单级放大电路实验
单级放大电路实验

单级共射放大电路实验报告一、实验目的1.熟悉常用电子仪器的使用方法。
2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。
3.掌握放大器动态性能参数的测试方法。
4.进一步掌握单级放大电路的工作原理。
二、实验仪器1.示波器2.信号发生器3.数字万用表4.交流毫伏表5.直流稳压源三、预习要求1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。
2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。
3.估算电路的最大不失真输出电压幅值。
4.计算实验电路的输入电阻Ri和输出电阻Ro。
5.根据实验内容设计实验数据记录表格。
四、实验原理及测量方法实验测试电路如下图1-1所示:1.电路参数变化对静态工作点的影响:放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。
放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。
图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。
其工作原理如下。
○1用RB和RB2的分压作用固定基极电压UB。
由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。
○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。
具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓2.静态工作点的理论计算:图5-2-1电路的静态工作点可由以下几个关系式确定U B=R B2·V CC/(R B+R B2)I C≈I E=(U B-U BE)/R EU CE=V CC-I C(R C+R E)由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。
实验一实验报告单级放大电路的设计与仿真

EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。
单级放大电路实验报告数据

单级放大电路实验报告数据哎呀,今天咱们聊聊单级放大电路实验。
想象一下,咱们在实验室里,眼前摆着一堆零零碎碎的电子元件,心里那个激动啊,简直比吃到爱吃的零食还开心。
得说这单级放大电路,听起来挺高大上的,实则就是把微弱信号变得响亮些,让我们听得更清楚。
像是把一个小蚊子叫声放大成牛叫,哈哈,听着就有趣。
好啦,先来看看咱们的实验设备。
电源、放大器、输入信号源,还有个示波器,真是一应俱全。
那电源就像是我们的“生命之水”,没有它,啥也别谈。
信号源嘛,嘿,那可真是一个小小的“发声器”,负责把微弱的声音传递给放大器。
你想啊,这放大器就像个热情的主持人,把小声的说话者推上舞台,让大家都听见他的声音。
咱们开始连线。
老实说,这个过程就像拼图,有些地方得小心翼翼,不然就会出错。
一连好,心里那个踏实啊,就像终于把一块缺失的拼图找到了。
开电源的时候,那声音“咔嚓”一声,瞬间就能感觉到电流在流动,仿佛整个实验室都在嗡嗡作响。
此时此刻,所有的紧张感瞬间烟消云散,只有期待。
然后,咱们把输入信号接入放大器。
哇,简直就是给放大器施了个魔法,瞬间小声变大声。
用示波器一看,哇塞,波形都在跳动,活灵活现的。
那一刻,我的心情就像是吃到了一口最美味的蛋糕,甜到心里。
每当看到波形变化,我就像在看一场精彩的表演,恨不得给它加掌声。
不过,实验过程中也不是一帆风顺。
调节增益的时候,难免会遇到些麻烦。
增益太高,信号就会失真,像个“跑调歌手”;增益太低,又显得弱不禁风。
每次调节都得小心翼翼,真是让我捏了一把汗。
就像做饭,盐多了不好,盐少了也不行,得把握好分寸。
经过几轮试验,终于找到那个“恰到好处”的增益,心里别提多美了。
