霍尔元件测速原理说明及应用
线性霍尔元件的原理及应用

线性霍尔元件的原理及应用1. 线性霍尔元件的原理线性霍尔元件是一种基于霍尔效应的电子器件,由霍尔传感器和信号调理电路组成,常用于测量和检测磁场强度。
其原理基于霍尔效应,通过施加磁场和电流,产生霍尔电压,进而测量磁场强度。
1.1 霍尔效应霍尔效应是指在垂直于电流和磁场方向的平面内,施加磁场后,电流所在方向上会产生一种电势差,即霍尔电势。
霍尔电势和磁场强度成正比,与电流方向、电荷载流子的类型有关。
1.2 线性霍尔元件的结构线性霍尔元件通常由霍尔片(霍尔传感器)、磁场导向件、电源电路和信号调理电路等组成。
霍尔片是关键部件,其结构包括两个平行的导电平面,中间为霍尔电势感应区域。
1.3 线性霍尔元件的工作原理工作时,电流通过霍尔片,施加磁场与电流垂直,产生霍尔电势。
信号调理电路测量霍尔电势,并将其转换为线性输出电压或电流信号。
2. 线性霍尔元件的应用线性霍尔元件在许多领域中有广泛的应用,主要包括以下几个方面:2.1 磁场检测和测量由于线性霍尔元件对磁场的灵敏度较高,常用于磁场的检测和测量。
例如,可以用于测量电机中的磁场分布,检测地磁场变化,以及用于传感器和仪表等领域。
2.2 位置和速度检测线性霍尔元件可以用于检测物体的位置和速度。
通过将线性霍尔元件与磁条或磁铁等物体结合使用,可以实现位置和速度的准确检测,常见的应用有汽车转向角度检测、磁悬浮列车的位置控制等。
2.3 电流传感和电能测量线性霍尔元件还可以用于电流的传感和电能的测量。
将线性霍尔元件与电流回路相连,通过测量产生的霍尔电势,可以准确测量电流的大小,常见的应用有电动车电流检测、电能表等。
2.4 磁场控制和位置反馈线性霍尔元件还可以用于磁场控制和位置反馈。
通过控制外部磁场的强度和方向,可以对物体进行定位和控制,常见的应用有磁悬浮系统、机器人控制等。
3. 总结线性霍尔元件是基于霍尔效应的电子器件,通过测量霍尔电势来实现对磁场强度的检测和测量。
其广泛应用于磁场检测、位置和速度检测、电流传感、磁场控制等领域。
霍尔传感器原理

霍尔传感器原理功能与简介:当⼀块通有电流的⾦属或半导体薄⽚垂直地放在磁场中时,薄⽚的两端就会产⽣电位差,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d 其中K为霍尔系数,I为薄⽚中通过的电流,B为外加磁场(洛伦慈⼒Lorrentz)的磁感应强度,d是薄⽚的厚度。
由此可见,霍尔效应的灵敏度⾼低与外加磁场的磁感应强度成正⽐的关系。
霍尔传感器的外形图和与磁场的作⽤关系如右图所⽰。
磁场由磁钢提供,所以霍尔传感器和磁钢需要配对使⽤。
霍尔传感器检测转速⽰意图如下。
在⾮磁材料的圆盘边上粘贴⼀块磁钢,霍尔传感器固定在圆盘外缘附近。
圆盘每转动⼀圈,霍尔传感器便输出⼀个脉冲。
通过单⽚机测量产⽣脉冲的频率就可以得出圆盘的转速。
备注:当没有信号产⽣时,可以改变⼀下磁钢的⽅向,霍尔对磁钢⽅向有要求。
没有磁钢时输出⾼电平,有磁钢时输出低电平。
接线图:测速原理图:产品图⽚和管脚图:黄长贵(德⼒西变频器)摘要:本⽂介绍了霍尔电流传感器在通⽤变频器中的作⽤,分析了设置传感器的类型、⽅式、⽬的和需求,并介绍了传感器的⼯作原理及作⽤。
关键词:霍尔电流传感器、变频器。
引⾔现今,新型功率半导体器件进⼊电⼒电⼦领域后,交流变频调速、逆变装置、开关电源等⽇渐普及,原有的电流、电压检出元件,已不适应中⾼频的电流波形的检测。
为了⾃动检测和显⽰电流,并在过流、过压等危害情况发⽣时具有⾃动保护和更⾼级的智能控制,就必须使⽤具有⾼速度,⾼精度的检测、采样和保护的霍尔电流传感器。
霍尔电流传感器模块,是近⼗⼏年发展起来的测量控制电流、电压的新⼀代⼯业⽤电量传感器。
1、变频器的基本⼯作原理及结构本⽂所述的变频器是指适⽤于⼯业通⽤电机和变频电机的普通通⽤变频器。
此类变频器由于⼯业领域的⼴泛使⽤已成为变频器的主流。
⼀般异步电机转速与同步转速存在⼀个滑差关系,调速的⽅法可改变电机定⼦频率f、电机定⼦的绕组极对数P、转差率S其中任意⼀种达到,对异步电机最好的⽅法是改变频率f,实现调速控制。
传感器霍尔测速实验报告

实验报告()霍尔测速实验
姓名学号实验日期指导教师
一、实验目的:
了解霍尔组件的应用——测量转速。
二、实验仪器:
霍尔传感器、+5V、2~24V 直流电源、转动源、频率/转速表。
三、实验原理;
