用】1944.【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得PN =a ﹣ahPQ ,设PQ =x ,由S 矩形PQMN=PQ •PN ═2()24a h ahx h --+,据此可得; 【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE =EH 20、CD =DH =16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF =DH =16、CG =HE =20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可;【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tan B =tan C 知EB =EC 、BH =CH =54,EH =43BH =72,继而求得BE =CE =90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 试题解析:【探索发现】∵EF 、ED 为△ABC 中位线,∴ED ∥AB ,EF ∥BC ,EF =12BC ,ED =12AB ,又∠B =90°,∴四边形FEDB 是矩形,则ABCS S ∆矩形FEDB=12EF DE AB BC ⋅⋅=112212BC ABAB BC ⋅⋅=12,故答案为:12;【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即=P N h P Q a h -,∴PN =a ﹣ahPQ ,设PQ =x ,则S 矩形PQMN =PQ •PN =x (a ﹣a h x )=2a x ax h -+ =2()24a h ah x h --+,∴当PQ =2h 时,S 矩形PQMN 最大值为4ab ,故答案为:4ab ;【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形,∵AB =32,BC =40,AE =20,CD =16,∴EH =20、DH =16,∴AE =EH 、CD =DH ,在△AEF 和△HED 中,∵∠FAE =∠DHE ,AE =AH ,∠AEF =∠HED ,∴△AEF ≌△HED (ASA ),∴AF =DH =16,同理△CDG≌△HDE ,∴CG =HE =20,∴BI =12(AB +AF )=24,∵BI =24<32,∴中位线IK 的两端点在线段AB 和DE 上,过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG •BF =12×(40+20)×(32+16)=720,答:该矩形的面积为720; 【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tan B =tan C =43,∴∠B =∠C ,∴EB =EC ,∵BC =108cm ,且EH ⊥BC ,∴BH =CH =12BC =54cm ,∵tan B =EH BH =43,∴EH =43BH =43×54=72cm ,在Rt △BHE 中,BE =90cm ,∵AB =50cm ,∴AE =40cm ,∴BE 的中点Q 在线段AB 上,∵CD =60cm ,∴ED =30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上,由【拓展应用】知,矩形PQMN 的最大面积为14BC •EH =1944cm 2. 答:该矩形的面积为1944cm 2.考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题. 36.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S . 如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S =矩形四边形;实验探究:11112ABCD A B C D EFGH S S S =-矩形矩形四边形;迁移应用:(1)EG (2)172.(2)分两种情形探究即可解决问题.试题解析:问题呈现:证明:如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∠A =90°,∵AE =DG ,∴四边形AEGD 是矩形,∴S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,∴S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC .实验探究:结论:2S 四边形EFGH =S 矩形ABCD ﹣.理由:∵ =12, =12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG .(2)∵2S 四边形EFGH =S 矩形ABCD +,∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5﹣1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=12)2②如图5﹣2中,当G 与D 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=21=2,∵22,∴矩形EFGH 的面积最大值=172.考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.37.(2017浙江省丽水市)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AD n AE=.(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示AD AB的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.【答案】(1)证明见解析;(2)AD AB ;(3)n =16或 8+. 【解析】试题分析:(1)因为GF ⊥AF ,由对称易得AE =EF ,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E 是AG 的中点;(2)可设AE =a ,则AD =na ,即需要用n 或a 表示出AB ,由BE ⊥AF 和∠BAE ==∠D =90°,可证明△ABE ~△DAC , 则AB AE DA DC=,因为AB =DC ,且DA ,AE 已知表示出来了,所以可求出AB ,即可解答;(3)求以点F ,C ,G 为顶点的三角形是直角三角形时的n ,需要分类讨论,一般分三个,∠FCG =90°,∠CFG =90°,∠CGF =90°;根据点F 在矩形ABCD 的内部就可排除∠FCG =90°,所以就以∠CFG =90°和∠CGF =90°进行分析解答.试题解析:(1)证明:由对称得AE =FE ,∴∠EAF =∠EFA ,∵GF ⊥AE ,∴∠EAF +∠FGA =∠EFA +∠EFG =90°,∴∠FGA =∠EFG ,∴EG =EF ,∴AE =EG .(2)解:设AE =a ,则AD =na ,当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =90°,∵∠DAC +∠BAC =90°,∴∠ABE =∠DAC ,又∵∠BAE =∠D =90°,∴△ABE ~△DAC ,∴AB AE DA DC=∵AB =DC ,∴AB 2=AD ·AE =na ·a =na 2,∵AB >0,∴AB ,∴ADAB ,∴AD AB .考点:1.矩形的性质;2.解直角三角形的应用;3.相似三角形的判定与性质;4.分类讨论;5.压轴题.38.(2017浙江省绍兴市)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD ,AB =BC ,∠ABC =90°.①若AB =CD =1,AB ∥CD ,求对角线BD 的长.②若AC ⊥BD ,求证:AD =CD ;(2)如图2,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形,求AE 的长.【答案】(1;②证明见解析;(2)5或6.5.【解析】试题分析:(1)①只要证明四边形ABCD 是正方形即可解决问题;②只要证明△ABD ≌△CBD ,即可解决问题;(2)如图1中,连接AC 、BD .∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD ,∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 表示等腰直角四边形,不符合条件.若EF 与BC 不垂直,①当AE =AB 时,如图2中,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图3中,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,∴BF =PB =1:2,∴DE =2.5,∴AE =9﹣2.5=6.5,综上所述,满足条件的AE 的长为5或6.5.考点:1.四边形综合题;2.分类讨论;3.新定义;4.压轴题.39.(2017浙江省绍兴市)如图1,已知□ABCD ,AB ∥x 轴,AB =6,点A 的坐标为(1,-4),点D 的坐标为(-3,4),点B 在第四象限,点P 是□ABCD 边上一个动点.(1) 若点P 在边BC 上,PD =CD ,求点P 的坐标.(2)若点P 在边AB 、AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).【答案】(1)P (3,4);(2)(-3,4)或(-1,0)或(5,-4)或(3,-4);(3)P (2,-4)或(-52,3)或(-5,4)或(5,4). 【解析】试题分析:(1)点P 在BC 上,要使PD =CD ,只有P 与C 重合;(3)在不同边上,根据图象,点M 翻折后,点M ’落在x 轴还是y 轴,可运用相似求解.试题解析:(1)∵CD =6,∴点P 与点C 重合,∴点P 的坐标是(3,4).(2)①当点P 在边AD 上时,由已知得,直线AD 的函数表达式为:22y x =-- ,设P (a ,-2a -2),且-3≤a ≤1.若点P 关于x 轴对称点Q 1(a ,2a +2)在直线y =x -1上,∴2a +2=a -1,解得a =-3,此时P (-3,4). 若点P 关于y 轴对称点Q 2(-a ,-2a -2)在直线y =x -1上,∴-2a -2=-a -1,解得a =-1,此时P (-1,0). ②当点P 在边AB 上时,设P (a ,-4),且1≤a ≤7.若点P 关于x 轴对称点Q 3(a ,4)在直线y =x -1上,∴4=a -1,解得a =5,此时P (5,-4).若点P 关于y 轴对称点Q 4(-a ,-4)在直线y =x -1上,∴-4=-a -1,解得a =3,此时P (3,-4). 综上所述,点P 的坐标为(-3,4)或(-1,0)或(5,-4)或(3,-4).(3)因为直线AD 为y =-2x -2,所以G (0,-2).①如图,当点P 在CD 边上时,可设P (m ,4),且-3≤m ≤3,则可得M ′P =PM =4+2=6,M ′G =GM =|m |,易证得△OGM ′∽△HM ′P ,则'''OM GM HP M P =,即'46m OM =,则OM ′=23m ,在Rt △OGM ′中,由勾股定理得,2222()23m m += ,解得m 或,则P (,4)或(,4);②如下图,当点P 在AD 边上时,设P (m ,-2m -2),则PM ′=PM =|-2m |,GM ′=MG =|m |,易证得△OGM ′∽△HM ′P ,则'''OM GM HP M P =,即'222m OM m m=---,则OM ′=1222m +,在Rt △OGM ′中,由勾股定理得,2221(22)22m m ++= ,整理得m = -52,则P (-52,3);如下图,当点P 在AB 边上时,设P (m ,-4),此时M ′在y 轴上,则四边形PM ′GM 是正方形,所以GM =PM =4-2=2,则P (2,-4).综上所述,点P 的坐标为(2,-4)或(-52,3)或(,4,4). 考点:1.一次函数综合题;2.平行四边形的性质;3.翻折变换(折叠问题);4.动点型;5.分类讨论;。
【配套K12】2017年中考数学试题分项版解析汇编第02期专题16压轴题含解析

专题16:压轴题一、选择题1.(2017天津第12题)已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y【答案】A.2.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.3.(2017河南第10题)如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .3π C.23π D .23π 【答案】C.【解析】考点:扇形的面积计算.4.(2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a ,设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y ,∵∠EMG=90°,∴∠DME+∠CMG=90°.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y- 在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay ∴CM+MG+CG=2444ax x ay a y y-===n . 所以12n m =故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017广东广州第10题) 0a ≠,函数a y x=与2y ax a =-+在同一直角坐标系中的大致图象可能是( )【答案】D【解析】考点: 二次函数与反比例函数的图像的判断.6. (2017山东临沂第14题)如图,在平面直角坐标系中,反比例函数k y x=(0x >)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN V 的面积为10.若动点P 在x 轴上,则PM PN +的最小值是( )A .B .10C .D .