高考数学二轮复习 上篇 专题整合突破 专题一 函数与导数、不等式 第1讲 函数、函数与方程及函数的应

合集下载

高考数学二轮复习 专题一 专题整合突破 第1讲 函数与导数 不等式 讲义

高考数学二轮复习  专题一   专题整合突破   第1讲  函数与导数  不等式   讲义

第1讲 函数图象与性质及函数与方程高考定位 1.高考仍会以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、函数的最值与值域、函数的奇偶性、函数的单调性,或者综合考查函数的相关性质.2.对函数图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理、数形结合思想,这是高考考查函数的零点与方程的根的基本方式.真 题 感 悟1.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln xD .y =x 2+1解析 由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点. 答案 A2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=1212log 2-=122log 2×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.答案 C3.(2015·北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析 如图,由图知:f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案 C4.(2015·山东卷)已知函数f (x )=a x +b (a >0,a ≠1) 的定义域和值域都是[-1,0],则a +b =________.解析 当a >1时,f (x )=a x +b 在定义域上为增函数,∴⎩⎨⎧a -1+b =-1,a 0+b =0,方程组无解; 当0<a <1时,f (x )=a x +b 在定义域上为减函数, ∴⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2.∴a +b =-32. 答案 -32考 点 整 合1.函数的性质(1)单调性:证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.可以用来比较大小,求函数最值,解不等式,证明方程根的唯一性; (2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. 3.函数的零点与方程的根 (1)函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (2)零点存在性定理 注意以下两点:①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点.热点一 函数性质的应用[微题型1] 单一考查函数的奇偶性、单调性、对称性【例1-1】 (1)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)(2015·济南三模)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3(3)设f (x )=⎩⎨⎧2x +2,x <1,-ax +6,x ≥1(a ∈R )的图象关于直线x =1对称,则a 的值为( )A .-1B .1C .2D .3 解析 (1)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,∴a =1.(2)∵a x <a y ,0<a <1,∴x >y ,∴x 3>y 3.(3)由函数f (x )的图象关于直线x =1对称,得f (0)=f (2),即2=-2a +6,解得a =2.故选C.答案 (1)1 (2)D (3)C探究提高 第(3)小题将对称问题转化为点的对称,从而很容易地解决问题,本题也可借助于图象的斜率解决.[微题型2] 综合考查函数的奇偶性、单调性、周期性【例1-2】 (1)(2015·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数(2)(2015·文登模拟)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析 (1)易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.(2)∵f (x )是偶函数,∴图象关于y 轴对称. 又f (2)=0,且f (x )在[0,+∞)单调递减,则f(x)的大致图象如图所示,由f(x-1)>0,得-2<x-1<2,即-1<x<3.答案(1)A(2)(-1,3)探究提高函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.【训练1】(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为() A.a<b<c B.a<c<bC.c<a<b D.c<b<a解析因为函数f(x)=2|x-m|-1为偶函数可知,m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,log0.53=-log23,∴log25>|log0.53|>0,∴b=f(log25)>a=f(log0.53)>c=f(2m),故选C.答案 C热点二函数图象与性质的融合问题[微题型1]函数图象的识别【例2-1】(1)(2015·安徽卷)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0(2)(2014·江西卷)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()解析 (1)函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0;令x =0,得f (0)=b c 2,又由图象知f (0)>0,∴b >0;令f (x )=0,得x =-b a ,结合图象知-ba >0,∴a <0.故选C.(2)当a =0时,两个函数的解析式分别为y =-x ,y =x ,故选项D 中的图象是可能的.当a ≠0时,二次函数y =ax 2-x +a 2的对称轴方程为x =12a ,三次函数y =a 2x 3-2ax 2+x +a (a ∈R )的导数为y ′=3a 2x 2-4ax +1=(3ax -1)(ax -1),令y ′=0,得其极值点为x 1=13a ,x 2=1a .由于13a <12a <1a (a >0),或者13a >12a >1a (a <0),即三次函数的极值点在二次函数的对称轴两侧,选项A 、C 中的图象有可能,选项B 中的图象不可能. 答案 (1)C (2)B探究提高 识图时,可从图象与x 轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.在探究两个函数的图象位置关系时,要善于根据函数解析式中字母的变化研究函数性质的变化,从而确定两个函数图象的可能位置关系. [微题型2] 函数图象的应用【例2-2】 (1)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c(2)(2015·全国Ⅰ卷)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 解析 (1)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .选D.(2)设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,当x =1时,g (1)=e>0,直线y =a (x -1)恒过(1,0),则满足题意的唯一整数x 0=0, 故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1,故选D.答案 (1)D (2)D探究提高 (1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.【训练2】 (2015·泰安诊断)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎨⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )有最小值-1,无最大值. 答案 C热点三 以函数零点为背景的函数问题 [微题型1] 函数零点个数的求解【例3-1】 (2015·广东卷)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,|a |+a =-a +a =0≤1,显然成立; 当a >0时,则有|a |+a =2a ≤1, 所以a ≤12,所以0<a ≤12, 综上所述,a 的取值范围是a ≤12.(2)f (x )=⎩⎨⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减,综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.(ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎨⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x (x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2, 而y =-4x 在(0,2)上单调递增,y <f (2)=-2, 所以y =f (x )与y =-4x 在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x ,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0,因为x ≥2,所以x =2,即当a =2时,f (x )+4x 有一个零点x =2.