利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。
四、实验内容与步骤
1.安装根据图1-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。
图1-1
2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。
“2~24V”直流稳压电源接到“转动源”的“转动电源”输入端。
3.合上主控台电源,调节2~24V 输出,可以观察到转动源转速的变化。
用示波器观测霍尔组件输出的脉冲波形。
五、实验报告
1.分析霍尔组件产生脉冲的原理。
2.根据记录的驱动电压和转速,作V-RPM 曲线。
霍尔元件的工作原理

霍尔元件的工作原理霍尔元件是一种利用霍尔效应进行测量和控制的电子元件。
它主要由霍尔片、电源、信号处理电路和输出端构成。
在实际应用中,霍尔元件被广泛应用于传感器、电机驱动器、电子开关等领域。
本文将详细介绍霍尔元件的工作原理。
霍尔效应是指当导体中的电流在外加磁场的作用下,产生横向电场的现象。
这一效应是由美国物理学家爱德华·霍尔于1879年发现的。
在霍尔元件中,当电流通过导体时,导体中的自由电子受到磁场的作用而偏转,产生横向电场。
这个横向电场会在导体的侧面产生电压差,这就是霍尔电压。
而霍尔电压的大小与电流、磁场的大小和方向都有关系。
在霍尔元件中,霍尔片是起到关键作用的部件。
当电流通过霍尔片时,霍尔片的两侧产生电压差,这个电压差与电流和磁场的关系符合霍尔效应的数学表达式。
通过测量这个电压差,就可以确定电流的大小和方向。
而在传感器中,霍尔元件可以通过测量磁场的大小和方向来实现对物体位置、速度、方向等信息的检测。
除了在传感器中的应用,霍尔元件还被广泛应用于电机驱动器中。
在电机驱动器中,霍尔元件可以通过检测电机转子的位置来控制电机的启停、转速、转向等。
当电机转子上安装有永磁体时,可以利用霍尔元件来检测永磁体的位置,从而实现电机的精准控制。
在实际应用中,霍尔元件的信号处理电路也起着至关重要的作用。
信号处理电路可以对霍尔元件输出的信号进行放大、滤波、数字化等处理,从而得到稳定、可靠的控制信号。
这些控制信号可以用于控制电机的启停、转速调节、转向控制等,也可以用于实现对物体位置、速度、方向等信息的检测。
总的来说,霍尔元件是一种利用霍尔效应进行测量和控制的电子元件,它在传感器、电机驱动器、电子开关等领域有着广泛的应用。
通过对霍尔元件的工作原理的深入了解,可以更好地应用它,实现对电流、磁场、物体位置、速度、方向等信息的精准检测和控制。
霍尔位置传感器原理和应用

霍尔位置传感器原理和应用一.霍尔位置传感器的特点:霍尔位置传感器是一种检测物体位置的磁场传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔位置传感器以霍尔效应原理为其工作基础。
霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。
采取了各种补偿和保护措施的霍尔位置传感器的工作温度围可达到-55℃~150℃。
按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。
前者输出模拟量,后者输出数字量。
霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。
二.霍尔位置传感器的原理:2.1霍尔效应和霍尔元件在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。
VH称为霍尔电压。
这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。
霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。
这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。
霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。
2.2 霍尔集成电路霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。
霍尔传感器的测速原理

霍尔传感器的测速原理
嘿,朋友们!今天咱们要来聊聊霍尔传感器的测速原理,这可真是个超级有趣的玩意儿啊!