【答案】C【解析】试题分析:由正方形OABC 的边长为6可得M 的坐标为(6,6k ),N 的坐标为(6k ,6),因此可得BN=6-6k ,BM=6-6k ,然后根据△OMN 的面积为10,可得21116666(6)10262626k k k ⨯-⨯⨯-⨯⨯-⨯-=,解得k=24,得到M (6,4)和N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则M ′N 的长=PM+PN 的值最小,最后由AM=AM ′=4,得到BM ′=10,BN=2,根据勾股定理求得NM ′故选:C考点:1、反比例函数与正方形,2、三点之间的最小值7. (2017山东青岛第8题)一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y =图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( ) A 、2 B 、4 C 、8 D 、不确定【答案】【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2 所以反比例函数表达式为x y 4=设P (m ,n ),则nm 4=,即mn=4△PCO 的面积为21OCPC=21mn=2 考点: 1、一次函数,2、反比例函数图像与性质8. (2017四川泸州第12题)已知抛物线214y x =+1具有如下性质:给抛物线上任意一点到定点(0,2)F 的距离与到x 轴的距离相等,如图,点M 的坐标为,P 是抛物线2114y x =+上一动点,则PMF ∆周长的最小值是( )A .3B .4C .5D .6【答案】C.9. (2017山东滨州第12题)在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x 相交于点A 、B ,且AC +BC =4,则△OAB 的面积为( )A .3或 3B 1 1C . 3D 1【答案】A.【解析】如图,分线段AB在双曲线1yx=和直线y=x交点的左右两侧两种情况,设点C的坐标为(m,0),则点A的坐标为(m,m),点B的坐标为(m,1m ),因AC+BC=4,所以m+1m=4,解得m=2,当时,即线段AB在双曲线1yx=和直线y=x交点的左侧,求得所以即可求得△OAB的面积为1(232⨯-=;当线段AB在双曲线1yx=和直线y=x交点的右侧,求得所以即可求得△OAB的面积为1(232⨯+=,故选A.10.(2017山东日照第12题)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A .①②③B .③④⑤C .①②④D .①④⑤【答案】C .考点:抛物线与x 轴的交点;二次函数图象与系数的关系.11.(2017江苏宿迁第8题)如图,在Rt C ∆AB 中,C 90∠=,C 6A =cm ,C 2B =cm .点P 在边C A 上,从点A 向点C 移动,点Q 在边C B 上,从点C 向点B 移动,若点P 、Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接Q P ,则线段Q P 的最小值是A .20cmB .18cm C.cm D .cm【答案】C.【解析】试题分析:设运动时间为t 秒,则AP=t ,CQ=t ,所以CP=6-t ,根据勾股定理可得222PQ PC CQ =+,即222(6)PQ t t =-+,所以222212362(3)18PQ t t t =-+=-+,因t ≤2,根据二次函数的性质可得当t=2时,2PQ 的值最小为20,即可得线段Q P 的最小值是,故选C.12.(2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B ..8【答案】A.【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,PK ∴= DH =1PP CD ∴=高为8S ∴==L K H故答案选A. 考点:平行四边形的面积,三角函数.13. (2017山东菏泽第8题)一次函数b ax y +=和反比例函数xc y =在同一个平面直角坐标系中的图象如图所示,则二次函数c bx ax y ++=2的图c 象可能是( )A .B . C. D .【答案】C.14. (2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB为 ( )A.53B.2 C.52D.4【答案】A【解析】试题分析:依题可得阴影部分是菱形.设S菱形ABCD=16,BE=x.从而得出AB=4,阴影部分边长为4-2x.根据(4-2x)2=1求出x=32或x=52,从而得出3452332AEEB-==.故选:A.考点:1、菱形的性质,2、翻折变换(折叠问题)15. (2017浙江金华第10题)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在,A B两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到180的扇形),图中的阴影部分是A处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处 B.F处 C.G处 D.H处【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.16.(2017浙江湖州第10题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从44⨯的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有2020⨯的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【答案】B考点:1、勾股定理,2、规律探索17. (2017浙江舟山第10题)下列关于函数1062+-=x x y 的四个命题:①当0=x 时,y 有最小值10;②n 为任何实数,n x +=3时的函数值大于n x -=3时的函数值;③若3>n ,且n 是整数,当1+≤≤n x n 时,y 的整数值有)42(-n 个;④若函数图象过点),(0y a 和)1,(0+y b ,则b a <.其中真命题的序号是( )A .①B .② C.③ D .④【答案】C.【解析】试题分析:①错,理由:当x=6321--=⨯时,y 取得最小值;②错,理由:因为332n n ++-=3, 即横坐标分别为x=3+n , x=3−n 的两点的纵坐标相等,即它们的函数值相等;③对,理由:若n>3,则当x=n 时,y=n 2− 6n+10>1,当x=n+1时,y=(n+1)2− 6(n+1)+10=n 2−4n+5,则n 2−4n+5-(n 2− 6n+10)=2n-5,因为当n 为整数时,n 2− 6n+10也是整数,2n-5也是整数,n 2−4n+5也是整数,故y 有2n-5+1=2n-4个整数值;④错,理由:当x<3时,y 随x 的增大而减小,所以当a<3,b<3时,因为y 0<y 0+1,所以a>b ,故错误;故选C. 考点:二次函数图象上点的坐标特征.二、填空题1.(2017北京第16题)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O . O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)【解析】找到外接圆的圆心和半径是解本题的关键,由题意得:圆心是线段AB 的中点,半径是AB 长的一半,所以只需作出AB 的中垂线,找到交点O 即可.考点:作图-基本作图;线段垂直平分线的性质2. (2017天津第18题)如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .【答案】(1;(2)详见解析.【解析】试题分析:(1)根据勾股定理即可求得(2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点M 、N ,连结DN 、EM ,DN 与EM 相交于点P ,点P 即为所求.3.(2017福建第16题) 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .【答案】7.5【解析】因为双曲线既关于原点对称,又关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,所以可知点C 与点A 关于原点对称,点A 与点B 关于直线y=x 对称,由已知可得A (2,0.5),∴C (-2,-0.5)、B (0.5,2),从而可得D (-0.5,-2),继而可得S 矩形ABCD =7.5.【答案】1或12. 考点:折叠(翻折变换).5. (2017湖南长沙第18题)如图,点M 是函数x y 3=与xk y =的图象在第一象限内的交点,4=OM ,则k 的值为 .【答案】考点:一次函数与反比例函数6. (2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODFBDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴<∴∠>∠,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,2FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确13OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用7. (2017山东临沂第19题)在平面直角坐标系中,如果点P 坐标为(),m n ,向量OP uu u r 可以用点P 的坐标表示为(),OP m n =uu u r .已知:()11,OA x y =uu r ,()22,OB x y =uu u r ,如果12120x x y y ⋅+⋅=,那么OA uu r 与OB uu u r 互相垂直.下列四组向量:①()2,1OC =uuu r ,()1,2OD =-uuu r ;②()cos30,tan 45OE =︒︒uu u r ,()1,sin 60OF =︒uu u r ;③)2OG =-uuu r,12OH ⎫=⎪⎭uuu r ; ④()0,2OM π=uuu r ,()2,1ON =-uuu r .其中互相垂直的是 (填上所有正确答案的序号).【答案】①③④【解析】试题分析:根据向量垂直的定义:② 因为2×(﹣1)+1×2=0,所以OC 与OD 互相垂直;③ 因为cos30°×1+tan45°•sin60°=21+1×20,所以OE 与OF 不互相垂直; ④+(﹣2)×12=3﹣2﹣1=0,所以OG 与OH 互相垂直; ④因为π0×2+2×(﹣1)=2﹣2=0,所以OM 与ON 互相垂直.综上所述,①③④互相垂直.故答案是:①③④.考点:1、平面向量,2、零指数幂,3、解直角三角形8. (2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm .【答案】【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得,又因12DE OD OE BC OB OC ===,可得AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM=12三角形重心的性质可得9. (2017山东滨州第18题)观察下列各式:2111313=-⨯, 2112424=-⨯ 2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________. 【答案】2354(1)(2)n n n n +++ . 【解析】根据题目中所给的规律可得,原式=12222(...)2132435(2)n n ++++⨯⨯⨯+ =111111111(1...)23243512n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1)221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++ . 10. (2017江苏宿迁第16题)如图,矩形C ABO 的顶点O 在坐标原点,顶点B 、C 分别在x 、y 轴的正半轴上,顶点A 在反比例函数k y x=(k 为常数,0k >,0x >)的图象上,将矩形C ABO 绕点A 按逆时针方向旋转90得到矩形C '''AB O ,若点O 的对应点'O 恰好落在此反比例函数图象上,则C OB O 的值是 .【解析】试题分析:设点A 的坐标为(a ,b ),即可得OB=a ,OC=b,已知矩形C ABO 绕点A 按逆时针方向旋转90得到矩形C '''AB O ,可得点C 、A 、B ’在一条直线上,点A 、C ’、B 在一条直线上,AC ’=a ,AB ’=b ,所以点O ’的坐标为)(a+b , b -a ),根据反比例函数k 的几何意义可得ab=(a+b )(b-a ),即可得220b ab a --=,解这个以b为未知数的一元二次方程得11,b b ==(舍去),所以,b =所以C OB ===O 11. (2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.【答案】5. 【解析】考点:四边形与旋转的综合题.12. (2017山东日照第16题)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】试题分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,AOM BANAMO BNA OA BA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BAN(AAS),∴,∴∴B,∴双曲线y=(x>0)同时经过点A和B,=k,整理得:k2﹣2k﹣4=0,解得:k=1,∴考点:反比例函数图象上点的坐标特征.13. (2017江苏苏州第18题)如图,在矩形CDAB中,将C∠AB绕点A按逆时针方向旋转一定角度后,CB的对应边C''B交CD边于点G.连接'BB、CC',若D7A=,CG4=,G''AB=B,则CC'='BB(结果保留根号).【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .14. (2017山东菏泽第14题)如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 33-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 33-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .【答案】()3333+【解析】15. (2017浙江金华第16题)在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S = 2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .【答案】52. 【解析】试题分析:(1)在B 点处是以点B 为圆心,10为半径的34个圆;在A 处是以A 为圆心,4为半径的14个圆;在C 处是以C 为圆心,6为半径的14个圆;所以S=222113641088444ππππ⨯+⨯+⨯= ;(2)设BC=x,则AB=10-x ,222330110(10)43604S x x πππ=⨯+⨯-+⨯ =3π(-10x+250),当x=52时,S 最小,即BC=52. 16. (2017浙江湖州第16题)如图,在平面直角坐标系x y O 中,已知直线y kx =(0k >)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作D x B ⊥轴于点D ,交1y x=的图象于点C ,连结C A .