咱们不得不提这个“失真”问题。
失真就像是朋友聚会时,那个总爱抢风头的人,听着听着让人有点烦。
每次出现失真,我心里都暗自着急,感觉就像手机信号不好,听个电话都得凑近点。
这时候就得认真调整电路,想办法让它回归正常。
搞定之后,看着示波器上的波形,简直心里乐开了花,像中了彩票一样。
单级放大电路的实验报告

单级放大电路的实验报告哎呀,大家好!今天咱们聊聊单级放大电路,听起来挺高大上的吧?其实它就是个小玩意儿,能把微弱的信号放大,哇,简直就像魔法一样!想想看,平时咱们听音乐,看到的那些大喇叭,其实都是靠这些小电路来工作的。
你说,科技真是无处不在,连耳边的音乐也离不开它。
咱们得知道什么是单级放大电路。
简单来说,就是通过一个增益设备,把输入信号放大。
好比你在聚会上大声说话,周围人听不见,你得用麦克风来放大声音,让每个人都能听得见。
这种电路最常用的就是运算放大器(OpAmp),它可是电路里的超级英雄,拯救了无数微弱信号,真是厉害呀!咱们实验的时候,首先准备了一些器材。
电源、运算放大器、几根电阻线,还有一个小喇叭。
哇,光是看到这些东西,心里就开始乐了,感觉自己马上就要变成电路高手了。
于是,大家都摩拳擦掌,准备大显身手。
就要把这些器材组装起来了。
小心翼翼地接线,生怕弄错了。
手一抖,哎呀,电线就乱成一团,跟过年的爆竹似的,哈哈,别说,我一边接线一边笑,真是有点丢人!然后,打开电源,心里那个小紧张啊,生怕出现什么意外。
听说过实验出错的事,心里不免打鼓。
可是,天公作美,电路一开,喇叭里传来了声音,哇塞,简直像是开启了新世界的大门!看着那微弱的信号被放大,心里像打了鸡血一样,那个激动啊,真是过瘾。
大家都欢呼起来,仿佛在庆祝什么盛大的节日,瞬间气氛热烈得不得了。
在这个过程中,我们还观察到了增益的变化。
当我们调节电阻值时,喇叭的声音也跟着变化,感觉自己像是在调音台上玩耍。
低音炮响起,高音清脆,真是让人耳朵都要怀孕了,哈哈!这就是电路的魅力所在,原来只要稍微一动手,声音就能变得如此美妙,简直像是掌握了音乐的魔法。
实验中也遇到了一些小麻烦。
比如,有一次电源连接不稳,喇叭发出的声音像是被卡住了,咯吱咯吱的声音简直让人崩溃,像是在听一场毫无节奏的音乐会。
大家纷纷开始讨论,试图找出问题的所在。
最后还是经过反复检查,终于发现是接头松了,哈哈,真是小失误引发的大笑话!实验快结束时,大家都在分享各自的心得。
单级放大电路实验

二、实验原理(用最简练的语言反映实验的内容)
电阻分压式共射级单级放大电路原理图如图2.3.1所示。
它的偏置电路采用R bl=5R2+5R PI和R b2=5R3组成分压电路,并在发射极中接有电阻R e=5R6+5R7,以稳定放大器的静态工作点。
当在放大电路输入端输入信号后,在放大电路输出端便可得到与ν1相位相反的被放大了的输出信号ν0,从而实现电压的放大。
1、在图2.3.1电路中,当流过偏置电阻R b1和R b2的电流远大于晶体管的基极电流I B时,则它的静态工作点参数可估算如下
2、静态工作点的测量与调试
(l)静态工作点的测量
测量放大器的静态工作点,应在输入信号v f=0的情况下进行,即将放大器输入端与地短接,然后用万用表分别测量晶体管的集电极电流I c及各电极对地的电位V B、V C和V E。
在实验中,通常采用测量电压V C或V E,然后计算出I c的方法。
(2)静态工作点的调试放大电路的基本任务是在不失真的前提下,对输入信号进行放大。
放大器调节合适的静态工作点是为了保证输出波形不失真并使放大电路具有较高的电压放大倍数。
放大器的静态工作点与电路参数V CC、R C、R b有关,通常采用调节上偏置电阻R b1的方法来改变静态工作点。
3、放大器的动态指标
四、实验记录(记录实验过程中所见到的现象、实验结果和得到的有关数据,可以插入图、表、关键程序代码等)
五、实验结论(。
实验1-单级放大电路

实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
单级共射放大电路实验报告.doc