想象一下,你骑着自行车在路上飞驰,你怎么知道自己骑得多快呢?这时候霍尔传感器就派上用场啦!它就像是一个神奇的小眼睛,时刻盯着你的速度呢!比如说吧,你手机上显示的实时速度,背后可就有霍尔传感器的功劳呀!
霍尔传感器到底是怎么工作的呢?简单来说,它利用了霍尔效应啊!哎呀,霍尔效应听起来好像很复杂,但其实不难理解!就好比你在人群中一眼就认出了你的好朋友,霍尔传感器也能准确地识别出磁场的变化。
当有一个带磁性的物体靠近或者远离它时,它就能立刻感知到哦!这多厉害呀!
你看那些赛车比赛,车手们在赛道上风驰电掣,他们的速度是怎么被精确测量出来的呢?没错,还是靠霍尔传感器呀!它就像一个精准的裁判,一点差错都不会出呢!
“哎呀,这有啥了不起的呀!”可能有人会这么说。
嘿,那你可就小瞧它啦!没有它,咱们好多设备可都没法正常工作呢!从汽车的速度表到各种
工业设备的转速测量,都离不开它呢!你想想,如果没有它准确地测速,那岂不是会乱套呀!
所以啊,霍尔传感器的测速原理真的超级重要呢!它就像是一个默默工作的小英雄,一直在为我们服务着,让我们的生活变得更加有序、更加方便!你们说呢?。
霍尔效应的应用举例及原理
霍尔效应的应用举例及原理简介霍尔效应是指当电流通过载流子密度较高的材料时,在磁场的作用下,产生的电势差现象。
这种效应被广泛应用于各种电子设备和传感器中。
本文将介绍几个应用霍尔效应的实际例子,并解释其原理。
1. 磁场检测器霍尔效应的一个主要应用就是磁场检测器。
通过测量通过材料的电流和磁场之间的关系,可以实时监测磁场的强度和方向。
这种检测器常用于工业控制系统中,用于测量电机、传感器和磁铁生成的磁场。
•磁场强度测量:通过将霍尔元件置于被测磁场附近,可以根据霍尔电压的变化来推导磁场的强度。
由于霍尔效应对磁场的敏感性很高,因此可以非常准确地测量强磁场和弱磁场。
•磁场方向检测:通过在材料中放置多个霍尔元件,并分别测量它们的输出电压,可以判断磁场的方向。
根据霍尔电压的变化规律,可以获得磁场的方向信息。
2. 位置传感器霍尔效应在位置传感器中发挥着重要作用。
通过结合磁场和霍尔效应,可以实现非接触式的位置测量。
•线性位置传感器:线性霍尔元件被用于测量物体相对于传感器的位置。
通过不同位置上的磁场强度的变化,可以确定物体的具体位置。
这种传感器常用于汽车行程传感器、液位传感器等应用中。
•旋转位置传感器:旋转霍尔传感器可以测量物体的角度。
通过将磁场和霍尔元件组合在旋转部件上,可以实时记录旋转部件的位置。
这种传感器被广泛应用于工业自动化以及汽车行程控制系统中。
3. 电流测量器霍尔效应还可以用作电流测量器。
通过测量通过材料的电流和产生的磁场之间的关系,可以实时测量电流的强度。
•直流电流测量:通过将霍尔元件置于电流载流子流动的路径上,可以根据霍尔电势差的变化来测量电流强度。
可以将霍尔元件配合一个伏安表来实现准确的直流电流测量。
•交流电流测量:对于交流电流的测量,通常需要将霍尔元件与其他电路元件(如滤波电感、电容)组合使用,以消除干扰信号。
通过采集霍尔电势差的变化并根据对应的电路设计进行处理,可以实现交流电流测量。
4. 磁力计霍尔效应也常用于制作磁力计,用于测量磁场的强度。
霍尔传感器工作原理
霍尔传感器工作原理一、引言霍尔传感器是一种常用的非接触式传感器,通过测量磁场的变化来检测物体的位置、速度、方向等参数。
本文将详细介绍霍尔传感器的工作原理及其应用。
二、工作原理1. 霍尔效应霍尔效应是指当电流通过一块导体时,如果该导体处于磁场中,将会在导体两侧产生一种电势差(霍尔电压),这种现象被称为霍尔效应。
霍尔传感器利用霍尔效应来测量磁场的变化。
2. 霍尔元件霍尔元件是霍尔传感器的核心部件,由半导体材料制成。
常见的霍尔元件有线性霍尔元件和开关型霍尔元件两种。
- 线性霍尔元件:根据磁场的变化,产生与磁场强度成正比的输出电压。
线性霍尔元件适用于测量磁场的强度和方向。
- 开关型霍尔元件:在磁场的作用下,输出电压从低电平切换到高电平或从高电平切换到低电平。
开关型霍尔元件适用于检测磁场的开关状态。
3. 工作原理霍尔传感器的工作原理可以分为以下几个步骤:- 步骤1:电流输入将电流通过霍尔元件,使其形成一个磁场。
- 步骤2:磁场感应当霍尔元件处于外部磁场中时,磁场会对霍尔元件产生作用。