(ⅱ)当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增, 当x =a 时,y =-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a=-(a -2)(a 2+a +2)a <0,所以f (a )=a -a 2<-4a .结合图象不难得当a >2时,y =f (x )与y =-4x 有两个交点,综上,当a =2时,f (x )+4x 有一个零点x =2;当a >2时,y =f (x )与y =-4x 有两个零点.探究提高 在解决函数与方程问题中的函数的零点问题时,要学会掌握转化与化归思想的运用.如本题直接根据已知函数求函数的零点个数难度很大,也不是初等数学能轻易解决的,所以遇到此类问题的第一反应就是转化已知函数为熟悉的函数,再利用数形结合求解.[微题型2] 由函数零点(或方程根)的情况求参数【例3-2】(2015·天津卷)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2 解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎨⎧y =x +b ′,y =(x -2)2,解得b ′=-94, -94-(-4)=74,同理,y 轴左侧也有相同的情况.所以曲线h (x )向上平移74个单位后,y 轴左右各有2个交点,所得图象与f (x )的图象有四个公共点,平移2个单位时,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.答案 D探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【训练3】 (2015·德州模拟)已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根.∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1. 答案 (1,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.函数定义域不同,两个函数不同;对应关系不同,两个函数不同;定义域和值域相同,也不一定是相同的函数.3.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0. 4.奇函数在两个对称的区间上有相同的单调性,偶函数在两个对称的区间上有相反的单调性.5.函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.6.不能准确把握基本初等函数的形式、定义和性质.如讨论指数函数y =a x (a >0,a ≠1)的单调性时,不讨论底数的取值;忽视a x >0的隐含条件;幂函数的性质记忆不准确等.7.判断函数零点个数的方法有:(1)直接求零点;(2)零点存在性定理;(3)数形结合法.8.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +e xB .y =x +1x C .y =2x +12xD .y =1+x 2解析 令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B ,C ,D 依次是奇函数、偶函数、偶函数,故选A. 答案 A2.函数f (x )=log 2x -1x 的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,3)解析 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝ ⎛⎭⎪⎫12=log 212-112=-1-2=-3<0, f (1)=log 21-11=0-1<0,f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0, ∴函数f (x )=log 2x -1x 的零点在区间(1,2)内. 答案 C3.(2014·山东卷)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解析 由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点. 如图:∴y =kx -1在直线y =x -1与y =12x -1之间, ∴12<k <1,故选B. 答案 B4.(2015·山东卷)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析 当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C. 答案 C5.(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B. 答案 B 二、填空题6.(2015·福建卷)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析 由题意f (x )的图象如图,则⎩⎨⎧a >1,3+log a 2≥4,∴1<a ≤2.答案 (1,2]7.(2015·青州模拟)若函数f (x )=⎩⎨⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时, 函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x , 因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 答案 (0,1]8.已知函数y =f (x )是R 上的偶函数,对∀x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,给出下列命题:①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[-4,4]上有四个零点; ④f (2 014)=0.其中所有正确命题的序号为________.解析 令x =-2,得f (-2+4)=f (-2)+f (2),解得f (-2)=0,因为函数f (x )为偶函数,所以f (2)=0,①正确;因为f (-4+x )=f (-4+x +4)=f (x ),f (-4-x )=f (-4-x +4)=f (-x )=f (x ),所以f (-4+x )=f (-4-x ),即x =-4是函数f (x )的一条对称轴,②正确;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,说明函数f (x )在[0,2]上是单调递减函数,又f (2)=0,因此函数f (x )在[0,2]上只有一个零点,由偶函数知函数f (x )在[-2,0]上也只有一个零点,由f (x +4)=f (x ),知函数的周期为4,所以函数f (x )在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f (2)=f (6)=f (10)=…=f (2 014)=0,④正确. 答案 ①②④ 三、解答题9.定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时,f (x )=14x -a2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.解 (1)∵f (x )是定义在[-1,1]上的奇函数, ∴f (0)=0,∴a =1,∴当x ∈[-1,0]时,f (x )=14x -12x . 设x ∈[0,1],则-x ∈[-1,0], ∴f (-x )=14-x -12-x =4x -2x , ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x -4x . ∴f (x )在[0,1]上的解析式为f (x )=2x -4x . (2)f (x )=2x -4x ,x ∈[0,1],令t =2x,t ∈[1,2],g (t )=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴g (t )在[1,2]上是减函数,∴g (t )max =g (1)=0,即x =0,f (x )max =0.10.(2015·太原模拟)已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上为增函数, 故⎩⎨⎧f (3)=5,f (2)=2⇒⎩⎨⎧9a -6a +2+b =5,4a -4a +2+b =2⇒⎩⎨⎧a =1,b =0. ②当a <0时,f (x )在[2,3]上为减函数,故⎩⎨⎧f (3)=2,f (2)=5⇒⎩⎨⎧9a -6a +2+b =2,4a -4a +2+b =5⇒⎩⎨⎧a =-1,b =3. 故⎩⎨⎧a =1,b =0或⎩⎨⎧a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2, g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2.若g (x )在[2,4]上单调,则2+2m 2≤2或2m +22≥4, ∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26. 故m 的取值范围是(-∞,1]∪[log 26,+∞).11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若g (x )=m 有实根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)∵x >0,∴g (x )=x +e 2x ≥2e 2=2e , 等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则g (x )=m 就有实根.故m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 其对称轴为x =e ,开口向下,最大值为m -1+e 2. 故当m -1+e 2>2e , 即m >-e 2+2e +1时, g (x )与f (x )有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).。

