高中数学第1章算法初步1-2流程图互动课堂学案

合集下载

高中数学第1章算法初步1-2流程图1-2-1顺序结构教材梳理导学案-2019word版可打印

高中数学第1章算法初步1-2流程图1-2-1顺序结构教材梳理导学案-2019word版可打印

庖丁巧解牛知识·巧学1.流程图的概念流程图是由图框与带箭头的流线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流线表示操作的先后次序;它是表示算法及程序结构的一种算法描述工具.常用的标准流程图符号:图形符号名称功能备注起止框表示程序的开始和结束表示开始时只有一个出口;表示结束时只有一个入口输入输出框表示一个算法输入和输出的信息表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框)表示计算、赋值等处理操作有一个入口和一个出口判断框判断给出的条件是否成立,根据判断结果来决定程序的流向只有一个入口和两个出口流程线表示程序的流向辨析比较算法的描述可以用自然语言叙述,比较灵活、自然,只要按步骤叙述清楚即可,但易产生歧义,有时叙述比较烦琐,不利于体现条理性、逻辑性;而使用流程图表达算法更为直观、条理、清晰,且利于转化为程序,体现了程序设计的基本思路. 2.顺序结构算法有三种基本的逻辑结构:顺序结构、条件结构、循环结构.其中顺序结构是最简单、最常用的程序结构,它不存在条件判断、控制转移和重复执行的操作.一个顺序结构的各个部位是按语句出现的先后次序自上而下按顺序执行,其流程图如图1-2-1所示:(如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作).图1-2-1顺序结构在计算机中表现为计算机按照语句出现的先后次序执行的一串语句.初涉算法设计,并不是一次就能成功.我们应先有一个基本的框架,其中含有最典型最重要或最核心的算法语句或结构,然后再来思考其中的每一步的执行情况,增添一些细节,逐步完善流程图与程序.一般以中间一条从上到下的线为主线.有些步骤在处理完后需要返回到前面某一步,这样的步骤习惯画在主线的两侧.这样画的框图主线清晰,易于理解;而中间这条主线体现的就是顺序结构,它将输入与输出连接了起来.因此可见,任何算法的流程图都是顺序结构.设计流程时要注意以下几点:①根据解决问题的步骤从上至下的顺序画出流程图,各图框中的文字要尽量简洁;②为避免流程图的图形显得过长,流程线要尽量短;③画流程图实际上是将问题的算法用流程图符号表示出来,所以首先要明确需要解决什么问题,采用什么方法解决,其次确定初值,循环情况,条件,表达式,程序的结构、流向等.典题·热题知识点一图形符号的意义、使用环境和联结方式例1 已知x=4,y=2,画出计算w=3x+4y的值的程序框图.思路分析:本题利用流程图的定义及符号之间的联系即可画出.解:程序框图如图1-2-2所示:图1-2-2方法归纳这是一个完整的结构图.“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面.另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构.事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构.知识点二顺序结构例2交换两个变量x,y的值.思路分析:变量是在算法执行过程中,其值可以发生变化的量.本题我们先借用“←”这个赋值符号来帮助解题,它是有方向的符号,表示把后面的量的值替换前面的量的值.本题中,就是通过这个符号来达到“换”的目的.解:为了达到交换的目的,必须借助一个新的中间变量,不妨设其为p.算法如下:S1 输入x,y;S2 p←x(将x的值赋给p,使p有新值);S3 x←y(将y的值赋给x,使x有新值);S4 y←p(将p的值赋给y,使y有新值);S5 输出x,y.算法用流程图表示如图1-2-3:图1-2-3误区警示交换两个变量的值时,可能会认为直接用y←x,x←y就能交换.y←x,表示把x的值赋给y,这时y中原来的值就会被x的值所代替,例如:x=2,y=4,通过y←x得到y=2,x的值仍为2,然后x←y,则x=2,最后得到的是x=2,y=2,没有实现交换,所以必须借助中间变量p.例3已知点P(x0,y0)和直线l:Ax+By+C=0.设计一个算法,求点P到直线l的距离d.思路分析:本题利用点线距知识,要注意点到直线的距离公式d=的正确运用,可先求Z1=Ax0+By0+C,再求Z2=A2+B2,然后代入公式求d.解:算法如下:。

高中数学第1章算法初步1.2流程图1.2.3循环结构教学案苏教版必修3(2021学年)

高中数学第1章算法初步1.2流程图1.2.3循环结构教学案苏教版必修3(2021学年)

2017-2018学年高中数学第1章算法初步1.2流程图1.2.3 循环结构教学案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第1章算法初步1.2流程图1.2.3循环结构教学案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第1章算法初步 1.2 流程图 1.2.3 循环结构教学案苏教版必修3的全部内容。

1.2。

3 循环结构预习课本P12~15,思考并完成以1.什么叫循环结构?2.循环结构有哪两种基本模式,它们各自有什么特点?[新知初探]1.循环结构的定义需要重复执行同一操作的结构称为循环结构.2.循环结构的结构形式(1)当型循环:先判断所给条件p是否成立,若p成立,则执行A,再判断条件p是否成立;若p仍成立,则又执行A,如此反复,直到某一次条件p不成立时为止(如右图).(2)直到型循环:先执行A,再判断所给条件p是否成立,若p不成立,则再执行A,如此反复,直到p成立,该循环过程结束(如右图).[点睛](1)构成循环结构的三要素:循环变量、循环体、循环终止条件.(2)当型循环的顺序是:先判断再执行再循环.直到型循环的顺序是:先执行再判断再循环.错误!1.①任何一种算法都离不开顺序结构,顺序结构是算法的最基本形式;②循环结构一定包含选择结构;③循环结构只有一个入口和一个出口;④循环结构的形式有且只有一种;以上四种说法中正确个数有________.答案:32.解决下列问题可能需用循环结构的是________.①求函数y=|x-1|的函数值;②求函数y=2x在x=1,2,3,…,10时的函数值;③求1+2+3+…+10的值.答案:②③循环结构的认[典例]图1、图2是两个循环结构的流程图,分别指出它们是哪种类型的循环结构、循环变量、循环次数、循环终止条件、循环体及输出的结果.[解]图1表示的循环结构是直到型循环结构,循环变量是S及i,循环次数9次,循环终止条件是i〉10,循环体是S←S+i和i←i+1,输出结果为55.图2表示的循环结构是当型循环结构,循环变量是S及i,循环次数10次,循环终止条件是i>10,循环体是S←S+i和i←i+1,输出结果为55。

高中数学第一章算法初步1_1_2程序框图与算法的基本逻辑结构学案新人教A版必修3

高中数学第一章算法初步1_1_2程序框图与算法的基本逻辑结构学案新人教A版必修3

1.1.2程序框图与算法的基本逻辑结构图形符号
●预习自测
1.下列关于程序框图的说法正确的是
A.程序框图是描述算法的语言
B.在程序框图中,一个判断框可能同时产生两种结果
C.程序框图虽然可以描述算法,但不如用自然语言描述算法直观D.程序框图与流程图不是一个概念
2.具有判断条件是否成立的程序框是
3.程序框图中“”表示的意义是() A.框图的开始或结束
B.数据的输入或结果的输出
C.赋值、执行计算的传送
(2)关于程序框图的说法,
①使用标准的框图符号;
②程序框图中的流程线可以箭头不朝下;
③一个自然语言描述的算法只能对应一个程序框图;
④程序框图中的程序框可以任意自定义,
其中正确的有________.
例二写出求过点P1(3,5),P2(-1,2)的直线斜率的算法,并画出程序框图.
跟踪训练
如图所示是一个算法的程序框图,若输入则输出的y值是
2.在程序框图中,一个算法步骤到另一个算法步骤的连接用A.连接点B.判断框
C.流程线D.处理框
.流程图的开始或结束
5.画出由正方体的表面积求其体积的程序框图
答案
预习:程序框算法步骤
计算成立不成立程序框
预习自测1A 2C 3B 412
例1 B 跟踪 (1)A (2)
例2
[解析]算法如下:
第一步,输入x
第二步,计算k
第三步,输出k
的函数值的
即要使输出的函数值等于例3跟踪训练
当堂训练1C 2C 3C4。