- 步骤3:霍尔电压产生根据霍尔效应,磁场作用下,霍尔元件的两侧会产生一个电势差,即霍尔电压。
- 步骤4:电压测量通过测量霍尔电压的大小,可以得知磁场的强度或状态。
三、应用领域霍尔传感器在许多领域都有广泛的应用,下面列举几个常见的应用领域:1. 位置检测霍尔传感器可以用于检测物体的位置,例如汽车的转向角度、航空航天中的导航系统等。
2. 速度测量通过测量霍尔电压的变化,可以计算出物体的速度,例如车辆的转速、电机的转速等。
3. 开关控制开关型霍尔传感器可以用于检测磁场的开关状态,例如磁性门窗的开关检测、电子设备的开关控制等。
4. 磁场测量霍尔传感器可以用于测量磁场的强度和方向,例如磁力计、地磁测量等。
5. 电流检测通过测量霍尔电压的大小,可以间接测量电流的大小,例如电动车的电流检测、电源管理系统中的电流监测等。
四、总结霍尔传感器是一种常用的非接触式传感器,利用霍尔效应来测量磁场的变化。
霍尔式速度传感器工作原理
霍尔式速度传感器工作原理
霍尔式速度传感器是一种常用的非接触式传感器,它可以测量物体的速度和位置。
它的工作原理是基于霍尔效应,即当一个电流通过一个导体时,会在导体两侧产生一个电场,这个电场会影响导体内的电子运动,从而产生一个电势差。
当导体移动时,电场的方向也会发生变化,从而导致电势差的变化。
通过测量这个电势差的变化,可以确定物体的速度和位置。
霍尔式速度传感器通常由一个霍尔元件和一个磁场发生器组成。
磁场发生器可以是一个永磁体或一个电磁体,它会产生一个恒定的磁场。
当物体移动时,它会在霍尔元件上产生一个变化的磁场,从而引起电势差的变化。
通过测量这个电势差的变化,可以确定物体的速度和位置。
霍尔式速度传感器具有以下优点:
1. 非接触式测量:霍尔式速度传感器不需要与物体接触,因此可以避免磨损和摩擦,从而提高传感器的寿命和精度。
2. 高精度:霍尔式速度传感器可以实现高精度的测量,可以达到微米级别的精度。
3. 高速度:霍尔式速度传感器可以实现高速度的测量,可以达到几千转每分钟的速度。
4. 可靠性高:霍尔式速度传感器具有较高的可靠性,可以在恶劣的环境下工作。
5. 体积小:霍尔式速度传感器体积小,可以方便地安装在狭小的空间内。
霍尔式速度传感器广泛应用于机械制造、汽车、航空航天、电子设备等领域。
例如,在汽车中,霍尔式速度传感器可以用于测量车轮的转速和车速,从而实现车辆的稳定性控制和制动系统的控制。
总之,霍尔式速度传感器是一种非常重要的传感器,它具有高精度、高速度、可靠性高等优点,可以广泛应用于各种领域。
霍尔元件及其应用
霍尔元件及其应用
霍尔元件是一种基于霍尔效应的电子元件,可以检测磁场强度和方向。
它由霍尔晶体、电荷放大器和输出端口三部分组成。
霍尔晶体是一个半导体材料,当有磁场作用时,电子在晶格中发生偏移,产生霍尔电势。
电荷放大器将霍尔电势放大,并输出一个电压信号。
霍尔元件在许多应用领域中都有广泛的应用,例如:
1. 磁场测量:霍尔元件可以测量强度和方向,可以用于磁场的测量与控制。
2. 电流检测:霍尔元件可以检测通过电路的电流,可用于电流传感器。
3. 位置检测:霍尔元件可以检测磁场位置,可用于位置传感器。
4. 速度检测:霍尔元件可以检测转子的旋转速度,可用于转速传感器。
5. 指南针:霍尔元件可以制成指南针,用于导航、航空等领域。
总之,霍尔元件具有体积小、精度高、响应速度快、抗干扰性强等优点,因此在许多领域中都有广泛的应用前景。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。等精度法则对高、低频信号都有很好的适应性。 图2是测速电路的信号获取部分,在电源输入端并联电容C2用来滤去电源尖啸,使霍尔元件稳定工作。HG表示霍尔元件,采用CS3020,在霍尔元件输出端(引脚3)与地并联电容C3滤去波形尖峰,再接一个上拉电阻R2,然后将其接入LM324的引脚3。用LM324构成一个电压比较器,将霍尔元件输出电压与电位器RP1比较得出高低电平信号给单片机读取。C4用于波形整形,以保证获得良好数字信号。LED便于观察,当比较器输出高电平时不亮,