高考数学二轮复习 专题一 函数与导数、不等式 第1讲 函数图象与性质及函数与方程练习 理(2021

高考数学二轮复习 专题一 函数与导数、不等式 第1讲 函数图象与性质及函数与方程练习 理(2021

创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第1讲函数图象与性质及函数与方程练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第1讲函数图象与性质及函数与方程练习理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第1讲函数图象与性质及函数与方程练习理的全部内容。

专题一函数与导数、不等式第1讲函数图象与性质及函数与方程练习理一、选择题1.(2016·临沂模拟)下列函数中,既是奇函数,又在区间(-1,1)上单调递减的函数是( )A.f(x)=sin xB.f(x)=2cos x+1C.f(x)=2x-1D.f(x)=ln 1-x 1+x解析由函数f(x)为奇函数排除B、C,又f(x)=sin x在(-1,1)上单调递增,排除A,故选D.答案D2.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是( )A。

奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C。

偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数解析易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln错误!=ln错误!,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A。

答案A3。

已知二次函数f(x)=x2-bx+a的部分图象如图所示,则函数g(x)=e x+f′(x)的零点所在的区间是( )A.(-1,0)B.(0,1)C。

2015年高考数学(文)总复习精品课件:专题一 函数、导数与不等式

2015年高考数学(文)总复习精品课件:专题一 函数、导数与不等式

解:(1)方法一,对函数 f(x)求导, 得 f′(x)=43·x12-+x122. 令 f′(x)=0,得 x=1 或 x=-1. 当 x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增; 当 x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减. 又 f(0)=0,f(1)=23,f(2)=185, ∴当 x∈[0,2]时,f(x)的值域是0,23.
②当 a>0 时,g′(x)=a(x- a)(x+ a). 令 g′(x)=0,得 x= a或 x=- a(舍去). ⅰ)当 x∈[0,2],0< a<2 时,列表:
ห้องสมุดไป่ตู้
x
0 (0, a)
a
( a,2)
2
g′(x)

0

g(x) 0
-23a2 a
83a-2a2
∵g(0)=0,g( a)<0, 又∵0,23⊆A,
因此,f(x)在区间[1,e]上的最小值为 f(e)=12e2-a. 综上所述,当 0<a≤1 时,f(x)min=12; 当 1<a<e2 时,f(x)min=12a(1-lna); 当 a≥e2 时,f(x)min=12e2-a.
(3)由(2)可知当0<a≤1 或 a≥e2 时,f(x)在(1,e)上是单调递 增或递减函数,不可能存在两个零点.
∴g(2)=83a-2a2≥23. 解得13≤a≤1. ⅱ)当 x∈(0,2), a≥2 时,即 a≥4,g′(x)<0, ∴函数在(0,2)上单调递减. ∵g(0)=0,g(2)=83a-2a2<0, ∴当 a≥4 时,不满足0,23⊆A. 综上所述,实数 a 的取值范围是13,1.
【方法与技巧】函数与方程是高考的重要题型之一,一方 面可以数形结合,考查方程根的分布如 2007 年广东试题;另 一方面可以与导数相结合,考查方程解的情况.如本题:若对任 意 x1∈[0,2],总存在x2∈[0,2],使 fx1=gx2的本质就是函 数 fx的值域是函数 gx值域的子集.

高考数学二轮复习 上篇 专题整合突破 专题一 函数与导数、不等式 第5讲 导数与实际应用及不等式问

高考数学二轮复习 上篇 专题整合突破 专题一 函数与导数、不等式 第5讲 导数与实际应用及不等式问

创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式第5讲导数与实际应用及不等式问题练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式第5讲导数与实际应用及不等式问题练习理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式第5讲导数与实际应用及不等式问题练习理的全部内容。

专题一函数与导数、不等式第5讲导数与实际应用及不等式问题练习理一、填空题1.设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(0)=0,f错误!=0,则不等式f(x)<0的解集为________.解析如图所示,根据图象得不等式f(x)<0的解集为错误!∪错误!。

答案错误!∪错误!2。

若不等式2x ln x≥-x2+ax-3恒成立,则实数a的取值范围为________。

解析条件可转化为a≤2ln x+x+3x恒成立.设f(x)=2ln x+x+错误!,则f′(x)=错误!(x>0)。

当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增,所以f(x)min=f(1)=4.所以a≤4.答案(-∞,4]3.若存在正数x使2x(x-a)<1成立,则a的取值范围是________。