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案庖丁巧解牛知识·巧学1.循环结构的概念根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构,也称为“重复结构”.循环结构是程序设计中不可缺少又有变化的一种基本结构.2.循环结构的形式根据执行情况及循环结束条件的不同可分为以下两种循环:(1)直到型循环(又称Until循环):其流程图如图1-2-18所示.图1-2-18执行过程:先执行循环体A,然后判断给定的条件P是否成立,如果P不成立,则继续执行A,然后再对条件P进行判断,如果P 仍不成立,则重复执行A,直到给定的条件P成立为止.注意循环的条件是不满足P时才重复执行循环体.(2)当型循环(又称While循环):其流程图如图1-2-19所示.图1-2-19执行过程:先判断条件P,如果条件成立,则执行循环体A,执行完A 后,再判断P是否成立,如果仍成立,继续执行A,如果不成立,则退出循环,执行下一步骤.辨析比较①当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.②当型循环与直到型循环可互相转化,条件互补.(1)循环结构中必须包含条件结构,以保证在适当时候终止循环;循环结构只有一个入口和一个出口,结构内不存在死循环,即无终止的循环.(2)循环结构的三要素:循环变量、循环体、循环的终止条件.(3)循环结构的设计步骤:①确定循环结构的循环变量和初始条件;②确定算法中需要反复执行的部分,即循环体;③确定循环的终止条件.深化升华循环结构中常用的变量:计数器:即计数变量,用来记录某个事件发生的次数,如i←i+1,n←n+1.累加器:即累加变量,用来计算数据之和,如sum←sum+i.累乘器:即累乘变量,用来计算数据之积,如p←p×i.联想发散算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构.其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达.典题·热题知识点一利用循环结构设计算法例1用直到型循环写出1+2+3+…+100的算法并画出流程图.思路分析:100个数实现相加,我们又称之为累加,设计算法时必须用循环来实现,同时注意观察这100个数是有规律的,相邻两数相差1,所以可在循环中实现这些数.设一变量I,I初值为1,每循环依次其值加1,实现1,2,3,…,100,设一变量S,每产生一个数就加到S中,S←S+I.解:算法如下:S1 I←1;S2 S←0;S3 S←S+I;S4 I←I+1;S5 如果I>100,则到下一步,否则返回S3重复执行;S6 输出S的值.流程图如图1-2-20:图1-2-20巧妙变式若用当型循环结构来画流程图,又当如何?思路分析:抓住直到型循环与当型循环的本质区别及联系,在改写时,循环体不变,但位置要放到条件之后,循环条件变为原来的相反条件.解:流程图如图1-2-21图1-2-21方法归纳 循环结构可以大大地简化算法的表述;循环变量在构造循环结构中发挥了关键作用,本质上,这就是“函数的思想”.例2已知有一列数,设计流程图实现求该列数前20项的和.1,,43,32,21+n n 思路分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4, …,n,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器为S ,用S=S+可实现累加,注意i 只能加到20.1+i i 解:(1)直到型循环流程图如图1-2-22;(2)当型循环流程图如图1-2-23;图1-2-22 图1-2-23方法归纳 ①在解决一些有规律的计算问题时,往往要利用循环结构. ②在实现累加求和或累乘时,对于这些变量,在程序开始时,一般要先赋初值,可根据实际问题合理选择初始值,一般情况下,计数器可设初值为0或1,累加器为0,累乘器为1.③当有较多的数相加或相乘时,应首先找出其中数的规律,并把这个规律在循环结构中实现,注意初始值、循环条件的设置.知识点二 通过循环结构读算法例3阅读图1-2-24中所示的流程图,回答下列问题:图1-2-24(1)变量y 在这个算法中的作用是什么?(2)这个算法的循环体是哪一部分,功能是什么?(3)这个算法的处理是什么?思路分析:按照历法的规定,如果y 为闰年,那么或者y 能被4整除不能被100整除,或者y 被400整除;按程序箭头方向来看,我们可以知道该流程图描述的就是此内容.解:(1)变量y 是循环变量,控制着循环的开始和结束;(2)流程图中的第②部分是循环体,其功能是判断年份y 是否是闰年,并输出结果;(3)该算法的处理功能是:判断2000年—2500年中,哪些年份是闰年,哪些年份不是闰年,并输出结果.方法归纳 由循环结构的流程图理解该结构的执行;关键把握好初值、循环体与循环条件.问题·探究交流讨论探究问题 1 对同一个问题,如何合理选择当型循环还是直到型循环来完成其算法?探究过程:同学甲:遇到需重复使用的算法设计时,一定要找出反复执行的部分作为循环体放在条件之前或之后,根据需要可合理选择直到型或当型循环.同学乙:直到型循环改为当型循环时,只要把循环体作为一个整体放到条件之后,同时把条件变为原来的相反条件即可.老师:事实上,我们对这两个循环结构的把握只要放在“当”与“直到”;顾名思义,“当”指“指定时间,指定条件”;而“直到”,很容易地,它应该是先执行,执行到某一个条件.同学丙:显然,循环结构中一定包含条件结构.同学乙:对,而且一个是前测型的,一个是后测型的.探究结论:要正确理解当型、直到型循环,明确两种结构的功能,关键要找出它们的异同点,注意怎样实现两种循环的互化.交流讨论探究问题2 设计含循环结构的流程图时,应注意什么?探究过程:同学甲:使用循环结构设计算法流程图,在进入循环前,应设置初始条件,同时在循环过程中,应注意修改条件,以便程序退出循环.老师:如果不修改条件或错误修改,会怎么样呢?同学乙:可能会导致程序不能退出循环,即进入“死循环”.老师:对了,还有在循环结构中都有一个计数变量和累加变量.它们的作用分别是什么?同学甲:计数变量用于记录循环次数,累加变量用于输出结果.同学乙:计数变量和累加变量一般是同步执行的,累加一次,计数一次.探究结论:刚接触循环结构,我们有必要通过模仿、探索、实践,明确用流程图设计循环结构的方法、过程,注意以下3个方面的设置:初值、循环体、循环条件,并把它们正确有机地结合起来.此级HS4的大图若接排前加,若另面则不加。

高中数学 第一章 算法初步 1.1.2 程序框图和算法的逻辑结构(第2课时)教案 新人教A版必修3

高中数学 第一章 算法初步 1.1.2 程序框图和算法的逻辑结构(第2课时)教案 新人教A版必修3

福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3的全部内容。

1。

1。

2 程序框图一、回顾练习引例:设计一个计算1+2+…+100的值的算法.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构。

循环体:反复执行的处理步骤称为循环体。

计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中。

当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习1:画出引例直到型循环的程序框图。

当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环满足条件? 否 循环体 是 满足条件? 是 否循环体体.②当型循环先判断后执行,直到型循环先执行后判断。