若C ∆AB 是等腰三角形,则k 的值是 .【解析】试题分析:令B 点坐标为(a ,9a )或(a ,ka ),则C 点的坐标为(a ,1a),令A 点的坐标为(b ,kb )或(b ,1b ),可知BC=8a ,ka=9a ,kb=1b ,可知29a k =,21b k =,然后可知8a ,解得. 考点:反比例函数与k 的几何意义17. (2017湖南湘潭第16题)阅读材料:设11(,)a x y =,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅.根据该材料填空:已知(2,3)a =,(4,)b m =,且//a b ,则m = .【答案】6.【解析】试题分析:利用新定义设11(,)a x y =,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅,2m=4×3,m=6.18. (2017浙江台州第16题)如图,有一个边长不定的正方形ABCD ,它的两个相对的顶点,A C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点,B D 在正六边形内部(包括边界),则正方形边长a 的取值范围是 .3a ≤≤a ≤≤ ) 【解析】试题分析:因为AC 为对角线,故当AC 最小时,正方形边长此时最小.①当 A 、C 都在对边中点时(如下图所示位置时),显然AC 取得最小值,∵正六边形的边长为1,∴∴a 2+a 2=AC 2=2.∴②当正方形四个顶点都在正六边形的边上时,a 最大(如下图所示).设A ′(. ∵OB ′⊥OA ′.∴B ′(-2,t ) 设直线MN 解析式为:y=kx+b,M (-1,0),N (-12,(如下图)∴0122k b k b -+=⎧⎪⎨-+=-⎪⎩.∴k b ⎧=⎪⎨=⎪⎩.∴直线MN 的解析式为:x+1),将B ′(t )代入得:t=32此时正方形边长为A ′B ′取最大.∴3a ≤≤.考点:1、勾股定理,2、正多边形和圆,3、计算器—三角函数,4、解直角三角形三、解答题1.(2017北京第29题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当O 的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围. (2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围【答案】(1)①23,P P ≤x ≤-2 或2 ≤x ≤2,(2)-2≤x ≤1或2≤x ≤【解析】本题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意;∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,1= ,解得x = ,当OP=3时,由距离公式可得,3= ,229x x +=,解得2x =±,∴ 点的横坐标的取值范围为-2≤x ≤-2 或2 ≤x ≤2(2)∵y=-x+1与轴、轴的交点分别为A 、B 两点,∴ 令y=0得,-x+1=0,解得x=1, 令得x=0得,y=0,∴A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A 时,此时CA=3,∴ 点C 坐标为,C ( -如图2,当圆与小圆相切时,切点为D ,∴CD=1 ,又∵直线AB所在的函数解析式为y=-x+1,∴直线AB与x轴形成的夹角是45°,∴ RT△°ACD中,,∴ C点坐标为x≤∴ C点的横坐标的取值范围为;-2≤c如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt△OCB中,由勾股定理得=点坐标为.∴ C 点的横坐标的取值范围为2≤c x ≤;∴综上所述点C ≤c x ≤-2 或2 ≤c x ≤2. 考点:切线,同心圆,一次函数,新定义.2.(2017天津第25题)已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2)P(m ,t)为抛物线上的一个动点,P 关于原点的对称点为'P .①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.【答案】(1)223y x x =--,顶点的坐标为(1,-4);(2)12m m ==;(3)22m +=. 【解析】试题解析:(1)∵抛物线32-+=bx x y 经过点)0,1(-A ,∴0=1-b-3,解得b=-2.∴抛物线的解析式为223y x x =--,∵2223(1)4y x x x =--=--,∴顶点的坐标为(1,-4).(2)①由点P(m ,t)在抛物线223y x x =--上,有223t m m =--.∵P 关于原点的对称点为'P ,有P’(-m ,-t ).∴2()2()3t m m -=----,即223t m m =--+∴222323m m m m --=--+解得12m m ==②由题意知,P’(-m ,-t )在第二象限,∴-m<0,-t>0,即m>0,t<0.又抛物线223y x x =--的顶点的坐标为(1,-4),得-4≤t<0.过点P’作P’H⊥x 轴,H 为垂足,有H (-m ,0).又)0,1(-A ,223t m m =--,则22222',(1)214P H t AH m m m t ==-+=-+=+当点A 和H 不重合时,在Rt △P’AH 中,222''P A P H AH =+当点A 和H 重合时,AH=0, 22''P A P H =,符合上式.∴222''P A P H AH =+,即22'4(40)P A t t t =++-≤≤记2'4(40)y t t t =++-≤≤,则2115'()24y t =++, ∴当t=-12时,y’取得最小值. 把t=-12代入223t m m =--,得21232m m -=--解得122222m m +==由m>0,可知22m -=不符合题意∴m =3.(2017福建第25题)已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析;(Ⅲ)(i )MN ≤(ii )△QMN 面积的最小值为2742+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点. (Ⅲ)由y=2x-2、y=ax 2+ax-2a ,可得点N (2a -2,4a-6). (i )根据勾股定理得,MN 2=20(132a -)2,再由-1≤a ≤-12,可得-2≤1a ≤-1,从而可得132a -<0,继而可得,从而可得MN 的取值范围. (ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根, 从而可和S ≥2742+,继而得到面积的最小值.(Ⅲ)把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0, 即x 2+(1-2a )x-2+2a =0,所以(x-1)(x+2-2a)=0, 解得x 1=1,x 2 =2a -2,所以点N (2a -2,4a-6). (i )根据勾股定理得,MN 2=[(2a -2)-1]2+(4a -6)2=20(132a -)2, 因为-1≤a ≤-12,由反比例函数性质知-2≤1a ≤-1,所以132a -<0,所以(312a - ),所以MN ≤(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭ =2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥()2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0,所以8S-54≥S ≥2742+ ,当S=274+*)可得满足题意.故当a=-3,b =3时,△QMN 面积的最小值为2742+.4.(2017河南第23题)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【答案】(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12. 【解析】 试题分析:(1) 把点(3,0)A 代入23y x c =-+求得c 值,即可得点B 的坐标;抛物线243y x bx c =-++经过点(3,0)A ,即可求得b 值,从而求得抛物线的解析式;(2)由MN x ⊥轴,M (m ,0),可得N(2410,233m m m -++ ),①分∠NBP=90°和∠BNP =90°两种情况求点M 的坐标;②分N 为PM 的中点、P 为NM 的中点、M 为PN 的中点3种情况求m 的值.试题解析:(1)直线23y x c =-+与x 轴交于点(3,0)A , ∴2303c -⨯+=,解得c=2 ∴B (0,2), ∵抛物线243y x bx c =-++经过点(3,0)A , ∴2433203b -⨯++=,∴b=103∴抛物线的解析式为2410233y x x =-++; (2)∵MN x ⊥轴,M (m ,0),∴N(2410,233m m m -++ ) ①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2 ∵在△APM 中和△BPN 中,∠APM=∠BPN, ∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°,分两种情况讨论如下:(I )当∠NBP=90°时,过点N 作NC y ⊥轴于点C ,则∠NBC+∠BNC=90°,NC=m , BC=22410410223333m m m m -++-=-+ ∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO ,∴Rt △NCB ∽ Rt △BOA ∴NC CB OB OA = ,即24103323m m m -+= ,解得m=0(舍去)或m=118 ∴M (118,0); (II )当∠BNP=90°时, BN ⊥MN ,∴点N 的纵坐标为2, ∴24102233m m -++= 解得m=0(舍去)或m=52∴M (52,0); 综上,点M 的坐标为(118,0)或M (52,0); ②m=-1或m=14-或m=12. 考点:二次函数综合题.5. (2017广东广州第25题)如图14,AB 是O 的直径,,2AC BC AB ==,连接AC .(1)求证:045CAB ∠=; (2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,B D A B B D =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EB CD是否为定值?若是,请求出这个定值;若不是,请说明理由. 【答案】(1)详见解析;(2)①AE AD = ②2BE CD = 【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②试题解析:(1)证明:如图,连接BC.222BE EI AE ==⨯= 是O 的直径, 90ACB ∴∠=︒ AC BC CAB CBA =∴∠=∠18090452CAB CBA ︒-︒∴∠=∠==︒ (2)①如图所示,作BF l ⊥ 于F由(1)可得,ACB ∆ 为等腰直角三角形. O 是AB 的中点. CO AO BO ∴== ACB ∴∆ 为等腰直角三角形.又l 是O 的切线,OC l BF l ∴⊥⊥∴ 四边形OBEC 为矩形 22AB BFBD BF ∴=∴= 303075BDF DBA BDA BAD ∴∠=︒∴∠=︒∠=∠=︒,15901575CBE CEB DEA ∴∠=︒∠=︒-︒=︒=∠,,ADE AED AD AE ∴∠=∠∴=②当ABD ∠ 为钝角时,如图所示,同样,1,302BF BD BDC =∴∠=︒ 1801501509015152ABD AEB CBE ADB ︒-︒∴∠=︒∠=︒-∠=︒∠==︒,, AE AD ∴=(3)当D 在C 左侧时,由(2)知CD AB ,,30ACD BAE DAC EBA ∠=∠∠=∠=︒,AC CD CAD BAE AB AE ∴∆∆∴==,,15AE BA BD BAD BDA ∴=∠=∠=︒30IBE ∴∠=︒,在Rt IBE ∆ 中,2222BE EI AE CD ==⨯== 2BE CD∴=当D 在C 右侧时,过E 作EI AB ⊥ 于I由(2)得,15ADC BEA ∠=∠=︒AB CDEAB ACD ∴∠=∠AC CD ACD BAE AB AE ∴∆∆∴== AE ∴= ,15BA BD BAD BDA =∠=∠=︒ 30IBE ∴∠=︒在Rt IBE ∆ 中,2222BE EI AE CD ==⨯== 2BE CD∴= 考点:圆的相关知识的综合运用6. (2017湖南长沙第26题)如图,抛物线21648(0)y mx mx m m =-+>与x 轴交于A,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD 、BD 、AC 、AD ,延长AD 交y 轴于点E 。
专题09三角形(第06期)-2021年中考数学试题分项版解析汇编(解析版)