解析∵2x(x-a)<1,∴a>x-错误!。

令f(x)=x-错误!,∴f′(x)=1+2-x ln 2>0。

∴f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0-1=-1,∴a的取值范围为(-1,+∞)。

新教材2024高考数学二轮专题复习分册一专题七函数与导数课件

新教材2024高考数学二轮专题复习分册一专题七函数与导数课件
同的情况;而我国北宋学者沈括在他的著作《梦溪笔谈》中,也讨论
过这个问题,他分析得出一局围棋不同的变化大约有“连书万字五十
361
3
00052,下列数据最接近
的是(lg
52
10 000
二种”,即10
A.10-37
B.10-36
C.10-35
3≈0.477)(
)
D.10-34
答案:B
3361
3361
361
⑤将y=f(x)在y轴左侧部分去掉,再作右侧关于y轴的对称图象,合
起来得到y=f(|x|)的图象.
x ln x
1.[2023·山东德州三模]函数f(x)= x −x的图象大致是(
e +e
答案:D
)
2.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等
f −x −f x

x
≥0的解集为(
(4)从函数的周期性,判断图象的循环往复.
2.利用函数性质解题的策略
(1)具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析
式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间
上.尤其注意偶函数f(x)的性质:f(|x|)=f(x).
(2)利用周期性可以转化函数的解析式、图象和性质,把不在已知区间
B.[-3,-1]∪ 0,1
C.[-1,0]∪ 1, + ∞
D.[-1,0]∪ 1,3
答案:D
解析:通解 由题意知f(x)在(-∞,0),(0,+∞)单调递减,且f(-2)=f(2)=
f(0)=0≤3;当x<0时,令f(x-
1)≤0,得-2≤x-1≤0,∴-1≤x≤1,又x<0,∴-1≤x<0;当x=0时,显然

2017高考数学文科二轮复习课件:专题二 不等式、函数

2017高考数学文科二轮复习课件:专题二 不等式、函数

• 2.基本初等函数、函数与方程及函数的应用 部分: • 对基本初等函数的考查形式主要是选择题、 填空题,也有可能以解答题中某一小问的形 式出现,考查其图象与性质,多为中偏低档 题;函数零点主要考查零点所在区间、零点 个数的判断以及由函数零点的个数求解参数 的取值范围;函数的实际应用问题常以实际 生活为背景,与最值、不等式、导数、解析 几何等知识交汇命题,最近几年函数的实际 应用问题在高考中有“降温”的趋势.
③解线性规划应用问题:
解题 模板 ④利用不等式解决实际问题: 根据题意设出相应变量,一般 把要求最值的变量设为函数 → 建立相应的函数关系式, 确定函数的定义域 → 在定义域内, 求函数的最值 → 回到实际问题中,去写 出实际问题的答案
热点题型突破
题型一 不等式的解法
命题 规律
方法 点拨
高考中常常从以下三个角度命题: (1)一元二次不等式的解法. (2)与分段函数有关的不等式的解法. (3)由不等式恒成立求参数范围. 均以选择、填空题呈现,偶尔出现在解答题中,难度中偏 不等式的求解技巧: (1)对于一元二次不等式,应先化为一般形式ax2+bx+c>0 相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相 象与x轴的位置关系,确定一元二次不等式的解集. (2)解简单的分式、指数、对数不等式的基本思想是把它们 整式不等式(一般为一元二次不等式)求解.
• 3.对于不等式的二轮复习需要做好如下三个
第1讲 不等式及线性规划
栏目导 航
2年考情回顾
热点题型突破
热点题源预测
对点规范演练 逐题对点特训
2年考情回顾
①求不等式的解集 设问 方式 ②线性规划问题 ③不等式的应用 [例](2015· 北京卷· 7题). [例](2015· 湖北卷· 10题).