③对同一算法来说,当型循环和直到循环的条件互为反条件。

练习2:1.1.1节例1的算法步骤的程序框图(如图)说明:①为了减少难点,省去flag标记;②解释赋值语句③简单分析。

练习3:画出程序框图。

高中数学第1章算法初步1.2流程图1.2.3循环结构教案苏教版必修3

高中数学第1章算法初步1.2流程图1.2.3循环结构教案苏教版必修3

1.2.3 循环结构整体设计教材分析在现实生活中,除了用到选择结构进行问题的分支处理外,还会遇到“重复处理”的问题,循环结构(cycle structure)正是可以用来处理需要重复执行的某一组操作.循环结构也称为“重复结构”,即反复执行某一部分的操作.循环结构是程序设计中不可缺少的又富有变化的一种基本结构,是我们学习的第三种程序结构.在某一算法中,如果出现从某处开始,按照一定的条件反复执行同一操作,那么这种结构就称为循环结构,反复执行的处理步骤称为循环体.在循环体中一定有一个选择结构,否则将无法从循环结构中脱离出来,从而形成死循环.此外,循环结构中通常都有一个起到循环计数的变量,这个变量一直都含在执行或终止循环体的条件中.循环结构分为当型循环和直到型循环,它们之间是可以相互转化的.教材考虑到学生的接受能力,对直到型循环和当型循环没有加以定义和区分,仅仅是在《探究·拓展》中以阅读题的形式作了介绍,这样处理是有用意的,教师没有必要在这里提出这两种概念,可待学生有了感性认识和一定的算法基础后,再做适当的回顾与补充.如果某一操作需要重复一定的次数,那么我们可以设置一个统计循环次数的变量,当这个变量的值没有超过我们给定的数值时,就一直重复执行需要的操作,当这个变量的数值超过给定的数值时就脱离循环结构.三维目标通过实例的训练,使学生理解循环结构的意义,并能够用循环结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,发展有条理的思考与表达能力,达到提升学生逻辑思维能力的目标.重点难点教学重点:用循环结构的流程图表示算法.教学难点:多种结构的嵌套使用.课时安排1课时教学过程导入新课设计思路一:(情境导入)同学们小时候一定都有过缠着父母听故事的经历,有时候爸爸妈妈实在想不出故事了,就会用一个“故事”来哄骗孩子:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:从前有座山,山里有个庙,庙里有个老和尚.有天老和尚对小和尚说,我给你讲个故事说啊:……现在考虑,为什么说这个“故事”是哄骗小朋友的?因为这个“故事”一直在重复着同样的环节:“从前有座山,山里有个庙,庙里有个老和尚,有天老和尚对小和尚说,我给你讲个故事说啊:……”所以这个“故事”可以无限次循环.我们可以把这个环节写成一个算法,这个算法是一直重复同样的操作,多次循环,直到孩子打断父母的“故事”为止.在现实生活中,还有好多这样的例子,在整个问题的执行过程中,一直循环执行相同的一部分步骤,直到符合或者不符合某个条件时才终止.请同学们举出这样的一些例子.例如:1.同学们从小学开始,每年9月初开学,到学校里上课,一个学期后放寒假,过了寒假再开学,又一个学期后放暑假,然后下一年9月初再开学回到学校上课→寒假→上课→暑假……,直到不再上学为止.2.今天是星期三,过了一天是星期四,过了两天是星期五……过了七天又是星期三,这样周而复始循环出现.3.计算1+2+3+4+ (100)第一步计算1+2;第二步将上一步中的运算结果与第三个数相加;第三步将上一步中的运算结果与第四个数相加;第四步将上一步中的运算结果与第五个数相加;……第i步将上一步中的运算结果与第i-1个数相加;……直到执行完第99步后才得到结果.上述例子都是在运行过程中循环执行相同的步骤,这样的算法结构就是循环结构.(引入新课,板书课题——循环结构)设计思路二:(问题导入)观察下面的流程图(图1),回答这个流程图的功能是什么?其中最主要的操作步骤是什么?图1这个流程图从学号为1的学生开始,输出他的成绩,然后判断学号是否为尾号,如果不是,让学号增加1,继续输出2号学生,再判断学号是否为尾号,如果不是,学号再增加1,输出下一位学生的成绩,直到学号为尾号,即最后一名学生才结束程序,因此这个流程图的功能是输出所有学生的成绩.其中最主要的就是多次重复执行的判断学号、改变学号、输出成绩的过程.要输出所有学生的成绩,应该有很多个输出框,为什么流程图中只有一个输出框?因为每次输出学生的成绩都是一种重复的操作:先确定要输出哪一位学生的成绩,然后再输出.这个过程将重复出现,进行循环操作,直到所有学生全部输出(即学号为尾号)才结束,这样的结构最主要的部分就是有循环形式的结构出现,我们把这样的结构称为循环结构.(引入新课,板书课题——循环结构)推进新课新知探究北京获得了2008年第29届奥林匹克运动会的主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对遴选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市将获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票数最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.这个表决过程可以用算法写出,请同学们写出这个算法.算法:S1 投票;S2 统计票数,如果有一个城市得票数超过总票数的一半,那么该城市获得主办权,转S3,否则淘汰得票最少的城市,转S1;S3 宣布主办城市.在这个过程中,如果统计票数后任意一个城市得票数都没有超过总票数的一半,那么将重复执行投票→统计票数这一过程,直到有一个城市得票数超过总票数的一半为止.这里出现了一个循环操作的内容,而最终应该循环多少次,在整个表决结果出来以前是无法知道的,也许第一次表决后就结束,也许要表决3次、4次,所以如果用流程图来表示,我们会发现仅仅利用前面学过的顺序结构和选择结构将无法实现,那么将怎样来画出这个问题的流程图呢?根据算法,是否要返回S1,即继续投票,就看是否有一个城市得票数超过总票数的一半,如果没有,将返回S1执行循环,如果有一个城市得票数超过总票数的一半,就立即结束表决,因此我们可以把流程图画成图2的形式:图2像上面的算法中的这种需要重复执行同一种操作的结构称为循环结构.重复执行的那些步骤就称为循环体.如图3,虚线框中的流程结构就是一种常见的循环结构,其功能是先执行框A,然后判断给定的条件P是否成立,若条件P不成立,则再执行框A,执行完框A后继续判断条件P是否成立,如果不成立,再执行框A,再判断条件P……,如此反复执行框A,直到判断条件P时发现成立为止,此时不再执行框A,而是脱离这个循环结构.图3 图4上面的这个循环结构实际上就是最常用的直到型(Until型)循环.在循环结构中还经常出现当型(While型)循环,其结构如图4中虚线框内的形式,它的功能是当给定条件P 成立时,先执行框A,然后判断给定的条件P是否成立,若条件P成立,则再执行框A,执行完框A后继续判断条件P是否成立,如果成立,再执行框A,再判断条件P……,如此反复执行框A,直到判断条件P时发现不成立为止,此时不再执行框A,而是脱离这个循环结构.比较上面的循环结构和上一节课学习的选择结构,它们都有一个判断框,选择结构中从判断框出来的两条分支都不再返回而是直接结束(当然也可以再执行其他步骤),这个判断框只会判断一次,而循环结构中从判断框出来的两条分支一条直接流向结束,另一条会返回上面的某一处继续执行相同的操作,这个判断框会判断多次.因此如果出现判断,就看判断后是不是返回执行相同的操作,如果不再返回,那就是选择结构,如果要返回重复执行某一些操作,那就是循环结构.应用示例思路1例1 用连加的方法写出求2102...222个++++的算法和流程图.分析:本题指明了用连加的方法,所以先进行2+2的运算,然后把结果再加2,然后把结果再加2,……然后把结果再加2,这样一共需要进行9次加法运算就可以输出运算结果了.因此我们在流程图中应该有一个统计进行了多少次加法运算的计数器,这个计数器的功能是每进行一次加法运算就“加1”,直到计数器内的统计数据达到9时就结束加法,输出运算结果.解:算法如下:S1 加法计数器I设置初值0;S2 和存储器S设置初值2;S3 计算S+2,结果放入和存储器S;S4 加法计数器I加1;S5 如果I≥9,则输出S,否则转S3.这个算法也可以用简洁的符号表示:S1 I←0;S2 S←2;S3 S←S+2;S4 I←I+1;S5 如果I≥9,则输出S,否则转S3.流程图如图5所示:图5思考1.这个循环结构中的循环体由哪几个步骤组成?由流程图很清晰地看出,重复执行的循环体由处理框“S←S+2”、“I←I+1”和判断框“I≥9”组成.2.本题中,变量I和S分别起什么作用?为什么两个变量的初值一个为0,一个为2?变量I实际上就是一个统计进行了多少次加法运算的计数器.根据流程图,开始时I←0,说明还没有进行运算,经过一次“S←S+2”后,再执行“I←I+1”,这时I=1,说明进行了一次加法运算,然后判断“I≥9”,结果为“N”,判断后返回执行“S←S+2”(注意:现在进行的是第二次加法运算),再下一步就又是执行“I←I+1”,这时I=2,说明进行了二次加法运算,然后继续判断“I≥9”.我们发现这样的规律:进行了多少次加法(S←S+2),I就等于这个次数.而题目一共要进行9次加法运算,所以如果“I≥9”不成立(判断结果为“N”),则继续累加,直到“I≥9”成立(判断结果为“Y”),才脱离循环结构,输出S,结束程序.当然,变量I只可能出现I=9,不可能出现I>9的情况,因为I=9时就跳出循环体,不再继续返回执行“S←S+2”和“I←I+1”了.图6变量S实际上就是一个存储加法运算的结果的存储单元.每次都是把上一次的运算结果加上2以后作为下一次的一个加数,所以我们把这个加法的结果一直存储在存储器S中.3.如果我们把判断框中的条件“I≥9”改为“I=9”是否可以?根据“思考2”的分析,变量I只可能出现I=9,不可能出现I>9的情况,所以这样修改也是可以的.4.如果我们把选择结构改变为如图6的形式,即把判断框中的条件“I≥9”改为“I<9”,再把“Y”和“N”交换是否也符合要求?根据图6,当加法的次数I满足“I<9”(判断结果为“Y”)时,说明加法的次数还不满9次,所以再返回执行加法运算“S←S+2”,再执行“I←I+1”(计数器增加1),然后继续判断“I<9”是否成立,直到判断结果为“N”(加法次数“不是小于9次”),说明已经加了9次了,这时脱离循环体,输出S,结束程序,所以这样的修改也是可以的.但是一般情况下,在这种循环结构中,我们总是习惯于“满足条件就脱离循环结构,否则返回继续执行”这种格式,这样统一以后便于他人阅读、理解和修改,也便于计算机专业人员把流程图翻译成计算机语言编成计算机程序.