专题9 三角形一、选择题1.(2017贵州遵义市第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.【解析】△BCE的面积=12×△AB C的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=14×△BCE的面积=32,∴△AFG的面积是32×3=92,故选:A.考点:三角形中位线定理;三角形的面积.2.(2017贵州遵义市第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD 是∠BAC 的平分线,AB=11,AC=15, ∴1115BD AB CD AC ==, ∵E 是BC 中点,∴11151321515CE CA +==, ∵EF∥AD,∴1315CF CE CA CD ==,∴CF=1315CA=13. 故选C .考点:平行线的性质;角平分线的性质.3. (2017辽宁营口第7题)如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠=D .2AB CD =【答案】C.【解析】三角形的性质得到FD=12AC ,DF ⊥AC ,∠FDC=45°,等量代换得到FE=FD ,再求出∠FDE=∠FED=22.5°,进而判断B 正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC ﹣∠FED=45°,从而判断C 错误;在等腰Rt △ADC 中利用勾股定理求出2,又AB=AC ,等量代换得到2,从而判断D 正确.∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=12AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=12AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=12∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=2CD,∵AB=AC,∴AB=2CD,故D正确,不符合题意.故选C.考点:三角形中位线定理;等腰三角形的性质;勾股定理.4.(2017湖北黄石市第7题)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°【答案】C.【解析】试题分析:∵CD⊥AB,E为BC边的中点,∴BC=2CE3∵AB=2,AC=1,∴AC2+BC2=12+32=4=22=AB2,∴∠ACB =90°,∵tan ∠A =BC AC =3,∴∠A =60°,∴∠ACD =∠B =30°,∴∠DCE =60°,∵DE =CE ,∴∠CDE =60°,∴∠CDE +∠ACD =90°,故选C .考点:勾股定理的逆定理;直角三角形斜边上的中线.5.(2017湖北黄石市第10题)如图,已知凸五边形ABCDE 的边长均相等,且∠DBE =∠ABE +∠CBD ,AC =1,则BD 必定满足( )A .BD <2B .BD =2C .BD >2 D .以上情况均有可能【答案】A .【解析】考点:平行四边形的判定与性质;等边三角形的判定与性质.6.(2017湖北恩施第11题)如图3,在ABC △中,DE BC ∥,ADE EFC ∠∠,:5:3AD BD ,6CF ,则DE 的长为( )A.6B.8C.10D.12【答案】C .试题分析:∵DE ∥BC ,∴∠ADE=∠B .∵∠ADE=∠EFC ,∴∠B=∠EFC ,∴BD ∥EF ,∵DE ∥BF ,∴四边形BDEF 为平行四边形,∴DE=BF .∵DE ∥BC ,∴△ADE ∽△ABC ,∴58DE AD ADBC AB AD BD===+,∴BC=85DE,∴CF=BC﹣BF=35DE=6,∴DE=10.故选C.考点:相似三角形的判定与性质.7.(2017内蒙古包头第6题)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【答案】A.【解析】考点:等腰三角形的性质;三角形三边关系;分类讨论.8.(2017内蒙古包头第10题)已知下列命题:①若ab>1,则a>b;②若a+b=0,则|a|=|b|;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A.【解析】试题分析:∵当b<0时,如果ab>1,那么a<b,∴①错误;∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;∵等边三角形的三个内角都相等,正确,逆命题也正确,∴③正确;∵底角相等的两个等腰三角形不一定全等,∴④错误;其中原命题与逆命题均为真命题的个数是1个,故选A.考点:命题与定理.学%科网9.(2017内蒙古包头第12题)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.85【答案】A.【解析】解得:FC=32,即CE的长为32.故选A.考点:相似三角形的判定与性质;勾股定理;角平分线的性质;综合题.10.(2017湖南益阳市第7题)如图,电线杆CD的高度为,两根拉线AC与BC相互垂直,∠CAB=,则拉线BC的长度为(A、D、B在同一条直线上)()A.B. C.D.【解析】试题分析:根据同角的余角相等得∠CAD=∠BCD,由cos∠BCD=知BC==.故选:B.考点:解直角三角形的应用11.(2017山东淄博市第12题)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A. B. C. D.【答案】C.【解析】CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴,即,解得:DF=,则EF=DF﹣DE=﹣2=,故选C.考点:相似三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;综合题.12.(2017四川乐山市第4题)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°【答案】B.【解析】试题分析:∵∠ACD=∠A=30°,∴∠CDB=∠A+∠ACD=60°,∵l1∥l2,∴∠1=∠CDB=60°,故选B.考点:平行线的性质.13.(2017吉林第5题)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【答案】C.【解析】考点:三角形内角和定理.14.(2017湖南永州第8题)如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD的面积为( )A.1 B.2 C.3 D.4【答案】C【解析】试题解析:∵∠ACD =∠B ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD AB AC =,∴212=AB ,∴AB =4,∴2)(ABAC S S ABC ACD =∆∆,∴2)42(1=∆ABC S ,∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=3.故选C 考点:相似三角形的判定与性质.15.(2017福建宁德市第4题)在△ABC 中,AB=5,AC=8,则BC 长不可能是( )A .4B .8C .10D .13【答案】D.【解析】考点:三角形三边关系.16.(2017福建宁德市第10题)如图,在△ABC 中,AB=AC ,点D ,E 分别在边BC 和AC 上,若AD=AE ,则下列结论错误的是( )A .∠ADB=∠ACB +∠CADB .∠ADE=∠AEDC .∠CDE=∠BADD .∠AED=2∠ECD【答案】D.【解析】试题分析:由三角形的外角性质、等腰三角形的性质得出选项A 、B 、C 正确,选项D 错误,即可得出答案. ∵∠ADB 是△ACD 的外角,∴∠ADB=∠ACB +∠CAD ,选项A 正确;∵AD=AE ,∴∠ADE=∠AED ,选项B 正确;∵AB=AC ,∴∠B=∠C ,∵∠ADC=∠ADE +∠CDE=∠B +∠BAD ,∠AED=∠CDE +∠C ,∴∠CDE +∠C +∠CDE=∠B +∠BAD ,∴∠CDE=12∠BAD ,选项C 正确; ∵∠AED=∠ECD +∠CDE ,∠ECD ≠∠CDE ,∴选项D 错误;故选D .考点:等腰三角形的性质.17.(2017吉林长春市第5题)如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE ∥BC .若∠A=62°,∠AED=54°,则∠B 的大小为( )A .54°B .62°C .64°D .74°【答案】C【解析】考点:1.平行线的性质;2.三角形的内角和.18.(2017陕西省第6题)如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB =∠AC ′B ′=90°,AC =BC =3,则B ′C 的长为( )A .33B .6C . 32D 21【答案】A .【解析】试题分析:∵∠ACB =∠AC ′B ′=90°,AC =BC =3,∴AB 22AB BC +32CAB =45°,∵△ABC 和△A ′B ′C ′大小、形状完全相同,∴∠C ′AB ′=∠CAB =45°,AB ′=AB =32,∴∠CAB ′=90°,∴B ′C 22'CA B A +33A .考点:勾股定理.19.(2017江苏淮安市第7题)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2【答案】B.考点:三角形的三边关系.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【答案】A.试题分析:三角形的重心是三条中线的交点,故选A.考点:三角形的重心.学*科网20.(2017湖北鄂州市第10 题)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.127B.247C.487D.507【答案】D.【解析】试题解析:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT ⊥AD于T.由题意AD=DC=4,设BC=TD=BH=x ,在Rt △ABT 中,∵AB 2=BT 2+AT 2,∴(x+4)2=42+(4﹣x )2,∴x=1, ∴BC=BH=TD=1,AB=5, 设AK=EK=y ,DE=z ,∵AE 2=AK 2+EK 2=AD 2+DE 2,BE 2=BK 2+KE 2=BC 2+EC 2, ∴42+z 2=y 2①,(5﹣y )2+y 2=12+(4﹣z )2② 由①②可得y=207,∴S △ABE =12×5×207=507,故选D . 考点:直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组二、填空题1. (2017山东潍坊第15题)如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条件: _________,可以使得FDB ∆与ADE ∆相似.(只需写出一个)【答案】DF∥AC,或∠BFD=∠A 【解析】试题分析: DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,13AD AEAC AB==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为DF∥AC,或∠BFD=∠A.考点:相似三角形的判定2.(2017内蒙古包头第20题)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB 上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC=2S△ABE.其中正确的结论是.(填写所有正确结论的序号)【答案】①②④.【解析】试题分析:①在△ACD和△ABE中,∵AC=AB,∠BAC=∠DAE,AD=AE,∴△ACD≌△ABE(SAS),所以①正确;②∵△ACD≌△ABE,∴CD=BE,∠NCA=∠MBA,又∵M,N分别为BE,CD的中点,∴CN=BM,在△ACN和△ABM中,∵AC=AB,∠ACN=∠ABM,CN=BM,∴△ACN≌△ABM,∴AN=AM,∠CAN∠BAM,∴∠BAC=∠MAN,∵AB=AC,∴∠ACB=∠ABC,∴∠ABC∠AMN,∴△ABC∽△AMN,所以②正确;③∵AN=AM,∴△AMN为等腰三角形,所以③不正确;④∵△ACN≌△ABM,∴S△ACN=S△ABM,∵点M、N分别是BE、CD的中点,∴S△ACD=2S△ACN,S△ABE=2S△ABM,∴S△ACD=S△ABE,∵D是AB的中点,∴S△ABC=2S△ACD=2S△ABE,所以④正确;本题正确的结论有:①②④;故答案为:①②④.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.3.(2017湖南益阳市第10题)如图,△ABC中,,,AB=13,CD是AB边上的中线.则CD= .【答案】6.5【解析】考点:1、勾股定理的逆定理;2、直角三角形斜边上的中线4.(2017湖南益阳市第14题)如图,在△ABC中,AB=AC,∠BAC = 36°,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示△ABC的周长为.【答案】2a+3b【解析】试题分析:由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长△ABC的周长为:AB+AC+BC=2a+3b.故答案为:2a+3b.考点:1、等腰三角形的性质;2、线段垂直平分线的性质5.(2017山东淄博市第16题)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF= .【答案】.【解析】试题分析:如图,作AG⊥BC于G,∵△ABC是等边三角形,∴∠B=60°,∴AG=AB=,连接AD,则S△ABD+S△ACD=S△ABC,∴AB•DE+AC•DF=BC•AG,∵AB=AC=BC=4,∴DE+DF=AG=,故答案为:.考点:等边三角形的性质.6.(2017山东淄博市第17题)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .【答案】.【解析】试题分析:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=AB,∴△CD1E1∽△CBA,且 =,∴S△CD1E1=S△ABC=,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=,∴S△D1E1F1=S△BD1E1=×=,∴S1=S△CD1E1+S△D1E1F1=+=,同理可得:图2中,S2=S△CD2E2+S△D2E2F2==,图3中,S3=S△CD3E3+S△D3E3F3==,以此类推,将AC,BC 边(n+1)等分,得到四边形CD n E n F n,其面积S n==,故答案为:.考点:规律型:图形的变化类;三角形的面积;规律型;综合题.7.(2017四川乐山市第14题)点A、B、C在格点图中的位置如图5所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.【答案】.【解析】试题分析:连接AC,BC,设点C到线段AB所在直线的距离是h,∵S△ABC=3×3﹣×2×1﹣×2×1﹣×3×3﹣1=9﹣1﹣1﹣﹣1=,AB==,∴×h=,∴h=.故答案为:.考点:勾股定理.8.(2017四川乐山市第15题)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):.图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是.【答案】.【解析】试题分析:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=,∴AC1=AC=1,CC1=AC1=,∴S△ACC1=•AC1CC1=×1×=;∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴ =•CC2C1C2=××=×,同理可得, =×, =×,…∴=×,又∵S△ABC=AC×BC=×2×=,∴=+×+×(+×+…+×+…∴.故答案为:.考点:规律型:图形的变化类;综合题.9.(2017吉林第12题)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.【答案】9.【解析】考点:相似三角形的应用.10.(2017陕西省第12题)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.317tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】B.317tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.11.