2024年高考数学重难点突破讲义:配套热练 第1讲 函数的图象与性质

专题六 函数与导数第1讲 函数的图象与性质A 组 固法热练1.(2023·台州二模)已知函数f (x )同时满足性质:①f (-x )=f (x );②当∀x 1,x 2∈(0,1)时,f (x 1)-f (x 2)x 1-x 2<0,则函数f (x )可能为( D ) A .f (x )=x 2B .f (x )=⎝ ⎛⎭⎪⎫12xC .f (x )=cos4xD .f (x )=ln(1-|x |)【解析】 由①知f (x )为偶函数,由②知f (x )在(0,1)上单调递减.则A 不满足②,B 不满足①,C 不满足②.对于D ,满足①,当x ∈(0,1)时,f (x )=ln(1-x )单调递减,也满足②,故选D .2.(2023·唐山调研)已知函数f (x )=2x x 2+1,则其图象大致为( D )A B C D【解析】 函数的定义域为R ,关于原点对称,且f (-x )=2(-x )(-x )2+1=-2x x 2+1=-f (x ),知函数f (x )为奇函数,图象关于原点对称,因此A ,B 错误.当x >0时,f (x )=2x x 2+1=2x +1x ≤22x ·1x=1,当且仅当x =1x ,即x =1时取等号,即当x >0时,函数f (x )有最大值1,所以C 错误,D 正确.3.(2023·娄底四模)已知函数f (x )=30+ax 2+a在区间[-10,-3]上单调递增,则实数a 的取值范围是( B )A .(-∞,-2)∪(0,3)B .(-∞,-2)∪(0,3]C .(-∞,-2)∪(0,10)D .(-∞,-2)∪(0,10]【解析】 因为函数f (x )=30+ax 2+a在区间[-10,-3]上单调递增,所以a (2+a )>0且30+ax ≥0在区间[-10,-3]上恒成立,所以⎩⎨⎧a (2+a )>0,30-10a ≥0,30-3a ≥0,解得a<-2或0<a ≤3.4.(2023·苏北苏中八市二模)已知函数f (x )的定义域为R ,y =f (x )+e x 是偶函数,y =f (x )-3e x 是奇函数,则f (x )的最小值为( B )A .eB .22C .23D .2e【解析】 由题知⎩⎨⎧f (-x )+e -x =f (x )+e x ,f (-x )-3e -x =-f (x )+3e x ,消去f (-x ),得f (x )=2e -x +e x ,所以f (x )=2e -x +e x ≥22e -x ·e x =22,当且仅当2e -x =e x ,即x =ln 2时取等号.5.(2023·邵阳二模)已知函数f (x )=⎩⎪⎨⎪⎧|log 5x |,0<x <5,-cos ⎝ ⎛⎭⎪⎫π5x ,5≤x ≤15. 若存在实数x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),满足f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1x 2x 3x 4的取值范围是( C )A .⎝ ⎛⎭⎪⎫0,3754 B .(0,100) C .⎝ ⎛⎭⎪⎫75,3754 D .(75,100)【解析】 作出f (x )的图象如图所示.令f (x 1)=f (x 2)=f (x 3)=f (x 4)=a ,则由图可知0<a <1,且-log 5x 1=log 5x 2,-cos ⎝ ⎛⎭⎪⎫π5x 3=-cos ⎝ ⎛⎭⎪⎫π5x 4,即x 1x 2=1,x 3+x 4=20⎝ ⎛⎭⎪⎫x 3∈⎝ ⎛⎭⎪⎫5,152,因此x 1x 2x 3x 4=x 3x 4=x 3(20-x 3)=-(x 3-10)2+100,x 3∈⎝ ⎛⎭⎪⎫5,152,由二次函数的性质可得x 1x 2x 3x 4∈⎝ ⎛⎭⎪⎫75,3754.(第5题)6.(2023·临沂一模)(多选)已知f (x )=x 3g (x )为定义在R 上的偶函数,则函数g (x )的解析式可以为( BD )A .g (x )=lg 1+x 1-xB .g (x )=3x -3-xC .g (x )=12+12x +1D .g (x )=ln(x 2+1+x 【解析】 因为f (x )=x 3g (x )是偶函数,所以f (-x )=f (x ),即g (-x )=-g (x ),所以g (x )是奇函数.对于A ,定义域为(-1,1),所以不满足题意;对于B ,定义域为R ,g (-x )=3-x -3x =-g (x ),符合题意;对于C ,定义域为R ,g (-x )=12+12-x +1=12+2x 1+2x =32-11+2x≠-g (x ),不符合题意;对于D ,定义域为R ,g (-x )=ln(x 2+1-x ),而g (-x )+g (x )=ln(x 2+1-x )+ln(x 2+1+x )=0,符合题意.7.(2023·杭州一检)(多选)已知函数f (x )=x +3-x ,则( ABD )A .f (x )的图象是轴对称图形,不是中心对称图形B .f (x )在⎝ ⎛⎭⎪⎫0,32上单调递增,在⎝ ⎛⎭⎪⎫32,3上单调递减 C .f (x )的最大值为3,最小值为0D .f (x )的最大值为6,最小值为3【解析】 易得f (x )的定义域为(0,3),f (3-x )=f (x ),所以函数f (x )的图象关于直线x =32轴对称,故A 正确;因为f (x )≥0,f 2(x )=3+2x (3-x ),且y =f (x )与y=f 2(x )的单调性相同,所以f (x )在⎝ ⎛⎭⎪⎫0,32上单调递增,在⎝ ⎛⎭⎪⎫32,3上单调递减,故B正确;由B 知f (x )max =f ⎝ ⎛⎭⎪⎫32=6,f (x )min =f (0)=f (3)=3,故C 错误,D 正确. 8.(2023·淮南一模)(多选)已知函数f (x )=x +4x +2,则( BD )A .f (x )的值域为[6,+∞)B .直线3x +y +6=0是曲线y =f (x )的一条切线C .f (x -1)图象的对称中心为(-1,2)D .方程f 2(x )-5f (x )-14=0有3个实数根【解析】 对于A ,当x >0时,f (x )=x +4x +2≥4+2=6,当且仅当x =2时等号成立.当x <0时,f (x )=x +4x +2≤-4+2=-2,当且仅当x =-2时等号成立,故A 错误.对于B ,令f ′(x )=1-4x 2=-3,得x =±1,f (1)=7,所以f (x )的图象在点(1,7)处的切线方程是y -7=-3(x -1),得3x +y -10=0,f (-1)=-3,所以f (x )的图象在点(-1,-3)处的切线方程是y +3=-3(x +1),得3x +y +6=0,故B 正确.对于C ,y =x +4x 图象的对称中心是(0,0),所以f (x )=x +4x +2图象的对称中心是(0,2),向右平移1个单位长度得f (x -1)的图象,故f (x -1)图象的对称中心是(1,2),故C 错误.对于D ,由f 2(x )-5f (x )-14=0,解得f (x )=-2或f (x )=7.当x +4x +2=-2时,得(x +2)2=0,x =-2,1个实根.当x +4x +2=7时,得x =1或x =4,2个实根,所以共有3个实根,故D 正确.9.(2023·枣庄期末)若函数f (x )=2x +m x +1在区间[0,1]上的最大值为3,则实数m =__3__.