点评:特意设置一个难度较低的题目,是为了让学生容易着手,便于理解和掌握这种新型的程序结构.因此写出算法和流程图不难,老师不要急于做下一个例题,要把“思考”中的内容详细讲解,重点讲清变量I和S的意义,直到学生弄清楚循环结构的原理为止.例2 写出求1+2+3+4+5值的一个算法,并画出流程图.分析:本题前面课时已讲过,一共也只有4次加法运算,所以可以直接连加五个数.但是这个方法只能适用于运算次数比较少的形式,对连加次数较多时就显得比较烦琐.当然本题也可以使用等差数列求和公式,直接求前五项的和,这样可以求任意多次连加运算,但是对于没有学习过这个公式的人就不适用了.其实本题实质是连加,每次都是把上一次加法的结果再继续加上下一个数,直到这个加数是5为止.但是与例1相比,这个加数不断在变化,而加法的次数是固定的5次,所以我们可以在判断框中设置条件“I>5”(I就是这个不断变化的加数),当条件成立时就脱离循环体,输出和“S”,否则还将继续进行加法运算.解:算法如下:S1 S←0;S2 I←1;S3 S←S+I;S4 I←I+1;S5 如果I>5,则输出S,否则转S3.流程图如图7所示:图7点评:循环结构的判断框中的条件可以直接是循环的次数,也可以是脱离循环体的条件,应根据不同的情况选择不同的条件.例3 写出求1×2×3×4×5的值的一个算法,并画出流程图.分析:这个变式和例2相比,仅仅是把连加换成连乘,其他没有改变,所以判断框中的条件应该不变,“和存储器”S应该变成“积存储器”T,同时存储器的初值不能是0了,否则每次相乘后的积永远只能是0.同学们思考,这个“积存储器”T的初值应该是多少?应该是1!原理和初值S←0类似.解:算法如下:S1 T←1;S2 I←1;S3 T←T×I;S4 I←I+1;S5 如果I>5,则输出T,否则转S3.流程图如图8所示:图8变式训练1.写出求1×3×5×7×9×11值的一个算法,并画出流程图.分析:与例题相比,最主要的变化是循环变量I增加的幅度(以后称为步长)由1变为2,另外乘积式中因式的个数也由5个变成了6个,所以脱离循环体的条件也应该发生相应的变化,因此算法和流程图中改变的应该就是这两个地方.解:算法如下:S1 T←1;S2 I←1;S3 T←T×I;S4 I←I+2;S5 如果I>11,则输出T,否则转S3.流程图如图9所示:图92.对于输入的不同的正整数n,写出求1×2×4×8×…×2n值的一个算法,并画出流程图.分析:本题中最主要的变化是乘积式中因式的个数由输入的正整数n确定,且每次参与乘积的数都是上一次乘数的2倍,因此算法和流程图中改变的主要就是这两个地方.算法如下:S1 输入n;S2 T←1;S3 I←1;S4 T←T×I; S5 I←I×2;S6 如果I>2n,则输出T,否则转S4.流程图如图10所示:图10点评:从以上例题和变式可以看出,循环结构中必须嵌套一个选择结构,即有一个判断框,这个判断框的用途是用来控制什么时候脱离循环体的.如果没有判断框,或者判断框中的条件永远不可能成立,那么这样的循环就只能永远循环下去,从而形成“死循环”,所以在编写循环结构的算法的时候,要注意不能形成“死循环”.例4 设计计算10个数的平均数的一个算法,并画出流程图.分析:我们用一个循环依次输入10个数,再用一个变量存放数的累加和,在求出10个数的累加和后,除以10,就得到10个数的平均数.解:算法如下:S1 S←0;{使S=0}S2 I←1;{使I=1}S3 如果I≤10,那么转S4,否则转S7;{当I≤10时循环}S4 输入G;{输入一个数}S5 S←S+G;{求S+G,其和仍存放在S中}S6 I←I+1,转S3;{使I的值增加1,并转到S3}S7 A←S/10;{将平均数S/10存放在A中}S8 输出A.{输出平均数}流程图如图11所示:图11点评:如果流程图太长,我们可以把它分割成几块,每块根据连接点可以重新连接(如图11可以分割成图12的形式).图12图13思路2例1 运行图13的流程图后,输出的值是________________.分析:变量I和T的初值为I=0和T=10,然后开始执行循环体.先判断T<22是否成立,如果成立,就让变量I增加1,累加存储器T加4,继续循环,再判断条件T<22是否成立,当条件T<22不成立才脱离循环结构,输出当时计数器I中的值,否则一直进行循环.实际上这个流程图就是统计10加上多少个4才能使得和不大于22的最大次数,容易知道,使10+4n≤22的最大的正整数n为3,所以输出的值为3.答案:3变式训练流程图13表示了一个什么算法?试把“当条件不成立时脱离循环体,并且先判断,再执行”改成“直到条件成立时才脱离循环体,并且先执行,再判断”的形式.分析:变量I和T的初值为I=0和T=10,然后开始执行循环体.先让变量I增加1,累加存储器T加4,然后判断T≥22是否成立,如果不成立,就继续循环,再让变量I增加1,累加存储器T加4,然后判断T≥22是否成立,直到条件T≥22成立才脱离循环结构,输出当时计数器I中的值,否则一直进行循环.解:这个流程图表示的是求使10+4n≤22的最大的正整数n的一个算法.改成“直到条件成立时才脱离循环体,并且先执行,再判断”的形式的算法流程图如图14所示.图14点评:实际上,图13是一个当型循环,图14是直到型循环,这两种循环是有区别的.直到型循环是“直到条件成立时才脱离循环体”,并且是先执行,再判断;当型循环是“当条件不成立时脱离循环体”,并且是先判断,再执行.它们的这个区别目前先不必和学生讲清,通过本题可以让学生先有一个感性认识,知道两种循环可以相互转化,它们的实质性区别可以等学生有了一定的算法基础后,再做适当的回顾与补充.例2 写出求100991...651431211⨯++⨯+⨯+⨯的一个算法,并画出流程图 分析:本例属连加问题,只是每次的加数复杂一些,因此和存储器S 置初值0,循环变量I 与加数的关系为)1(1+⨯I I ,每次循环时增长的步长为2,直到满足条件I>99时脱离循环体,输出结果,结束程序.解:算法如下:S1 S←0;S2 I←1;S3 S←S+)1(1+⨯I I ; S4 I←I+2;S5 如果I>99,则输出S ,否则转S3.流程图如图15所示:图15点评:本题继续巩固和深化循环结构的概念及算法,通过改变步长和加数的复杂化,达到灵活应用的目的.知能训练一、课本本节练习1、2.二、补充练习1.写出计算12+22+32+…+1002的算法的流程图.2.一个两位数,个位数字与十位数字之和为9,写出一个把所有这样的两位数都输出的算法,并画出流程图.解答:一、课本练习1.算法如下:S1 S←0;S2 I←2;S3 S←S+I;S4 I←I+2;S5 如果I>100,则输出S,否则转S3.流程图如图16所示:图162.本题表示的算法是将学号从1号到50号中成绩达到或超过80分的学生的学号和成绩找出来.二、补充练习1.流程图如图17所示.图172.算法如下:S1 a←0;S2 a←a+1;S3 b←9-a;S4 m←10a+b;S5 输出m;S6 如果a>9,则结束程序,否则转S2.流程图如图18所示.图18点评:对于循环结构,要弄清楚循环体是什么,即哪些步骤执行循环操作,另外何时执行循环,何时脱离循环.掌握了上面两个问题,就不难写出算法及流程图.同时算法及流程图还要符合规范.课堂小结在某一算法中,如果出现从某处开始,按照一定的条件反复执行同一操作,那么这种结构就称为循环结构,反复执行的处理步骤称为循环体.在循环体中一定有一个选择结构,否则将无法从循环结构中脱离出来,从而形成死循环.此外,循环结构中通常都有一个起到循环计数的变量,这个变量一直都含在执行或终止循环体的条件中.循环结构的关键在于搞清楚循环体是什么,何时执行循环,脱离循环体的条件是什么.作业课本习题1.1 6、7、8、9.设计感想循环结构是三种算法结构中最复杂的一种,如果在一开始学习时不搞清楚,那么学生就很容易陷入循环中无法解脱出来,把自己给绕进去.所以这节课的关键是讲清概念,弄明白循环结构中各步骤之间的关系,尤其是明确循环体由哪些步骤组成,判断是继续执行循环还是脱离循环的条件是什么.所以在讲解应用示例设计思路1的例1时,速度不宜快,应该把循环变量I和累加器S的作用讲清讲透,因此我们在设计这个课题的时候有意比教材降低了起点,设置了一个更加简单的问题,并且还增加了一些思考的问题,这些问题教师不要轻易放过,一定要让所有的学生都明白了循环变量I和累加器S的作用后才可以继续进行下面的教学.还有变式的设置也都是为了让学生理解循环结构中两个变量的作用.在例题和课堂练习中,可以让学生先写出算法,再用流程图表示出来.如果学生对脱离循环的条件不甚明白,老师可以把流程图实际操作一遍,用表格的形式列出各个变量(尤其是循环变量)的数值变化过程,便于学生找出判断框中的条件.对于溢出循环体的条件,有时候学生会比正确结果相差1,这个问题是由于学生对溢出的边界有些模糊导致的,教师可以引导学生观察循环变量的值和运算(或执行)的次数以及题目要求运算的总次数的关系,从中得到正确的判断条件.习题详解习题1.11.算法如下:S1 输入a,h 的值;S2 S←21ah.流程图如下(左)图所示.2.算法如下:S1 输入x ;S2 判断是否x<2,若是,则输出“不退票”;否则,进入S3;S3 输出“y=x-(10x+1)×2”.流程图如下(右)图所示.第1题图 第2题图3.令⎩⎨⎧=+=-)2(,734)1(,12y x y x 流程图如下(左)图所示. 4.b a的整数部分用[b a]表示,则流程图如下(右)图所示.第3题图 第4题图5.算法如下:S1 输入a,b,c ;S2 如果a<b 且a<c ,则输出a ,否则,进入S3;S3 如果b<c ,则输出b ,否则,输出c.流程图如下(左)图所示.6.算法如下:S1 输入a,b ;S2 如果a>0,则输出x>-b a ,否则,输出x<-b a.流程图如下(右)图所示.第5题图 第6题图7.算法如下:S1 取序列的第一个数;S2 将所取出的数与18比较;S3 如果相等,则输出该数,结束算法;S4 如果不相等,则取下一个数,再执行第二步.流程图:用S i 代表数列中的第i 个数.第7题图第8题图8.算法分析:判断分别以这3个数为三边长的三角形是否存在,只需要验证这三个数当中任意两个数的和是否大于第三个数.这就需要用到条件结构.算法如下:S1 计算a+b,b+c,a+c;S2 判断a+b >c,b+c >a,c+a >b是否同时成立,如成立,则S △ABC =4/])2/)(([222222b a c a c -+-如不成立,则输出不存在这样的三角形.流程图如图所示:9.算法如下:S1 x←2+21; S2 i←1; S3 x←2+x 1; S4 i←i+1;S5 判断是否i≤n,若是,返回S3,否则,进入S6;S6 输出x.流程图如右图所示.第9题图。