(2017辽宁葫芦岛第17题)如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P.若△ABP是直角三角形,则点P的坐标是.【答案】(2+2,4)或(2+2,4).【解析】试题分析:∵点A(0,8),点B(4,0),∴OA=8,OB=4,∴AB=4,∵点M,N分别是OA,AB的中点,∴AM=OM=4,MN=2,AN=BN=2,①当∠APB=90°时,∵AN=BN,∴PN=AN=2,∴PM=MN+PN=2+2,∴P(2+2,4),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,则△ABO∽△BPC,∴==1,∴BP=AB=4,∴PN=2,∴PM=2+2,∴P(2+2,4),故答案为:(2+2,4)或(2+2,4).考点:勾股定理,相似三角形的判定和性质,坐标与图形性质,直角三角形的性质,12.(2017江苏淮安市第17题)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F 是AD的中点.若AB=8,则EF=.【答案】2.试题分析:在Rt△ABC中,∵AD=BD=4,∴CD=12AB=4,∵AF=DF,AE=EC,∴EF=12CD=2.考点:三角形的中位线定理;直角三角形斜边上的中线的性质.学科*网13.(2017江苏泰州市第11题)将一副三角板如图叠放,则图中∠α的度数为.【答案】15°.试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.考点:三角形的外角的性质.14.(2017江苏南通市第12题)如图所示,DE 是△ABC 的中位线,BC=8,则DE= .【答案】4.【解析】试题解析:根据三角形的中位线定理,得:DE=12BC=4. 考点:三角形中位线定理 15. (2017云南省第3题)如图,在ABC ∆中,D 、E 分别为AB 、AC 上的点,若DE//BC ,31=AB AD ,则=++++ACBC AB AE DE AD .【答案】13【解析】试题解析:∵DE ∥BC ,∴△ADE ∽△ABC ,∴1 3AD DE AE AB B A B C AD A C ++==++. 考点:相似三角形的判定与性质.三、解答题1.(2017湖北恩施第18题)如图7,ABC △、CDE △均为等边三角形,连接BD ,AE 交于点O ,BC 与AE 交于点P .求证:60AOB ∠°.【答案】详见解析.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠APO=∠BPC,∴∠AOP=∠BCP=60°,即∠AOB=60°.考点:等边三角形的性质;全等三角形的判定与性质.2.(2017浙江温州第18题)(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(2)当∠B=140°时,求∠BAE的度数.EC DB【答案】(1)证明见解析;(2)80°.【解析】试题分析:(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.试题解析:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在△ABC 和△AED 中,BC ED ACB ADEAC AD ⎧=⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.考点:全等三角形的判定与性质.3.(2017玉林崇左第25题)如图,在等腰直角三角形ABC 中,90ACB ∠°,4AC BC ,D 是AB 的中点,E ,F 分别是AC ,BC 上的点(点E 不与端点,A C 重合),且AE CF ,连接EF 并取EF 的中点O ,连接DO 并延长至点G ,使GO OD ,连接,,,DE DF GE GF .(1)求证:四边形EDFG 是正方形;(2)当点E 在什么位置是,四边形EDFG 的面积最小?并求四边形EDFG 面积的最小值.【答案】(1)见解析;(2)当点E 为线段AC 的中点时,四边形EDFG 的面积最小,该最小值为4.【解析】(2)过点D 作DE′⊥AC 于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE <2根据正方形的面积公式即可得出四边形EDFG 的面积的最小值.试题解析:(1)证明:连接CD ,如图1所示.∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=12BC=2,AB=42,点E′为AC的中点,∴2≤DE<22(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.考点:正方形的判定与性质;二次函数的最值;全等三角形的判定与性质;等腰直角三角形. 4.(2017吉林第18题)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.5.(2017湖北荆门市第19题)已知:如图,在Rt ACB ∆中,090ACB ∠=,点D 是AB 的中点,点D 是AB 的中点,点E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F .(1)求证:ADE FCE ∆≅∆;(2)若0120,2DCF DE ∠==,求BC 的长.【答案】(1)见解析;(2)4.【解析】试题分析:(1)先根据点E 是CD 的中点得出DE=CE ,再由AB ∥CF 可知∠BAF=∠AFC ,根据AAS 定理可得出△ADE ≌△FCE ;(2)根据直角三角形的性质可得出AD=CD=12AB ,再由AB ∥CF 可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性质可得出∠DAC=∠ACD=12∠BDC=30°,进而可得出结论. 试题解析:(1)证明:∵点E 是CD 的中点,∴DE=CE .∵AB ∥CF ,∴∠BAF=∠AFC .在△ADE与△FCE中,∵,,.BAF AFCAED FEC DE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△FCE(AAS);考点:全等三角形的判定与性质;直角三角形斜边上的中线.6.(2017贵州贵阳市第24题)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC 之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE 是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【答案】(1)AD=AB+DC;(2)AB=AF+CF,证明见解析;(3)AB=23(CF+DF),证明见解析.【解析】试题分析:(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=23CG,计算即可.试题解析:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,BAF FAEB FECBE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=23(CF+DF),证明如下:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴AB BECG EC==23,即AB=23CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=23CG=23(CF+DF).考点:1.全等三角形的判定和性质;2.相似三角形的判定和性质.7.(2017陕西省第17题)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.学.科网8.(2017辽宁葫芦岛第25题)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=,请直接写出线段AD和DF的长.【答案】(1)①BC=BD;②AD+AC=BE;(2)AD=5, DF= .【解析】推出=,可得AK=,设FG=y,则AF=2﹣y,BF=,由△AFK∽△BFG,可得=,可得方程=,求出y即可解决问题.试题解析:(1)①结论:BC=BD.理由:如图1中,作BG⊥AM于G,BH⊥AN于H.∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°=BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH﹣CH=2AG=BE,∴AD+AC=BE.(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2,BC=BD==,CH=DG=3,∴AD=5,∵sin∠ACH==,∴=,∴AK=,设FG=y,则AF=2﹣y,BF=,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴=,∴=,解得y=或3(舍弃),∴DF=GF+DG=+3=.考点:几何变换综合题、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数9.(2017江苏淮安市第27题)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).∠PP′C=90°,利用勾股定理即可解决问题;【灵活运用】如图③中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=22DG CD,由此即可解决问题.试题解析:【操作发现】(1)如图所示,△AB′C′即为所求;(2)连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;【问题解决】如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴3,即3PC,∵∠APC=90°,∴AP2+PC2=AC2,即(32PC)2+PC2=72,∴PC=27,∴AP=21,∴S△APC=12AP•PC=73;【灵活运用】如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=22DG CD+=21625k+.∴BD=CG=21625k+.考点:三角形综合题.学科.网10.(2017江苏泰州市第20题)(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【答案】(1)详见解析;(2)4.试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.试题解析:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴AD ACAC AB=,即669AD=,∴AD=4.考点:基本作图;相似三角形的判定与性质.11.(2017湖北鄂州市第18题)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.【答案】(1)证明见解析;(2)10.【解析】试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=10.考点:翻折变换﹣折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算12.(2017江苏南通市第27题)我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF 的长.【答案】(1)1;(2)证明见解析;(3)35 12【解析】试题分析:(1)过等边三角形的内心分别作三边的平行线,即可得出答案;(2)由等腰三角形的性质得出∠ABC=∠C=∠BDC,证出△BCD∽△ABC即可;(3)分两种情况:①当43ACCCF BCE==时,EF∥AB,由勾股定理求出22AC BC+,作DN⊥BC于N,则DN∥AC,DN是Rt△ABC的内切圆半径,求出DN=12(AC+BC-AB)=1,则43CE=DF CFED=,求出CE=73,证明△CEF∽△CAB,得出对应边成比例求出EF=3512;②当43AC C CE BC F ==时,同理得:EF=3512即可.∴MN 、EF 、GH 是等边三角形ABC 的內似线”;(2)证明:∵AB=AC ,BD=BC ,∴∠ABC=∠C=∠BDC ,∴△BCD ∽△ABC ,∴BD 是△ABC 的“內似线”;(3)解:设D 是△ABC 的内心,连接CD ,则CD 平分∠ACB , ∵EF 是△ABC 的“內似线”,∴△CEF 与△ABC 相似;分两种情况:①当43AC C CF BC E ==时,EF ∥AB , ∵∠ACB=90°,AC=4,BC=3,∴22AC BC +,作DN ⊥BC 于N ,如图2所示: 则DN ∥AC ,DN 是Rt △ABC 的内切圆半径, ∴DN=12(AC+BC-AB )=1, ∵CD 平分∠ACB ,∴43CE D DF CF E ==, ∵DN ∥AC ,∴37DN DF CE EF ==,即137CE =,∴CE=73,∵EF ∥AB ,∴△CEF ∽△CAB ,∴EF CE AB AC =,即7354EF =, 解得:EF=2512; ②当43AC C CE BC F ==时,同理得:EF=2512; 综上所述,EF 的长为2512. 考点:相似形综合题.13.(2017云南省第15题)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE,AC=DF.求证:∠ABC=∠DEF.【答案】证明见解析.【解析】试题分析:先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .试题解析:∵BE=CF ,∴BE+EC=CF+EC ,∴BC=EF ,在△ABC 与△DEF 中,AB =DE BC =EF AC =DF ⎧⎪⎨⎪⎩∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF考点:全等三角形的判定与性质.。
2017届九年级数学中考总复习:直角三角形----知识讲解(提高)