【解析】 因为函数f (x )=2x +m x +1=2+m -2x +1,由复合函数的单调性知,当m >2时,f (x )=2x +m x +1在[0,1]上单调递减,最大值为f (0)=m =3;当m <2时,f (x )=2x +m x +1在[0,1]上单调递增,最大值为f (1)=2+m 2=3,即m =4,显然m =4不合题意,故实数m =3.10.(2023·邯郸期末)已知函数f (x )=x +2x +12x +1+a为奇函数,则实数a =__-2__.【解析】 因为函数f (x )=x +2x +12x +1+a为奇函数,所以f (-x )=-f (x ),即-x +2-x +12-x +1+a =-x -2x +12x +1+a ,所以2-x +12-x +1+a =-2x +12x +1+a .因为2-x +12-x +1+a =2x +12+a ·2x ,所以2x +12+a ·2x =-2x +12x +1+a,即2+a ·2x =-(2x +1+a )=-2x +1-a ,所以a ·(2x +1)=-2x +1-2=-2(2x +1),解得a =-2.11.(2023·杭州一检)已知函数f (x )满足f (x )=2f (-x )+3x -1.(1) 求函数f (x )的解析式;【解答】 由题意得f (-x )=2f (x )-3x -1,所以f (x )=2[2f (x )-3x -1]+3x -1,解得f (x )=x +1.(2) 若关于x 的方程|f (x )|=k |x 2-x -1|恰有四个不同的实根,求实数k 的取值范围.【解答】 当k <0时,显然无解.当k =0时,|x +1|=0只有一个实根,不符合条件;当k >0时,1k =⎪⎪⎪⎪⎪⎪x 2-x -1x +1=⎪⎪⎪⎪⎪⎪(x +1)+1x +1-3恰有四个不相等的实根,所以(x +1)+1x +1=3+1k 与(x +1)+1x +1=3-1k 共有四个不相等的实根,所以⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪3+1k >2,⎪⎪⎪⎪⎪⎪3-1k >2,解得1k >5或0<1k <1,所以0<k <15或k >1,所以实数k 的取值范围是⎝ ⎛⎭⎪⎫0,15∪(1,+∞). 12.设函数f (x )=ka x -2a -x (a >0,a ≠1,k ∈R ),f (x )是定义域为R 的奇函数.(1) 求k 的值;【解答】 因为f (x )=ka x -2a -x 是定义域为R 的奇函数,所以f (-x )+f (x )=ka -x -2a x +ka x -2a -x =(k -2)(a x +a -x )=0,而a x +a -x >0,所以k =2.(2) 若f (1)=3,判断并证明f (x )的单调性;【解答】 由(1)得f (x )=2a x -2a -x ,f (x )是定义域为R 的奇函数,而f (1)=3,则2a -2a -1=3,即2a 2-3a -2=0.又a >0,a ≠1,解得a =2,则函数f (x )=2(2x -2-x )在R 上单调递增,证明如下:∀x 1,x 2∈R ,x 1<x 2,f (x 1)-f (x 2)=2(2x 1-2-x 1)-2(2x 2-2-x 2)=2(2x 1-2x 2)⎝ ⎛⎭⎪⎫1+12x 1·2x 2,因为x 1<x 2,则2x 1-2x 2<0,1+12x 1·2x 2>0,于是f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在定义域R 上单调递增.(3) 若a =3,使得2f (2x )≤(λ+1)f (x )对一切x ∈[-2,-1]恒成立,求λ的取值范围.【解答】 当a =3时,f (x )=2(3x -3-x ),∀x ∈[-2,-1],2f (2x )≤(λ+1)f (x )⇔4(32x -3-2x )≤2(λ+1)·(3x -3-x )⇔2(3x +3-x )(3x -3-x )≤(λ+1)(3x -3-x ),而函数y =3x -3-x 在[-2,-1]上单调递增,3x -3-x ≤3-1-3<0,于是得λ+1≤2(3x +3-x ),令3x =t ∈⎣⎢⎡⎦⎥⎤19,13,函数y =2⎝ ⎛⎭⎪⎫t +1t 在⎣⎢⎡⎦⎥⎤19,13上单调递减,当t =13,即x =-1时,[2(3x +3-x)]min =203,因此,λ+1≤203,解得λ≤173,所以λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ≤173. B 组 抓分题天天练13.(多选)已知e b <e a <1,则下列结论正确的是( ABD )A .a 2<b 2B .b a +a b >2C .ab >b 2D .lg a 2<lg(ab )【解析】 由e b <e a <1,则b <a <0.因为a 2-b 2=(a -b )(a +b )<0,所以a 2<b 2,A 正确;因为b <a <0,所以b a >0,a b >0,由基本不等式得a b +b a >2b a ·ab=2,B 正确;ab -b 2=b (a -b )<0,所以ab <b 2,C 错误;a 2-ab =a (a -b )<0,所以a 2<ab ,所以lg a 2<lg(ab ),D 正确.14.若函数f (x )=cos2x +sin ⎝ ⎛⎭⎪⎫2x +π6在(0,α)上恰有2个零点,则α的取值范围为( B )A .⎣⎢⎡⎭⎪⎫5π6,4π3B .⎝ ⎛⎦⎥⎤5π6,4π3C .⎣⎢⎡⎭⎪⎫5π3,8π3D .⎝ ⎛⎦⎥⎤5π3,8π3 【解析】 由题意,函数f (x )=cos2x +sin ⎝ ⎛⎭⎪⎫2x +π6=3sin ⎝ ⎛⎭⎪⎫2x +π3,因为0<x <α,所以π3<2x +π3<2α+π3.又由f (x )在(0,α)上恰有2个零点,所以2π<2α+π3≤3π,解得5π6<α≤4π3,所以α的取值范围为⎝ ⎛⎦⎥⎤5π6,4π3. 15.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,P A =AD =AB =2,BC =1,M 为PC 中点.(第15题)(1) 求证:PB ⊥DM;【解答】 如图,取PB 中点N ,连接AN ,MN .因为P A =AB =2,所以AN ⊥PB .又P A ⊥平面ABCD ,且AD ⊂平面ABCD ,所以P A ⊥AD .又AD ⊥AB ,AB ∩P A =A ,AB ⊂平面P AB ,P A ⊂平面P AB ,所以AD ⊥平面P AB .又PB ⊂平面P AB ,所以AD ⊥PB .又AN ⊥PB ,AN ∩AD =A ,AN ⊂平面ADMN ,AD ⊂平面ADMN ,所以PB ⊥平面ADMN .又DM ⊂平面ADMN ,所以PB ⊥DM .(第15题)(2) 求点C 到平面PBD 的距离.【解答】 由已知得,BD =AB 2+AD 2=22,同理可得PB =PD =BD =22.又BC =1,P A =AB =2,则V P -BCD =13S △CBD ·P A =13 ·12 ·BC ·AB ·P A =13×12×1×2×2=23.设点C 到平面PBD 的距离为h ,由PB =PD =BD =22,得 △PBD =34×(22)2=23,则V C -PBD =13 △PBD ×h =13×23×h =233h .又因为V P2 3=233h,解得h=33,即点C到平面PBD的距离为33.-BCD=V C-PBD,所以。