高中数学 第一章 算法初步 第1节 第2课时 程序框图、顺序结构教学案 新人教A版必修3

第2课时程序框图、顺序结构[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P6~P9,回答下列问题.(1)常见的程序框有哪些?提示:终端框(起止框),输入、输出框,处理框,判断框.(2)算法的基本逻辑结构有哪些?提示:顺序结构、条件结构和循环结构.2.归纳总结,核心必记(1)程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)常见的程序框、流程线及各自表示的功能①算法的三种基本逻辑结构算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.②顺序结构顺序结构是由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构,用程序框图表示为:[问题思考](1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束.(2)顺序结构是任何算法都离不开的基本结构吗?提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构.[课前反思]通过以上预习,必须掌握的几个知识点:(1)程序框图的概念:;(2)常见的程序框、流程线及各自表示的功能:;(3)算法的三种基本逻辑结构:;(4)顺序结构的概念及其程序框图的表示: .问题背景:计算1×2+3×4+5×6+…+99×100.[思考1] 能否设计一个算法,计算这个式子的值.提示:能.[思考2] 能否采用更简洁的方式表述上述算法过程.提示:能,利用程序框图.[思考3] 画程序框图时应遵循怎样的规则?名师指津:(1)使用标准的框图符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是唯一一个具有超过一个退出点的程序框.(4)在图形符号内描述的语言要非常简练清楚.(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序.讲一讲1.下列关于程序框图中图形符号的理解正确的有( )①任何一个流程图必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一的具有超过一个退出点的图形符号;④对于一个程序框图来说,判断框内的条件是唯一的.A.1个 B.2个 C.3个 D.4个[尝试解答] 任何一个程序必须有开始和结束,从而流程图必须有起止框,①正确.输入、输出框可以用在算法中任何需要输入、输出的位置,②错误.③正确.判断框内的条件不是唯一的,④错误.故选B.答案:B画程序框图时应注意的问题(1)画流程线不要忘记画箭头;(2)由于判断框的退出点在任何情况下都是根据条件去执行其中的一种结果,而另一个则不会被执行,故判断框后的流程线应根据情况注明“是”或“否”.练一练1.下列关于程序框图的说法中正确的个数是( )①用程序框图表示算法直观、形象、容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的“一图胜万言”;③在程序框图中,起止框是任何程序框图中不可少的;④输入和输出框可以在算法中任何需要输入、输出的位置.A.1 B.2 C.3 D.4解析:选D 由程序框图的定义知,①②③④均正确,故选D.观察如图所示的内容:[思考1] 顺序结构有哪些结构特征? 名师指津:顺序结构的结构特征:(1)顺序结构的语句与语句之间、框与框之间按从上到下的顺序执行,不会引起程序步骤的跳转.(2)顺序结构是最简单的算法结构. (3)顺序结构只能解决一些简单的问题.[思考2] 顺序结构程序框图的基本特征是什么? 名师指津:顺序结构程序框图的基本特征:(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框. (2)各程序框用流程线依次连接.(3)处理框按计算机执行顺序沿流程线依次排列. 讲一讲2.已知P 0(x 0,y 0)和直线l :Ax +By +C =0,写出求点P 0到直线l 的距离d 的算法,并用程序框图来描述.[尝试解答] 第一步,输入x 0,y 0,A ,B ,C ; 第二步,计算m =Ax 0+By 0+C ; 第三步,计算n =A 2+B 2; 第四步,计算d =|m |n;第五步,输出d . 程序框图如图所示.应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法. (2)梳理解题步骤.(3)用数学语言描述算法,明确输入量,计算过程,输出量. (4)用程序框图表示算法过程. 练一练2.写出解不等式2x +1>0的一个算法,并画出程序框图. 解:第一步,将1移到不等式的右边; 第二步,不等式的两端同乘12;第三步,得到x >-12并输出.程序框图如图所示:—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.2.本节课要重点掌握的规律方法(1)掌握画程序框图的几点注意事项,见讲1; (2)掌握应用顺序结构表示算法的步骤,见讲2. 3.本节课的易错点对程序框图的理解有误致错,如讲1.课下能力提升(二) [学业水平达标练]题组1 程序框图1.在程序框图中,一个算法步骤到另一个算法步骤的连接用( ) A .连接点 B .判断框 C .流程线 D .处理框解析:选C 流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A ,B ,D 都不对.故选C.2.a 表示“处理框”,b 表示“输入、输出框”,c 表示“起止框”,d 表示“判断框”,以下四个图形依次为( )A .abcdB .dcabC .bacdD .cbad 答案:D3.如果输入n =2,那么执行如下算法的结果是( ) 第一步,输入n . 第二步,n =n +1. 第三步,n =n +2. 第四步,输出n . A .输出3 B .输出4 C .输出5 D .程序出错 答案:C题组2 顺序结构4.如图所示的程序框图表示的算法意义是( ) A .边长为3,4,5的直角三角形面积 B .边长为3,4,5的直角三角形内切圆面积 C .边长为3,4,5的直角三角形外接圆面积 D .以3,4,5为弦的圆面积解析:选B 由直角三角形内切圆半径r =a +b -c2,知选B.第4题图第5题图5.(2016·东营高一检测)给出如图所示的程序框图:若输出的结果为2,则①处的执行框内应填的是( )A.x=2 B.b=2C.x=1 D.a=5解析:选C ∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.6.写出如图所示程序框图的运行结果:S=________.解析:S=log24+42=18.答案:187.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.程序框图如图:8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.解:自然语言算法如下:第一步,求f(3)的值.第二步,求f(-5)的值.第三步,将前两步的结果相加,存入y.第四步,输出y.程序框图:[能力提升综合练]1.程序框图符号“ ”可用于( ) A .输出a =10 B .赋值a =10 C .判断a =10 D .输入a =1解析:选B 图形符号“ ”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.2.(2016·广州高一检测)如图程序框图的运行结果是( )A.52B.32 C .-32D .-1解析:选C 因为a =2,b =4,所以S =a b -b a =24-42=-32,故选C.3.(2016·广州高一检测)如图是一个算法的程序框图,已知a 1=3,输出的b =7,则a 2等于( )A .9B .10C .11D .12解析:选C 由题意知该算法是计算a 1+a 22的值.∴3+a 22=7,得a 2=11,故选C. 4.(2016·佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是( )A .x =1B .x =2C .b =1D .b =2解析:选B 若b =6,则a =7,∴x 3-1=7,∴x =2.5.根据如图所示的程序框图所表示的算法,输出的结果是________.解析:该算法的第1步分别将1,2,3赋值给X ,Y ,Z ,第2步使X 取Y 的值,即X 取值变成2,第3步使Y 取X 的值,即Y 的值也是2,第4步让Z 取Y 的值,即Z 取值也是2,从而第5步输出时,Z 的值是2.答案:26.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.图甲 图乙解析:图甲空白部分的面积为a 2-π16a 2,故图乙①中应填S =a 2-π16a 2.答案:S =a 2-π16a 27.在如图所示的程序框图中,当输入的x 的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为3时,求输出的f (x )的值. (3)要想使输出的值最大,求输入的x 的值.解:(1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题. (2)当输入的x 的值为0和4时,输出的值相等,即f (0)=f (4). 因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0, 所以m =4.所以f (x )=-x 2+4x . 则f (3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )的值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4, 所以当x =2时,f (x )max =4,所以要想使输出的值最大,输入的x 的值应为2.8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x=2的含义是什么?(2)图框②中y1=ax+b的含义是什么?(3)图框④中y2=ax+b的含义是什么?(4)该程序框图解决的是怎样的问题?(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.解:(1)图框①中x=2表示把2赋值给变量x.(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax +b的值,并把这个值赋给y1.(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax +b的值,并把这个值赋给y2.(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.(5)y1=3,即2a+b=3. ⑤y2=-2,即-3a+b=-2. ⑥由⑤⑥,得a=1,b=1,所以f(x)=x+1.。