直角三角形----知识讲解(提高)【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-. (4)勾股数:满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……② 如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.③22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;④2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长; ⑤2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理 如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、勾股定理1、已知直角三角形斜边长为2,周长为2+【思路点拨】欲求直角三角形的面积,只需求两直角边之积,而由已知得两直角边之和为4,于是可转化为用方程求解.【答案与解析】解:设这个直角三角形的两直角边长分别为a b 、,则222222a b a b ⎧++=+⎪⎨+=⎪⎩即224a b a b ⎧+=⎪⎨+=⎪⎩①②将①两边平方,得2226a ab b ++= ③ ③-②,得22ab =,所以1122ab = 因此这个直角三角形的面积为12. 【总结升华】此题通过设间接未知数a b 、,通过变形直接得出12ab 的值,而不需要分别求出a b 、 的值.本题运用了方程思想解决问题.2、(2015春•黔南州期末)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.【思路点拨】在折叠的过程中,BE=DE .从而设BE 即可表示AE .在直角三角形ADE 中,根据勾股定理列方程即可求解.【答案与解析】解:设DE=xcm ,则BE=DE=x ,AE=AB ﹣BE=10﹣x ,△ADE 中,DE 2=AE 2+AD 2,即x 2=(10﹣x )2+16. ∴x=(cm ).答:DE 的长为cm.【总结升华】注意此类题中,要能够发现折叠的对应线段相等.类型二、勾股定理的逆定理3、如图所示,四边形ABCD 中,AB ⊥AD ,AB =2,AD =CD =3,BC =5,求∠ADC 的度数.【答案与解析】解:∵ AB ⊥AD ,∴ ∠A =90°,在Rt △ABD 中,22222216BD AB AD =+=+=.∴ BD =4,∴ 12AB BD =,可知∠ADB =30°, 在△BDC 中,22216325BD CD +=+=,22525BC ==,∴ 222BD CD BC +=,∴ ∠BDC =90°,∴ ∠ADC =∠ADB+∠BDC =30°+90°=120°.【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理. 举一反三:【高清课堂 勾股定理逆定理 例4】【变式1】△ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( )A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】D ;提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形.【变式2】(2015春•厦门校级期末)在四边形ABCD 中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC 的度数.【答案】解:连接BD ,∵AB=AD=2,∠A=60°,∴△ABD 是等边三角形,∴BD=2,∠ADB=60°, ∵BC=2,CD=4,则BD 2+CD 2=22+42=20,BC 2=(2)2=20, ∴BD 2+CD 2=BC 2,∴∠BDC=90°,∴∠ADC=150°.类型三、勾股定理、逆定理的实际应用4、如图所示,在一棵树的10m 高的B 处有两只猴子,一只爬下树走到离树20m 处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?【思路点拨】其中一只猴子从B →C →A 共走了(10+20)=30m ,另一只猴子从B →D →A 也共走了30m ,并且树垂直于地面,于是这个问题可化归到直角三角形中利用勾股定理解决.【答案与解析】解:设树高CD 为x ,则BD =x -10,AD =30-(x -10)=40-x ,在Rt △ACD 中,22220(40)x x +=-,解得:x =15.答:这棵树高15m .【总结升华】本题利用距离相等用未知数来表示出DC 和DA ,然后利用勾股定理作等量关系列方程求解.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:12AA '=,12392A B π'=⨯⨯= 在Rt △AA ′B 中,根据勾股定理得: 22222129225AB AA A B ''=+=+=则AB =15.所以需要爬行的最短路程是15cm .5、(2015春•武昌区期中)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案与解析】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB 2=OB 2+OA 2,即202=162+122,所以△OAB 是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【总结升华】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.类型四、原命题与逆命题6、下列命题中,逆命题错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形【答案】C;【解析】解:A的逆命题是:对角线互相平分的四边形是平行四边形.由平行四边形的判定可知这是真命题;B的逆命题是:平行四边形的两对邻角互补,由平行四边形的性质可知这是真命题;C的逆命题是:一组对边平行,另一组对边相等的四边形是平行四边形,也可能是等腰梯形,故是错误的;D的逆命题是:平行四边形的两组对边分别相等地,由平行四边形的性质可知这是真命题;故选C.【总结升华】分别写出每个命题的逆命题,再判断其真假即可.此题主要考查学生对逆命题的定义的理解,要求学生对基础知识牢固掌握.举一反三:【变式】下列命题中,逆命题是真命题的是()A.对顶角相等B.如果两个实数相等,那么它们的平方数相等C.等腰三角形两底角相等D.两个全等三角形的对应角相等【答案】C;解:A的逆命题是:相等的角是对顶角是假命题,故本选项错误,B的逆命题是:如果两实数的平方相等,那么两实数相等是假命题,故本选项错误,C的逆命题是:两底角相等的三角形是等腰三角形是真命题,故本选项正确,D的逆命题是:对角线相等的两个三角形是全都三角形是假命题,故本选项错误,故选C.类型五、直角三角形全等的判定——“HL”7、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.【思路点拨】证明线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.【答案与解析】 证明:∵AB=AC ,点D 是BC 的中点,∴∠ADB=90°,∵AE ⊥EB ,∴∠E=∠ADB=90°,∵AB 平分∠DAE ,∴∠EAB=∠DAB ;在△ADB 与△AEB 中,90EAB DAB E ADB ABAB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEB (AAS ),∴AD=AE .【总结升华】此题考查线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.8、如图,已知在△ABC 中,AB=AC ,∠BAC=90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F .(1)如图①过A 的直线与斜边BC 不相交时,求证:EF=BE+CF ;(2)如图②过A 的直线与斜边BC 相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案与解析】(1)证明:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA ,在△ABE 和△CAF 中,∠BEA=∠AFC=90°,∠EBA=∠CAF ,AB=AC ,∴△ABE ≌△CAF .∴EA=FC ,BE=AF .∴EF=EA+AF .(2)解:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△ABE≌△CAF.∴EA=FC=3,BE=AF=10.∴EF=AF-CF=10-3=7.【总结升华】此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF 了.此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.。
2017年安徽中考数学试题(word版,含答案)(K12教育文档)
(直打版)2017年安徽中考数学试题(word版,含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2017年安徽中考数学试题(word版,含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2017年安徽中考数学试题(word版,含答案)(word版可编辑修改)的全部内容。
2017年安徽中考数学试题一、选择题(40分) 1、的相反数是( )A 。
B. C. 2 D. −22、计算 的结果是( )A 。
B.C.D 。
3、如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )DC B A4、截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为( ) A. 16B 。
1。
6C. 1。
6D. 0。
165、不等式 4−2x >0的解集在数轴上表示为( )DCBA12–1–2012–1–2012–1–2012–1–206、直角三角板和直尺如图放置,若∠1=20°,则 ∠2的度数为( ) A. 60° B. 50° C. 40° D. 30°30°21频数(人数)小时107、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团时间在810 小时之间的学生数大约是( )A 。
280B 。
240C 。
300 D. 2608、一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分比都为x,则x 满足( )A. 16(1+2x )=25 B 。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
专题09 三角形问题-2022中考数学压轴题精讲(解析版)
一、单选题1.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A 同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.4【答案】D【关键点拨】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.2.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE.试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2 .正确的序号有()A.①② B.①②③ C.①②④ D.①②③④【答案】C【解析】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,学科*网又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,故正确的结论有①②④,故选C.学科*网【关键点拨】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握3.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A 顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个 B.2个 C.3个 D.4个【答案】B∴∠BAD+∠EAC=120°−∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,【关键点拨】本题考查了旋转的性质,等腰三角形的性质和判定,三角形的外角性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.4.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.随x,m,n的值而定【答案】C【解析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.【关键点拨】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.5.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.【答案】A【解析】6.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1个 B.2个 C.3个 D.4个【答案】C【解析】(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,学*科网∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正确;,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正确;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由点H是BC的中点,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH: BH:2BH=1::2.故(3)错误;学*科网(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE与△CBE中,【关键点拨】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.学&科网7.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB 边上动点,则△MNP周长的最小值为( )A.2 B.4 C. D.【答案】B【解析】【关键点拨】本题考查了等边三角形的性质和判定,轴对称-最短路线问题的应用,正确作出辅助线,确定M、N的位置,证明△OP1P2是等边三角形是解题关键.8.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1 B.2 C.3 D.4【答案】D②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,学科*网,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【关键点拨】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.9.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.【答案】A【关键点拨】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.10.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③ B.