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

2018届高考数学理二轮复习全国通用课件 专题一 函数与导数、不等式 第1讲 精品


热点二 函数图象的问题 [微题型1] 函数图象的变换与识别 【例2-1】 (1)(2016·成都诊断)已知f(x)=2x-1,g(x)=1-x2,
规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)= -g(x),则h(x)( )
A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值
第1讲 函数图象与性质及函数与方程
高考定位 1.以分段函数、二次函数、指数函数、对数函数为载 体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用 图象研究函数性质、方程及不等式的解,综合性强;3.以基本初 等函数为依托,考查函数与方程的关系、函数零点存在性定理. 数形结合思想是高考考查函数零点或方程的根的基本方式.
若存在唯一的整数x0使得f(x0)<0,则实数a的取值范围是( )
A.-23e,1 C.23e,34
B.-23e,34 D.23e,1
解析 (1)函数y=|f(x)|的图象如图.y=ax为过原点的一条直线, 当a>0时,与y=|f(x)|在y轴右侧总有交点,不合题意;当a=0 时成立;当a<0时,找与y=|-x2+2x|(x≤0)相切的情况,即 y′=2x-2,切线方程为y=(2x0-2)(x-x0),由分析可知x0=0, 所以a=-2,综上,a∈[-2,0].
D.4m
解析 (1)由f(x)=2|x-m|-1是偶函数可知m=0,
所以f(x)=2|x|-1.
所以a=f(log0.53)=2|log0.53|-1=2log23-1=2, b=f(log25)=2|log25|-1=2log25-1=4, c=f(0)=2|0|-1=0,所以c<a<b.