单级共射放大电路实验报告.doc本实验通过搭建单级共射放大电路并进行测试和分析,加深了我们对基本电路的理解和实践技能的提升。
本文将从实验原理、实验步骤、实验结果及分析等方面进行阐述。
一、实验原理1、单级共射放大器的原理共射放大器即输人输出均在晶体管的基极和发射极之间,因此在放大系数上面具有一定的增益,其输入电阻比共集(电流随输入电阻的变化而变化)放大器高,输出电阻比共射(输出电阻不随输入电阻的变化而变化)放大器要低得多,因此同时具有输入输出阻抗都比较好的特点,也就是可以适用于各种电阻范围内的负载。
单级共射放大器是一种常见的基本放大电路,其基本结构如图1所示。
在正常工作状态下,晶体管的基极极间电位为0.6V时,为了使集电极端的电压维持在5V左右,必须给共射电路提供至少5.6V的电压。
为了让信号能够被放大,必须在基极端加上一个交流信号,造成基极到发射极的直流偏置电压波动,而这种交流电压就是引入的输入信号。
3、放大器的放大性能指标放大器的放大性能指标主要包括频率响应、幅度与相位特性、增益、输入输出电阻、噪声系数等多项指标,其中增益是一项非常关键的指标。
二、实验步骤1、实验所需器材和材料(1) C945B三极管1颗(2)1kΩ电阻4个(4)10μf电解电容1个(6)调码器一个(7)万用表(8)示波器(9)直流电源(10)信号发生器2、实验操作流程(1)根据电路图搭建实验电路。
(2)用万用表测出电路中各个元件的参数值。
(3)连接示波器和信号发生器,使信号发生器输出一个1kHz正弦波。
(4)打开直流电源,调节电源电压为5V.(5)显示器显示开始显示信号曲线,用示波器观察信号波形和增益。
(6)通过调节信号源和示波器来得到最佳的放大性能。
三、实验结果及分析搭建完实验电路并进行调试后,我们得到了以下数据:信号频率 | 10kHz | 100kHz | 1MHz |输入电压 | 200mV | 200mV | 200mV |输出电压 | 1.05V | 1.02V | 390mV |增益(Vout/Vin) | 5.25 | 5.1 | 1.95 |从表格数据中可以看出,在低频范围内,输出电压随着输入电压的增加而增加,实现了较好的信号放大效果。
单级放大电路实验总结
单级放大电路实验总结
单级放大电路是电子技术中常见的一种电路,它能够将输入信号放大,使得输出信号的幅度比输入信号大。
在本次实验中,我们将对单级放大电路进行实验,并总结实验结果,以便更好地理解和掌握这一电路的工作原理和特性。
首先,我们搭建了一个简单的单级放大电路,包括一个晶体管、电阻和电容器等元件。
接着,我们将输入信号接入电路,并通过示波器观察输出信号的波形和幅度变化。
在实验过程中,我们发现了一些有趣的现象和规律。
实验结果表明,单级放大电路能够有效地放大输入信号,并且放大倍数与电路中元件的参数有一定的关系。
在一定范围内,改变电路中的元件数值可以改变放大倍数,这为我们设计和调整放大电路提供了一定的参考依据。
此外,我们还发现了单级放大电路的一些局限性,比如在放大倍数较大时,电路可能出现失真现象,输出信号的波形会发生变化。
因此,在实际应用中,需要根据具体的需求和要求来选择合适的放大电路,并进行合理的设计和调整。
总的来说,单级放大电路是一种常见且重要的电路,它在电子设备和通信系统中有着广泛的应用。
通过本次实验,我们对单级放大电路的工作原理和特性有了更深入的了解,这将有助于我们在未来的学习和工作中更好地应用和掌握这一知识。
通过本次实验,我们不仅加深了对单级放大电路的理解,还提高了实验操作和数据分析的能力。
希望今后能够继续进行更多的实验,不断积累经验,提升自己的实验技能和科研能力。
总之,本次实验取得了一定的成果,对单级放大电路有了更深入的了解,也为我们今后的学习和工作奠定了一定的基础。
希望通过不断地学习和实践,能够更好地掌握和应用电子技术知识,为未来的发展打下坚实的基础。
单级放大电路实验心得(通用4篇)
单级放大电路实验心得(通用4篇)单级放大电路实验心得篇1单级放大电路实验心得1.实验目的通过本次实验,我们旨在探究单级放大电路的基本原理,了解其各个参数的测量方法,并能够分析电路的性能指标,如增益、输入电阻、输出电阻等。