①②④ C.①②③④ D.①③④【答案】C③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.学科&网∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【关键点拨】本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.11.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】D【解析】A、连接OA、OC,由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,【关键点拨】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键. 12.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】∵点D是等腰直角△ABC腰BC上的中点,∴BD=BC=AB,∴tan∠BAD=,∴∠BAD≠30°,故①错误;如图,连接B'D,∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,学&科网∴S△AFE≠S△FCE,故④错误;故选B.【关键点拨】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.13.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A【关键点拨】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.14.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④ B.①② C.①④ D.①②③④【答案】B【解析】如图【关键点拨】本题主要考查三角形全等及三角形全等的性质.15.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对 B.3对 C.4对 D.5对【答案】C∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.学科*网【关键点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题16.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x 轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.【答案】【关键点拨】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为__.(用含正整数n的代数式表示)【答案】()2n﹣2×…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×,故答案为:()2n﹣2×.【关键点拨】本题考查了含30度角的直角三角形的性质、等边三角形的面积公式、解直角三角形等知识,熟练掌握相关性质得出等边三角形的边长的规律是解题的关键.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【关键点拨】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.19.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;学*科网∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD 与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ,∴S△PCQ=CP×QE=CP×CQ=,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小===,∴③错误;④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.21.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
【推荐精选】2017年中考数学试题分项版解析汇编(第03期)专题14 阅读理解问题(含解析)
专题14 阅读理解问题1.(2017河北省)对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .【答案】2或-1.考点:1.新定义;2.实数大小比较;3.解一元二次方程-直接开平方法. 三、解答题2.(2017四川省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭.(1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);… 解关于x 的不等式:()()()27341124x x f f f ---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+ ;(2)x ≤4. 【解析】试题分析:(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.试题解析:(1)A =22(1)3(1)1a a a a a a -+-÷++ =2222(1)1a a a a a --÷++=221(1)(2)a a a a a -+⋅+-=1(1)a a +=21a a+; (2)∵a =3时,f (3)=2113312=+,a =4时,f (4)=2114420=+,a =5时,f (5)=2115530=+,… ∴()()()27341124x xf f f ---≤+++,即271112434451112x x ---≤+++⨯⨯⨯ ∴271111112434451112x x ---≤-+-++-,∴271124312x x ---≤-,∴271244x x ---≤,解得,x ≤4,∴原不等式的解集是x ≤4,在数轴上表示如下所示:.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.3.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:12PP =还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:122x x x +=,122y y y +=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ; 拓展:(3)如图3,点P (2,n )在函数43y x =(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3)5. 【解析】试题分析:(1)用P 1、P 2的坐标分别表示出OQ 和PQ 的长即可证得结论;(2)①直接利用两点间距离公式可求得MN 的长;②分AB 、AC 、BC 为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D 点坐标;试题解析:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1,∴Q 1Q =212x x -,∴OQ =OQ 1+Q 1Q =x 1+212x x -=122x x + ,∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ =11222PQ P Q + =122y y +,即线段P 1P 2的中点P (x ,y )P 的坐标公式为x =122x x +,y =122y y +;(2)①∵M (2,﹣1),N (﹣3,5),∴MN ;②∵A (2,2),B (﹣2,0),C (3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x +3=0,y +(﹣1)=2,解得x =﹣3,y =3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP =EM ,FP =FN ,∴PE +PF +EF =ME +EF +NF =MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,43x ),由题意可知OR =OS =2,PR =PS =n ,=2,解得x =﹣65(舍去)或x =65,∴R (65,85),∴n =,解得n =1,∴P (2,1),∴N (2,﹣1),设M (x ,y ),则22x +=65,12y + =85,解得x =25,y =115,∴M (25,115),∴MN 5,即△PEF 的周长的最小值为5.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题.4.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)=nn=1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159,∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值为34.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.5.(2017山东省济宁市)定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线yx >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是3),点N ,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3,点N 的坐标是(2,0)时,求△MON 的自相似点的坐标; (3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【答案】(1)P 34);(2)(12);(3)存在, M ,3),N (,0). 【解析】试题分析:(1)由∠ONP =∠M ,∠NOP =∠MON ,得出△NOP ∽△MON ,证出点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNONAON =60°,由点M 和N 的坐标得出∠MNO =90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP OD,PD=34,即可得出答案;(2)作ME⊥x轴于H,由勾股定理求出OM=OM的解析式为y=3x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=12ON=1,求出P的纵坐标即可;②求出MN,由相似三角形的性质得出PN MNON MO=,求出PN=3,在求出P的横坐标即可;(2)作ME⊥x轴于H,如图3所示:∵点M的坐标是(3,点N的坐标是(2,0),∴OM直线OM的解析式为y,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=12ON=1,∵P的横坐标为1,∴y P(1;②如图4所示:由勾股定理得:MN,∵P是△MON的相似点,∴△PNM∽△NOM,∴PN MNON MO=,即2PN=,解得:PN ,即P ,代入y x ,解得:x =2,∴P (2);综上所述:△MON 的自相似点的坐标为(1,3)或(2,3);(3)存在点M 和点N ,使△MON 无自相似点,M 3),N (0);理由如下:∵M 3),N (0),∴OM =ON ,∠MON =60°,∴△MON 是等边三角形,∵点P 在△ABC 的内部,∴∠PBC ≠∠A ,∠PCB ≠∠ABC ,∴存在点M 和点N ,使△MON 无自相似点.考点:1.反比例函数综合题;2.阅读型;3.新定义;4.存在型;5.分类讨论;6.压轴题. 6.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B =60°,小明想从中剪出一个以∠B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .【拓展应用】如图②,在△ABC 中,BC =a ,BC 边上的高AD =h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 【答案】【探索发现】12;【拓展应用】4ab ;【灵活应用】720;【实际应用】1944.【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得PN =a ﹣ahPQ ,设PQ =x ,由S 矩形PQMN=PQ •PN ═2()24a h ahx h --+,据此可得; 【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE =EH 20、CD =DH =16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF =DH =16、CG =HE =20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可;【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tan B =tan C 知EB =EC 、BH =CH =54,EH =43BH =72,继而求得BE =CE =90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 试题解析:【探索发现】∵EF 、ED 为△ABC 中位线,∴ED ∥AB ,EF ∥BC ,EF =12BC ,ED =12AB ,又∠B =90°,∴四边形FEDB 是矩形,则ABCS S ∆矩形FEDB=12EF DE AB BC ⋅⋅=112212BC ABAB BC ⋅⋅=12,故答案为:12;【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即=P N h P Q a h -,∴PN =a ﹣ahPQ ,设PQ =x ,则S 矩形PQMN =PQ •PN =x (a ﹣a h x )=2a x ax h -+ =2()24a h ah x h --+,∴当PQ =2h 时,S 矩形PQMN 最大值为4ab ,故答案为:4ab ;【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形,∵AB =32,BC =40,AE =20,CD =16,∴EH =20、DH =16,∴AE =EH 、CD =DH ,在△AEF 和△HED 中,∵∠FAE =∠DHE ,AE =AH ,∠AEF =∠HED ,∴△AEF ≌△HED (ASA ),∴AF =DH =16,同理△CDG≌△HDE ,∴CG =HE =20,∴BI =12(AB +AF )=24,∵BI =24<32,∴中位线IK 的两端点在线段AB 和DE 上,过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG •BF =12×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tan B =tan C =43,∴∠B =∠C ,∴EB =EC ,∵BC =108cm ,且EH ⊥BC ,∴BH =CH =12BC =54cm ,∵tan B =EH BH =43,∴EH =43BH =43×54=72cm ,在Rt △BHE 中,BE =90cm ,∵AB =50cm ,∴AE =40cm ,∴BE 的中点Q 在线段AB 上,∵CD =60cm ,∴ED =30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上,由【拓展应用】知,矩形PQMN 的最大面积为14BC •EH =1944cm 2. 