高中数学 第1章 算法初步 1.2 流程图 1.2.1 顺序结构

1.2.1 顺序结构整体设计教材分析图1顺序结构是一种最简单、最常用、最重要的程序结构,它不存在条件判断、控制转移和重复执行的操作.顺序结构指的是依次进行多个处理的结构,它是由若干个依次执行的处理步骤组成的,是任何一个算法都离不开的最基本、最简单的结构,因此也是最重要的程序结构,其特点是各个部分按照出现的先后顺序执行.一个顺序结构可以由一个或多个语句块组成,且仅有一个入口和一个出口.最简单的一种顺序结构是每一个语句块中只含有一条不产生控制转移的执行语句.每个语句块本身也可以是一个顺序结构,因此一个顺序结构可以由许多顺序执行的语句组成.在顺序结构程序中,各语句是按照位置的先后次序,顺序执行的,且每个语句都会被执行到.在日常生活中有很多这样的例子.例如在淘米煮饭的时候,总是先淘米,然后才煮饭,不可能是先煮饭后淘米.所以在编写顺序结构的应用程序的时候,也存在着明显的先后次序,应注意这种先后顺序关系.当然,为了让计算机处理各种数据,首先就应该把源数据输入到计算机中;计算机处理结束后,再将目标数据以人能够识别的方式输出.对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.三维目标通过实际生活中的实例和典型的顺序结构案例,使学生理解顺序结构的意义,并能够用流程图表示顺序结构以及能用顺序结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,达到提升学生逻辑思维能力的目标.重点难点教学重点:用顺序结构的流程图表示简单问题的算法.教学难点:用流程图表示算法.课时安排1课时教学过程导入新课设计思路一:(情境导入)有一个笑话,是赵本山和宋丹丹的小品中演的,宋丹丹问:“要把大象装冰箱,总共分几步?”赵本山答不上来,宋丹丹给出答案:“三步!第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.”尽管这是一个笑话,但是宋丹丹的答案中把大象放进冰箱分了明确的三步:第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.这三步缺一不可,每步都必须执行,且先后顺序不可调换.我们不知道宋丹丹是不是学习过算法,但是她的回答恰恰体现了算法中最基本、最简单的一种结构,即顺序结构的思想.(引入新课,板书课题——顺序结构)设计思路二:(问题导入)我们做任何一件事,都要按照一定的顺序来按部就班地做.例如做饭就是这样,我们必须先淘米,再把米和水按一定比例一起放在电饭锅里,再插上电源打开开关,这三个步骤缺一不可,每步都必须执行,且顺序不能调换.解决数学问题更是如此,例如我们要确定已知线段AB的三等分点,那么应该怎样来完成呢?S1 过线段AB的一个端点(不妨设A)作射线AP;S2 在AP上依次截取AC=CD=DE;S3 连结BE;S4 分别过C、D作BE的平行线,交AB于点M、N,则M、N就是线段AB的三等分点.上述四个步骤也是缺一不可,每步都必须执行,且顺序不能调换.像这样的按一定先后顺序依次执行的一种结构,就是算法中最基本、最简单的一种结构,即顺序结构.(引入新课,板书课题——顺序结构)推进新课新知探究有红和蓝两个墨水瓶,但现在却把红墨水错装在了蓝墨水瓶中,蓝墨水错装在了红墨水瓶中,要求将其互换,应该怎么解决这个问题?由于两个墨水瓶中的墨水不能直接交换,所以应该通过引进第三个空墨水瓶的办法进行交换.其算法如下:S1 取一只空墨水瓶(设其为白色),将红墨水瓶中的蓝墨水装入白墨水瓶中;S2 将蓝墨水瓶中的红墨水装入红墨水瓶中;S3 将白墨水瓶中的蓝墨水装入蓝墨水瓶中.在计算机程序中,与这个例子类似,每个变量都有自己的存放空间,即每个变量都有自己的存储单元,每个存储单元都有各自的“门牌号码”(地址),要交换两个变量的值,需要借助一个新的存储单元来完成.例如若x、y的初值为x=1、y=2,现在要交换两个变量x、y的值,使得x=2、y=1,那么我们应该进行如下的操作:S1 p←x;S2 x←y;S3 y←p.S1的意思是先将x的值赋给变量p,这时存储变量x的单元可以做他用,但是这时x 的值并没有发生改变,仍然等于1,当然p的值为1;S2的意思是再将y的值赋给变量x,这时存储变量y的单元可以做他用,但是这时y 的值并没有发生改变,仍然等于2,而原来变量单元x中的值已经发生变化,不再是1,而变成了y的值2;S3的意思是最后将p的值赋给变量y,这时y的值发生改变,不再是原来的2,而等于p的值1,而变量单元x没有涉及,其中的值没有发生变化,仍然是2,p的值也还是1.经过上面S1、S2、S3三个步骤,我们发现两个变量x、y的值进行了交换,变成了x=2、y=1.这个算法可以用如图2所示的流程图来清晰地表示:图2 图3在图2的流程图中,虚线框内三个处理框中的步骤依次执行,像这种依次进行多个处理的结构称为顺序结构(sequence structure).顺序结构就是如图3的虚线框内的结构,其中A、B两个框是依次执行的.顺序结构是一种最简单、最基本的结构.应用示例思路1例1 半径为r的圆的面积计算公式为S=πr2当r=10时,写出计算圆面积的算法,画出流程图.分析:本题只需要计算当半径r=10时的圆面积,所以直接取r=10代入圆的面积计算公式S=πr2即可.解:算法如下:S1 r←10;{把10赋给变量r}S2 S←πr2;{用公式S=πr2计算圆的面积}S3 输出S.{输出圆的面积}上述算法的流程图可以表示成图4.图4 图5点评:已知半径求圆的面积,只需要直接代入公式就行了.由于本题只计算半径r=10时的圆面积,所以直接把10赋给变量r即可.如果是求一组或几个半径不同的圆的面积,可以用输入语句代替赋值语句“r←10”,流程图如图5所示.输入语句和赋值语句是两种不同的语句,它们是有区别的.输入语句在每次执行的时候要先输入变量的值,然后才执行下一个语句,每次执行都可以输入不同的变量值,而不需要重新修改计算机程序;赋值语句不需要先输入变量的值,运行时直接就可以往下执行了,每一次执行的时候都只能对当前所赋给的值进行运算,变量的值不能修改,要计算新的数据就必须修改计算机程序.所以输入语句适用于计算几个或一组变量,运行程序后不能自动执行,要等待用户输入变量的值;赋值语句只适用于计算固定的一个数值,运行程序后会自动执行直到输出结果.有条件的学校可以在计算机上执行这两种不同的语句,让学生在实践中对比它们的区别.例2 写出作△ABC 的外接圆的一个算法.分析:作圆其实就是确定圆心位置和半径大小,△ABC 的外接圆的圆心就是△ABC 中两条边的垂直平分线的交点,半径就是这个圆心到任意一个顶点的距离.因此要作△ABC 的外接圆,只需要依次作两条边AB 和BC 的垂直平分线,得到交点,即外接圆的圆心M ,然后再以M 为圆心,MA 为半径作圆即可.图6解: 算法如下:S1 作AB 的垂直平分线l 1;S2 作BC 的垂直平分线l 2;S3 以l 1与l 2的交点M 为圆心,以MA 为半径作圆,圆M 即为△ABC 的外接圆.流程图如图6.点评:以上过程通过依次执行S1到S3这三个步骤,完成了作外接圆这一问题,这种依次进行多个处理的结构就是顺序结构.例3 已知一个三角形的三边长分别为2,3,4.利用海伦—秦九韶公式设计一个算法,求出它的面积,画出算法的流程图.分析:如果一个三角形的三边为a ,b ,c ,根据海伦—秦九韶公式可以直接计算这个三角形的面积.令p=2c b a ++,则三角形面积为S=))()((c p b p a p p ---.因此这是一个简单的问题,只需先由a=2、b=3、c=4算出p 的值,再将它代入公式,最后输出结果S ,用顺序结构就能够表达算法.解:流程图如图7:图7点评:本题只需要先求出p ,然后再求S ,依次代入公式即可,用顺序结构容易完成.