此外,我们还将学习如何使用示波器、电压表和电流表测量电路的输出波形,从而更好地理解放大电路的工作过程。
2.实验原理单级放大电路是一种基本的电子放大器,其原理基于电信号的放大。
通过将输入信号与一个晶体管相连,我们可以实现信号的放大。
晶体管具有放大电流的能力,其输出电流的大小取决于输入信号的大小和晶体管的特性。
3.实验过程实验开始时,我们先搭建了一个单级放大电路。
在测量电路参数时,我们使用电压表和电流表测量电路的输入电阻和输出电阻,使用示波器观察输出波形。
在调整电路时,我们不断尝试不同的电路参数,直到找到最佳的电路配置。
4.实验结果在实验过程中,我们记录了不同输入信号下的输出波形,并使用示波器测量了输出信号的幅值和频率。
通过测量,我们发现输出信号的幅值比输入信号增加了许多,从而证实了放大电路的放大效果。
此外,我们还测量了输入电阻和输出电阻,并记录了它们的大小。
5.实验分析在实验过程中,我们发现输入电阻和输出电阻的大小与理论值非常接近。
同时,我们观察到输出波形具有良好的对称性,说明电路具有良好的稳定性。
此外,我们还发现当输入信号较大时,输出波形会出现失真现象。
这可能是由于晶体管的非线性特性所导致的。
6.实验结论通过本次实验,我们验证了单级放大电路的基本原理和放大效果。
同时,我们还学会了如何使用示波器、电压表和电流表测量电路参数和输出波形。
在实验过程中,我们发现了一些问题,如晶体管的非线性特性可能导致输出波形的失真。
为了改善放大电路的性能,我们可以在实验的基础上进一步研究其他类型的放大器,如差分放大器和集成电路。
这些电路具有更好的线性特性和稳定性,可以提供更高的放大倍数。
此外,我们还可以将放大电路应用到实际的电子设备中,如音频放大器、无线电接收器等,从而更好地理解放大电路在实际应用中的作用。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的:本次实验旨在了解单级共射放大电路的工作原理和特点,通过实验掌握该电路的调试方法和测量技巧,提高学生的电路分析和设计能力。
实验原理:单级共射放大电路是一种常用的晶体管放大电路,它具有输入阻抗高、输出阻抗低、电压放大系数大等优点。
该电路的原理图如下所示:搭建电路:为了实现该电路的正常工作,我们需要准备以下元器件和设备:元器件:晶体管2N3904;电容器C1、C2;电阻R1、R2、R3;射极电阻RL。
设备:函数信号发生器;直流电源;示波器;万用表。
接下来,我们按照原理图搭建出如下电路:调试电路:搭建好电路之后,我们需要进行调试。
具体步骤如下:1. 调整直流工作点将电源输出电压调整为2V左右,观察示波器上的波形,调整可变电阻R1,使得直流工作点在Collector特性曲线的下降区域,同时保证该点的电压符合晶体管的工作条件。
2. 选择信号调节函数信号发生器,选择适当的信号源,要保证电路在输出信号时正常工作。
我们可以选择一个1kHz的正弦信号作为输入信号。
3. 测量电压放大系数使用万用表测量电路的输入电压Vi和输出电压Vo,计算出电压放大系数Av=Vo/Vi。
通过多组数据计算平均值,得到最终的电压放大系数。
4. 测量输入输出阻抗使用万用表测量输入阻抗Ri和输出阻抗Ro,记录下相应数据,并结合电路特性进行分析。
实验结果和分析:本次实验得出的数据如下:直流工作点:Uc=1.84V,Ic=1.8mA,Ue=580mV,Ie=1.8mA。
电压放大系数:Av≈55。
输入阻抗:Ri≈1.5kΩ。
输出阻抗:Ro≈200Ω。
通过以上数据可以得出以下分析结果:1. 该电路的输入阻抗较高,表明它能够很好地接受信号源的输入信号。
2. 该电路的输出阻抗较低,表明它能够很好地输出信号,能够在下一级电路中起到良好的负载作用。
3. 该电路的电压放大系数较大,表明它能够很好地增强输入信号,同时保证输出信号的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放大的概念
放大--把电信号的幅度放大,
其本质是:1.实现能量的控制;2.放
大的对象是变化量。