答:该矩形的面积为1944cm 2.考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题. 7.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S . 如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由. 迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S =矩形四边形;实验探究:11112ABCD A B C D EFGH S S S =-矩形矩形四边形;迁移应用:(1)EG =2;(2)172.【解析】试题分析:问题呈现:只要证明S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=12,=12, =12,=12,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题.试题解析:问题呈现:证明:如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∠A =90°,∵AE =DG ,∴四边形AEGD 是矩形,∴S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,∴S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC .实验探究:结论:2S 四边形EFGH =S 矩形ABCD ﹣.理由:∵ =12, =12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG .(2)∵2S 四边形EFGH =S 矩形ABCD +,∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5﹣1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=12)2②如图5﹣2中,当G 与D 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=21=2,∵22,∴矩形EFGH 的面积最大值=172.考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.8.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?【答案】(1)作图见解析;(2)证明见解析;(3)A (0,1),B (﹣b a ,c a )或A (0,1a ),B (﹣ba,c )等;(4)12b m m a +=-,1212m m n n +=ca. 【解析】试题分析:(1)根据“第四步”的操作方法作出点D 即可;(3)方程20ax bx c ++=(a ≠0)可化为20b cx x a a++=,模仿研究小组作法可得一对固定点的坐标; (4)先设方程的根为x ,根据三角形相似可得1212n m xx m n -=-,进而得到 2121212()0x m m x m m n n -+++=,再根据20ax bx c ++=,可得20b cx x a a++=,最后比较系数可得 m 1,n 1,m 2,n 2与a ,b ,c 之间的关系.试题解析:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD ⊥x 轴于点D ,根据∠AOC =∠CDB =90°,∠ACO =∠CBD ,可得△AOC ∽△CDB ,∴AO OC CD BD =,∴152mm =-,∴m (5﹣m )=2,∴2520m m -+=,∴m 是方程2520x x -+=的实数根;(4)如图,P (m 1,n 1),Q (m 2,n 2),设方程的根为x ,根据三角形相似可得1212n m xx m n -=-,上式可化为2121212()0x m m x m m n n -+++=,又∵20ax bx c ++=,即20b cx x a a++=,∴比较系数可得12b m m a +=-,1212m m n n +=ca.考点:1.三角形综合题;2.一元二次方程的解;3.相似三角形的判定与性质;4.阅读型;5.操作型;6.压轴题.9.(2017浙江省绍兴市)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图1,等腰直角四边形ABCD ,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD ;(2)如图2,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形,求AE 的长.【答案】(1;②证明见解析;(2)5或6.5. 【解析】试题分析:(1)①只要证明四边形ABCD 是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;试题解析:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴BF=PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.考点:1.四边形综合题;2.分类讨论;3.新定义;4.压轴题.10.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F (t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5,∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()6()12F sF t=⎧⎨=⎩或()9()9F sF t=⎧⎨=⎩或()10()8F sF t=⎧⎨=⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 专题09 三角形 一、选择题 1.(2017四川省南充市)如图,等边△OAB的边长为2,则点B的坐标为( )
A.(1,1) B.(3,1) C.(3,3) D.(1,3) 【答案】D. 【解析】 试题分析:如图所示,过B作BC⊥AO于C,则∵△AOB是等边三角形,∴OC=12AO=1,∴Rt△BOC中,
BC=22OBOC=3,∴B(1,3),故选D.
考点:1.等边三角形的性质;2.坐标与图形性质;3.勾股定理. 2.(2017四川省广安市)如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长度为( )
A.32 B.65 C.1 D.67 【答案】D. 【解析】 试题分析:连接OD,如图所示: 教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 ∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB=DHBD=45,BD=5,∴DH=4,∴BH=22BDDH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=67,∴OH=67;故选D.
考点:1.圆周角定理;2.解直角三角形. 3.(2017四川省眉山市)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )
A.1.25尺 B.57.5尺 C.6.25尺 D.56.5尺 【答案】B.
考点:1.勾股定理的应用;2.相似三角形的判定与性质. 教育是最好的老师,小学初中高中资料汇集
专注专业学习坚持不懈勇攀高峰 4.(2017四川省绵阳市)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )
A.10m B.12m C.12.4m D.12.32m 【答案】B.
考点:相似三角形的应用. 5.(2017四川省绵阳市)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC
于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )
A.1 B.2 C.2 D.3 【答案】A. 【解析】 试题分析:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=12BD=12AC=3,∴OF=tan30°教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 ×BO=1,∴CF=1,故选A. 考点:1.矩形的性质;2.全等三角形的判定与性质;3.解直角三角形. 6.(2017四川省绵阳市)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为( )
A.12 B.54 C.23 D.33 【答案】D.
考点:1.三角形的重心;2.相似三角形的判定与性质;3.综合题. 7.(2017山东省枣庄市)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B. 教育是最好的老师,小学初中高中资料汇集
专注专业学习坚持不懈勇攀高峰 C. D. 【答案】C. 【解析】 试题分析:A.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; C.两三角形的对应边不成比例,故两三角形不相似,故本选项正确. D.两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误; 故选C. 考点:相似三角形的判定. 8.(2017山东省枣庄市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15 B.30 C.45 D.60 【答案】B.
考点:角平分线的性质. 9.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )
A.2217r B.1732r C.175r D.529r 【答案】B. 【解析】 试题分析:给各点标上字母,如图所示.
AB=2222=22,AC=AD=2241=17,AE=2233=32,AF=2252=29,
AG=AM=AN=2243=5,∴1732r时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有
3个在圆内.故选B.
考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题. 10.(2017山东省济宁市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°
后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是( ) 教育是最好的老师,小学初中高中资料汇集
专注专业学习坚持不懈勇攀高峰 A. 6 B. 3 C.122 D. 12
【答案】A.
考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质. 11.(2017广西四市)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于( )
A.100° B.80° C.60° D.40° 【答案】B. 【解析】 试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B. 考点:三角形内角和定理. 12.(2017广西四市)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC 【答案】D. 【解析】 试题分析:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D. 考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质. 教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 13.(2017广西四市)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.nmile360 B.nmile260 C. nmile330 D.nmile230 【答案】B.
考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用. 14.(2017江苏省连云港市)如图,已知△ABC∽△DEF,DE=1:2,则下列等式一定成立的是( )
A.12BCDF= B.12AD=∠的度数∠的度数 C.12ABCDEF=△的面积△的面积 D.12ABCDEF=△的周长△的周长 【答案】D. 【解析】 试题分析:∵△ABC∽△DEF,∴12BCEF=,A不一定成立; 教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰 AD∠的度数∠的度数=1,B不成立;
14ABCDEF△的面积△的面积=,C不成立;
12ABCDEF=△的周长△的周长,D成立.
故选D. 考点:相似三角形的性质. 15.(2017河北省)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比( ) A.增加了10% B.减少了10% C.增加了(1+10%) D.没有改变 【答案】D. 【解析】 试题分析:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选D. 考点:相似图形. 16.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )
A. B. C. D. 【答案】A. 【解析】
试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故选A. 考点:1.正方形的性质;2.勾股定理. 17.(2017浙江省台州市)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到