例4 已知一个数的13%为a ,写出求这个数的算法,并画出程序框图.分析:设这个数为b ,则b×13%=a,得到b=a÷10013.算法就按照这个计算方法,先输入a ,再计算b.图8解:算法如下:S1 输入a ;S2 计算b=a÷10013; S3 输出b.程序框图如图8所示:点评:设计算法时,一般先用自然语言表述,再根据自然语言所描述的算法画程序框图.在逐步熟练后也可以直接画程序框图.对于较复杂的问题,我们建议还是先用自然语言表述算法过程,后画出程序框图.思路2例1 画出用现代汉语词典查阅“仕”字的程序框图.分析:利用现代汉语词典查字有多种方法,如部首查字法、拼音查字法等,现以部首查字法为例加以说明.先在“部首目录”中查“二画”中“亻”的页码(x ),再从x 页开始的“亻”部中的“三画”中查找“仕”的页码(y ),然后翻到y 页,查阅“仕”.解:流程图如图9所示:图9点评:查阅词典的过程是一个按部就班的固定流程,所以可以用顺序结构的流程图来清晰地显示操作流程.例2 已知函数f(x)=x x +1,实数a 1=f(1),a n+1=f(a n )(n∈N*),试写出一个求a 4的算法,并画出程序框图.分析:由f(x)= x x +1及a 1=f(1),可得到a 1=111+=21,再由递推公式a n+1=f(a n )=nn a a +1(n∈N *)可依次得到a 2,a 3,a 4.图10解:算法如下:S1 计算a 1=111+=21; S2 计算a 2=31111=+a a ; S3 计算a 3=41122=+a a ; S4 计算a 4=51133=+a a ; S5 输出a 4.流程图如图10所示:点评:这个问题实际上就是已知数列的递推公式和首项,然后依次求数列的各项的问题.由于数列的知识在必修5中出现,对于还没有学习必修5的学校,就没有必要介绍数列的知识,对于先学习了数列内容的学校,可以提醒学生,已知数列的递推公式和首项求数列的各项,用计算机可以很容易做到,因此计算机可以代替人做一些重复的机械的运算.知能训练1.根据程序框图(图11)输出的结果是( )图11A.3B.1C.2D.02.已知华氏温度F 与摄氏温度C 的转换公式是:(F -32)×95=C ,写出一个算法,并画出流程图使得输入一个华氏温度F ,输出其相应的摄氏温度C.3.若x 1,x 2是一元二次方程2x 2-3x+1=0的两个实根,求x 21+x 22的值.给出解决这个问题的一个算法,并画出程序框图.4.写出解方程组⎪⎩⎪⎨⎧=+=+=+4,5,3x z z y y x 的一个算法,并用流程图表示算法过程.解答:1.该算法的第1步分别将1、2、3三个数赋给x 、y 、z ,第2步使x 取y 的值,即x 的值变成2,第3步使p 取x 的值,即p 的值也是2,第4步让z 取p 的值,即z 取值也是2,从而得第5步输出时,z 的值是2.答案:C2.算法如下:S1 输入华氏温度F ;S2 计算C=(F -32)×95; S3 输出C.流程图如图12所示:图123.算法如下:S1 由韦达定理得x 1+x 2=23,x1x 2=21; S2 将x 21+x 22用x 1+x 2和x 1x 2表示出来;(即x 21+x 22=(x 1+x 2)2-2x 1x 2)S3 将x 1+x 2=23,x 1x 2=21代入上式,得x 21+x 22=45; S4 输出x 21+x 22的值.流程图如图13所示:图134.算法如下:S1 第1,第2个方程不动,用第3个方程减去第1个方程,得到⎪⎩⎪⎨⎧=+-=+=+1,5,3z y z y y xS2 第1,第2个方程不动,第3个方程加第2个方程,得到⎪⎩⎪⎨⎧==+=+62,5,3z z y y xS3 将上面的方程组自下而上回代求解,从而解出x=1,y=2,z=3;S4 输出方程组的解.流程图如图14所示:图14点评:顺序结构中的每个步骤是依次执行的,每个语句都会被执行到.因此只需要按照流程图的顺序依次处理即可得到结果.还可以先用自然语言描述问题处理思路和方法,然后把自然语言转化为流程图.课堂小结1.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框和起止框外,其他框图符号只有一个进入点和一个退出点;④在图形符号内描述的语言要非常简练、清楚.2.依次进行多个处理的结构称为顺序结构.3.画流程图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为流程图.作业1.写出解不等式组⎩⎨⎧>+<-)2(512)1(,12x x 的一个算法,并画出流程图. 2.春节到了,糖果店的售货员忙极了.请你设计一个算法,帮助售货员算账,已知果糖每千克10.4元,奶糖每千克15.6元,果仁巧克力每千克25.2元.那么依次购买这三种糖果a ,b ,c 千克,应付多少钱?画出流程图.3.输入一个三位正整数,把这个数的十位数字和个位数字对调,输出对调后的三位数.例如输入234,输出243,设计算法并画出流程图.解答:1.算法如下:S1 解不等式(1),得x<3;S2 解不等式(2),得x>2;S3 求上述两个不等式解的公共部分,得原不等式的解集为{2<x<3};S4 写出这个解集.流程图如图15所示:图152.算法如下:S1 输入a ,b ,c 的值;S2 P←10.4a+15.6b+25.2c ;S3 输出P.流程图如图16所示:图163.算法如下:S1 输入三位数n;S2 求出n的百位数字a;S3 求出n的十位数字b;S4 求出n的个位数字c;S5 m←100a+10c+b;S6 输出m.流程图如图17所示:图17设计感想对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.然而这毕竟是学生第一次尝试编写完整的流程图,所以我们可以先选择一些很容易看出操作流程的问题来让学生实践.本课时所选择的例题,如果不是要求画出流程图,则都是很简单的数学问题或实际问题,对于高中学生来说,应该轻而易举地解决.现在老师要做的工作就是不让学生解出具体题目的解答过程和答案,而是要学生说出解题思路以及设计方案,这个思路和方案要简单可行,甚至是还不会做这样的题目的人看了你的方案后,只要按照这个方案所确定的步骤一步一步按部就班地操作,就可以得到结果,这就是流程图所要表示的意思.一个复杂的数学问题的计算机程序是需要各个部门各个学科的人齐心协力共同合作才能够完成,数学工作者的任务就是研究出数学问题或者实际问题的解决方案,即先干什么,再干什么,再把这个方案写成其他学科的人也能够看懂的操作流程,这就是流程图.然后计算机专业人员就把流程图中的每一个步骤翻译成计算机能够识别的计算机语言,这样就成了计算机程序.我们把计算机程序输入电脑,让电脑开始运行程序,这样计算机就会自动根据数学工作者所设计的流程自动执行,从而达到我们的目的.所以我们在画出流程图的时候,未必每一个步骤都要写出完整细致的详细操作方法,只要提供思路即可.例如作业3中,要调换一个三位数的十位数字和个位数字,我们必须先求出十位数字和个位数字分别是多少,因此在算法中有如下步骤:S3 求出n的十位数字b;S4 求出n的个位数字c.对于算法以及流程图,这样就已经够了,至于三位数n的十位数字b到底怎么样求,这个具体的求法就不是流程图部分所要考虑的内容了,换句话说,就是这个问题已经不需要数学工作者来解决,而是计算机研发人员的事情.实际上,这个求法需要用到数学中的取整函数,计算机中已经有了这样的函数了,这个问题对于计算机专业人员来说是很容易的事情.所以,流程图就是要编写出解决问题的步骤,每个步骤具体怎么操作,我们可以不必过于追究,但是我们必须保证这个步骤具有可操作性.因此,学习算法以及编写流程图对学生思维能力的提高是十分有用的,老师和学生都应该引起足够的重视.11。