高考数学第二轮复习资料 专题1 函数、不等式、导数

一、应知应会定时训练:(20分钟) 1.已知函数()f x =的定义域M ,()ln(1)g x x =+的定义域为N ,则MN =( )A .{|1}x x >-B .{|1}x x <C .{|11}x x -<<D .∅2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-,C .(1)[2)-∞-+∞,,D .(12]-,3.已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则U A B ð为( )A.{}12-, B.{}10-, C.{}01, D.{}12,4.“1x >”是“2x x >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+b a a b 中,正确的不等式有 .7.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是 ( )8.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = .二、热点题型定时训练:例1.(10分钟)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围..例2.(15分钟)已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值一、应知应会定时训练:(20分钟)1.不等式2104x x ->-的解集是( ) A .(21)-, B .(2)+∞,C .(21)(2)-+∞,, D .(2)(1)-∞-+∞,,2.已知全集{12345}U =,,,,,集合A {3|2}x x =∈-<Z ||,则集合U A ð等于( )A .{1234},,, B .{234},, C .{15}, D .{5}3.设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )A. B .2 C. D .44.⎰+20)cos 2(πdx x x 的值为 .5.函数3()12f x x x =-在区间[33]-,上的最小值是 .6.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,,7.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为8.设函数2(1)1()41x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得f (x )≥1的自变量x 的取值范围为二、热点题型定时训练: 例1.(10分钟)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例2.(15分钟)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(一、应知应会定时训练:(20分钟)1.设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( )A .1B .1-C .2D .2-2.给出下列三个等式:()()()f xy f x f y =+,()()()f x y f x f y +=,()()()1()()f x f y f x y f x f y ++=-,下列函数中不满足其中任何一个等式的是( )A .()3x f x =B .()sin f x x =C .2()log f x x =D .()tan f x x =3.已知定义域为R 的函数()f x 在(8)+∞,上为减函数,且函数(8)y f x =+为偶函数,则( )A.(6)(7)f f > B.(6)(9)f f >C.(7)(9)f f >D.(7)(10)f f >4.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A.132323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.231323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.213332f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.321233f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角7.函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . A . B .C .D .二、热点题型定时训练:例1.(10分钟)设函数3()f x ax bx c=++(0)a≠为奇函数,其图象在点(1,(1))f处的切线与直线670x y--=垂直,导函数'()f x的最小值为12-.(Ⅰ)求a,b,c的值;(Ⅱ)求函数()f x的单调递增区间,并求函数()f x在[1,3]-上的最大值和最小值例2.(15分钟)已知函数2221()()1ax af x xx-+=∈+R,其中a∈R.(Ⅰ)当1a=时,求曲线()y f x=在点(2(2))f,处的切线方程;(Ⅱ)当0a≠时,求函数()f x的单调区间与极值.一、应知应会定时训练:(20分钟)1.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25412.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤ D.{}|23x x <≤4.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A .f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)5.函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .6.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是( ) 0)(≥b A 0)(≤b B 0)(>b C 0)(<b D7.已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是二、热点题型定时训练: 例1.(10分钟)已知函数bx ax x f +-=26)(的图象在点M (-1,f (-1))处的切线方程为x +2y+5=0.(Ⅰ)求函数y=f (x )的解析式; (Ⅱ)求函数y=f (x )的单调区间.例2.(15分钟)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 函数与导数、不等式 第1讲 函数、函数与方程及函数的应用练习 文一、填空题1.(2016·南通调研)函数f (x )=ln x +1-x 的定义域为________. 解析 要使函数f (x )=ln x +1-x 有意义,则⎩⎪⎨⎪⎧x >0,1-x ≥0,解得0<x ≤1,即函数定义域是(0,1]. 答案 (0,1]2.(2011·江苏卷)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝ ⎛⎭⎪⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞.答案 ⎝ ⎛⎭⎪⎫-12,+∞ 3.(2016·苏州调研)函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,-x 2+1,x >0的值域为________.解析 当x ≤0时,y =2x∈(0,1]; 当x >0时,y =-x 2+1∈(-∞,1). 综上, 该函数的值域为(-∞,1]. 答案 (-∞,1]4.(2016·江苏卷)定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.解析 在区间[0,3π]上分别作出y =sin 2x 和y =cos x 的简图如下:由图象可得两图象有7个交点. 答案 75.(2012·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________. 解析 因为函数f (x )是周期为2的函数,所以f (-1)=f (1)⇒-a +1=b +22,又f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12⇒12b +232=-12a +1,联立列成方程组解得a =2,b =-4,所以a +3b =2-12=-10. 答案 -106.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.解析 f ′(x )=3x 2+1>0,∴f (x )在R 上为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,可得⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.答案 ⎝ ⎛⎭⎪⎫-2,237.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x+1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,138.(2016·北京海淀区二模)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x-1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.(2)由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x-a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞) 二、解答题9.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x=0,得x =1.当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0), 所以k ′(x )=1-2x,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增, 所以当x =2时,函数k (x )取得最小值,k (2)=2-2ln 2-a ,因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点.即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎪⎨⎪⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎪⎨⎪⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3].10.(2012·江苏卷)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6. 所以当a 不超过6千米时,可击中目标.11.(2016·苏北四市调研)如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy ,则曲线C 符合函数模型y =x +42x2(1≤x ≤9),设PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.题中所涉及长度单位均为百米.(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.解 (1)在如题图所示的直角坐标系中,因为曲线C 的方程为y =x +42x2(1≤x ≤9),PM=x ,所以点P 坐标为⎝ ⎛⎭⎪⎫x ,x +42x 2,直线OB 的方程为x -y =0,则点P 到直线x -y =0的距离为⎪⎪⎪⎪⎪⎪x -⎝⎛⎭⎪⎫x +42x 22=⎪⎪⎪⎪⎪⎪42x 22=4x2,又PM 的造价为5万元/百米,PN 的造价为40万元/百米. 则两条道路总造价为f (x )=5x +40·4x2=5⎝ ⎛⎭⎪⎫x +32x 2(1≤x ≤9).(2)因为f (x )=5⎝⎛⎭⎪⎫x +32x 2,所以f ′(x )=5⎝ ⎛⎭⎪⎫1-64x 3=5(x 3-64)x 3,令f ′(x )=0,解得x =4,列表如下:所以当x =4时,函数f (x )有最小值,且最小值为f (4)=5⎝ ⎛⎭⎪⎫4+42=30,即当x =4时,总造价最低,最低造价为30万元.(注:利用三次均值不等式得f (x )=5⎝⎛⎭⎪⎫x +32x 2=5⎝ ⎛⎭⎪⎫x 2+x 2+32x 2≥5×338=30,当且仅当x =4时,等号成立,同样正确.)。

相关文档
最新文档