+++
+
-
u
o
+
u
+
-
i
放大电路
u
-
R
+
S
S
R
L
信号源负载
i
i
i
o
一、放大倍数
表示放大器的放大能力
AU=uo/u
i
放大电路的主要技术指标
二、最大输出幅度
表示在输出波形不失真的情况下,放大电路能够提
供给负载的最大输出电压或电流。
三、非线性失真系数
由于放大器件输入、输出特性的非线性,因此放大
电路的输出波形不可避免地将产生非线性失真。
(1)Ri越大,ii就越小,从信号源索取的电流越小。
(2)当信号源有内阻时,Ri越大,ui就越接近uS。
Ri=ui/i
i
四、输入电阻
从放大电路的输入端看进去的等效电阻
。
++
++
S
+
o
负载LS+信号源
-
u
-
o
i
i
iRR放大电路-+iuuRi
R
i
五、输出电阻
从放大电路的输出端看进去的等效电阻。
输出电阻反映了放大电路的带负载能力,
R
o
越小,放大电路带负载的能力越强,反之则
越差。
++
++
S
+
o
负载LS+信号源
-
u
-
o
i
i
iRR放大电路-+iuuRi
R
i
o
u
o
R
R
o
六、通频带
放大器件存大极间电容,有些放大电路中接有电抗
性元件。
f
A
A
m
0.7A
m
f
L
下限截
止频率
f
H
上限截
止频率
通频带:fbw=fH–f
L
放大倍数随频率
变化曲线--幅频
特性曲线
带宽BW
七、最大输出功率与效率
输出功率:指在输出信号不产生明显失真的前提下,能
够向负载提供的最大输出功率,用Pom表示。
效率:最大输出功率Pom与直流电源消耗的功率Pv之比。
即:η= Pom/P
v
+
+
b2
b
-
i
u
C
+
R-b1Ru
T
oL
+
C
c
R
V
CC
BB
V
单管共发射极放大电路
0,oooL=SUR
i
u
R
+
+
b2
b
-
i
u
C
+
R-b1Ru
T
oL
+
C
c
R
V
CC
BB
V
使发射结正偏,并
提供适当的静态I
B
和UBE。
集电极电源,为电路
提供能量。并保证集
电结反偏。
集电极
电阻RC,
将变化
的电流
转变为
变化的
电压。
放大元件iC=iB,工
作在放大区,要保证
集电结反偏,发射结
正偏。
作用:隔直通交,使
直流不至于进入下一
级。
+
+
b2
b
-
i
u
C
+
R-b1Ru
T
oL
+
C
c
R
V
CC
BB
V
耦合电容:
电解电容,有极性,
大小为10F~50F
+
+
单管共发射放大电路的工作原理
ΔuiΔvbeΔibΔic(βΔi
b)ΔicRc
ΔuceΔu
o
通过
C
b1
因VCC、Rb,发射
结处于正向偏置
状态
工作于
放大区
uRc+uce=V
cc
因VCC恒定不变故
Δuce=-ΔicR
c
非线性失真与Q的关系
i
C
u
CE
u
o
可输出的
最大不失
真信号
合适的静态工作点
i
b
iC/mA
UCE/V
i
B
=100μA
80
60
40
20
0
0
Q
V
CC
C
CC
R
V
L
CC
R
V
交流负载线
②经过Q点。
①斜率为。
L
1
R
)//(CLLRRR
注意:
a)交流负载线
是有交流信号
输入时工作点
的运动轨迹。
b)空载时,交
流负载线与直
流负载线重合
交流负载线
直流负载线
1b
+
b
2
C
RcCVR
CC
b1
u
i
i
B
i
C
u
CE
u
o
uo比ui幅度大且相位相反
各点波形:
实验步骤
在实验箱上完成电路连接
调整静态工作点
测量
β值
测量放大倍数
测量并绘制放大器的幅频特性曲线
测量输入、输出阻抗
思考题
1) 若要求降低低频截止频率,可如何修改放大电路?
请用EWB仿真,给出修改后的电路图和幅频特性曲线
(在EWB中称为“Bode”图)。
2) 若要求减小电路的非线性谐波失真,有哪些途径?
1 图中加上发射级反馈回路
2 加上输入输出阻抗的计算公式及推导
3 失真的分类和定义
4 实验步骤展开
5 加上谐波失真定义和实验步骤
6 实验报告的写法
7 通频带的电路意义
8 β的测量和计算
9
静态工作点的定义和计算(强调电路意义)
10
附上一份好的实验报告