低电平时亮。微型电机M可采用 型,通过电位器RP1分压,实现提高或降低电机转速的目的。C1电容使电机的速度不会产生突变,因为电容能存储电荷。 电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系): 当“+”输入端电压高于“-”输入端时,电压比较器输出为高电平; 当“+”输入端电压低于“-”输入端时,电压比较器输出为低电平; 比较器还有整形的作用,利用这一特点可使单片机获得良好稳定的输出信号,不至于丢失信号,能提高测速的精确性和稳定性。
HGCS3020
M
RP1101
RP2203
R110K R
2510Ω
C147μ
C2104
C3104C
4104
LM324
+5V-+OUT+
-
1
23+1234
11
图.2 测速电路原理图 3 测速程序 测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。 用C语言编制的程序如下: //硬件:老版STC实验版 //P3-5口接转速脉冲
#include // 单片机内部专用寄存器定义 #define uchar unsigned char #define uint unsigned int //数据类型的宏定义 uchar code LK[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,} ;//数码管0~9的字型码 uchar LK1[4]={0xfe,0xfd,0xfb,0xf7}; //位选码 uint data z,counter; //定义无符号整型全局变量lk //==================================================== void init(void) //定义名为init的初始化子函数 { //init子函数开始,分别赋值 TMOD=0X51; //GATE C/T M1 M0 GATE C/T M1 M0 计数器T1 定时器T0 // 0 1 0 1 0 0 0 1 TH1=0; //计数器初始值 TL1=0; TH0=-(50000/256); //定时器t0 定时50ms TL0=-(50000%256);
EA=1; // IE=0X00; //EA - ET1 ES ET1 EX1 ET0 EX0 ET0=1; // 1 0 0 0 0 0 1 0 TR1=1; TR0=1; TF0=1; } //============================================= void delay(uint k) //延时程序 { uint data i,j; for(i=0;i { for(;j<121;j++) {;} } } //================================================ void display(void) //数码管显示 { P1=LK[z/1000];P2=LK1[0];delay(10); P1=LK[(z/100)%10];P2=LK1[1];delay(10); P1=LK[(z%100)/10];P2=LK1[2];delay(10); P1=LK[z%10];P2=LK1[3];delay(10); } //========================================= void main(void) //主程序开始 { uint temp1,temp2; init(); //调用init初始化子函数
for(;;) {
temp1=TL1;temp2=TH1; counter=(temp2<<8)+temp1; //读出计数器值并转化为十进制 //z=counter; display(); } //无限循环语句结束 } //主程序结束 //=================================================== // uint chushi=60; void timer0(void) interrupt 1 using 1 {
TH0=-(50000/256); //定时器t0 定时50ms TL0=-(50000%256);
// chushi--; // if(chushi<=0){ z=counter /0.5 ; //读出速度 //} TH0=0; //每50MS清一次定时器 TL1=0; } 霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图