高中数学 第一章 算法初步 1.2 流程图教案 苏教版必修3

1.2 流程图教学目标:1.理解流程图的概念;2.能识别和理解简单框图的功能.教学重点:流程图的概念.教学难点:用流程图表示算法.教学过程:一、建构教学1.流程图的概念:流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描述的语言要非常简练、清楚.二、数学运用例1 已知1()21xf x=+,写出求(4)(3)(2)(4)f f f f-+-+-++L的一个算法,并画出流程图.解1S0S←;2S4I←-;3S 1()21I f I ←+; 4S ()S S f I ←+; 5S 1I I ←+; 6S 若4I ≤,转3S ,否则输出S .例2高一某班一共有50名学生,设计一个算法,统计班上数学成绩良好(分数大于80且小于90)和优秀(分数大或等于90)的学生人数,并画出流程图. 解:算法如下:1S 1n ←,0a ←,0b ←;2S 输入成绩r ;3S 若89r >,则1a a ←+,转5S ;4S 若80r >,则1b b ←+;5S 1n n ←+;6S 若50n ≤,转2S ,否则,输出a 和b ;三、要点归纳与方法小结 本节课学习了以下内容:1.如何识别简单的流程图所描述的算法. 2. 能识别和理解简单框图的功能。

高中数学第一章算法初步1.1.2第1课时程序框图顺序结构学案新人教A版必修307182139

高中数学第一章算法初步1.1.2第1课时程序框图顺序结构学案新人教A版必修3071821391.了解程序框图的含义,理解程序框图的作用.(难点)2.掌握各种程序框和流程线的画法与功能.3.理解程序框图中的顺序结构,会用顺序结构表示算法.(重点)[基础·初探]教材整理1 程序框图阅读教材P6的内容,完成下列问题.1.程序框图(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.2.常见的程序框、流程线及各自表示的功能图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框○连接点连接程序框图的两部分在程序框图中,表示判断框的图形是( )【解析】四个选项中的程序框依次为处理框,输入、输出框,判断框和起止框.【答案】 C教材整理2 顺序结构阅读教材P8~P9,完成下列问题.1.定义:顺序结构是由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构.2.程序框图表示为:3.顺序结构的特点语句与语句之间、框与框之间是按照从上到下的顺序进行的.上图所示虚框内是一个顺序结构,其中“步骤n”和“步骤n+1”两个框是按顺序执行的,即只有在执行完“步骤n”后,才能接着执行“步骤n+1”.1.判断(正确的打“√”,错误的打“×”)(1)程序框图是算法的一种表现形式.( )(2)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束.( )(3)一个程序框图中可以没有顺序结构.( )【答案】(1)√(2)√(3)×2.如图1­1­1所示的程序框图,输出的结果是S=7,则输入的A值为________.图1­1­1【解析】该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.【答案】 3[小组合作型]程序框图的认识和理解下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.在程序框图中,一个判断框可能同时产生两种结果D.程序框图与流程图不是同一个概念【精彩点拨】根据程序框图的定义和程序框的功能判断.【尝试解答】由于算法设计时要求返回执行的结果,故必须要有输出框,对于变量的赋值可通过处理框完成,故算法设计时不一定要有输入框,因此B错;一个判断框产生的结果是唯一的,故C错;程序框图就是流程图,所以D错.故选A.【答案】 A1.理解程序框图中各框图的功能是解此类题的关键,用程序框图表示算法更直观、清晰、易懂.2.起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.3.输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.4.处理框用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.5.判断框是唯一具有超过一个退出点的图形符号.[再练一题]1.关于程序框图的框图符号的理解,正确的是( )①任何一个程序框图都必须有起止框;②输入框、输出框可以在算法中任何需要输入、输出的位置出现;③判断框是唯一具有超过一个退出点的框图符号;④对于一个程序来说,判断框内的条件是唯一的.A .1个B .2个C .3个D .4个【解析】 任何一个程序都有开始和结束,从而必须有起止框;输入、输出框可以在算法中任何需要输入、输出的位置出现,判断框内的条件不是唯一的,如a >b ?也可以写为a ≤b ?.但其后步骤需相应调整,故①②③正确,④错误.【答案】 C利用顺序结构表示算法已知直线l :Ax +By +C =0(A 2+B 2≠0),点P (x 0,y 0),设计一个算法计算点P到直线l 的距离,并画出程序框图.【精彩点拨】 可以利用点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,给公式中的字母赋值,再代入计算.【尝试解答】 用自然语言描述算法如下: 第一步,输入点P 的横、纵坐标x 0,y 0, 输入直线方程的系数,即常数A ,B ,C . 第二步,计算z 1=Ax 0+By 0+C . 第三步,计算z 2=A 2+B 2. 第四步,计算d =|z 1|z 2.第五步,输出d . 程序框图:1.对于套用公式求解的问题往往运用顺序结构,编写顺序结构的算法,应写公式,看公式中的条件是否满足,若不满足,则先求出需要量,然后将公式中涉及的量全部代入求值即可.2.应用顺序结构表示算法的步骤(1)认真审题,理清题意,明确解决方法;(2)明确解题步骤;(3)数学语言描述算法,明确输入量、计算过程、输出量;(4)用程序框图表示算法过程.3.顺序结构在程序框图中的表现就是用流程线将程序框自上而下连接起来,按顺序执行.中间没有“转弯”,也没有“回头”,顺序结构只能解决一些简单问题.[再练一题]2.把直线l改为圆C:(x-a)2+(y-b)2=r2,写出求点P0(x0,y0)到圆上的点的距离最大值的算法及程序框图.【解】第一步,输入点P0的横、纵坐标x0,y0,输入圆心C的横、纵坐标a,b,圆的半径r.第二步,计算z1=x0-a2+y0-b2.第三步,计算d=z1+r.第四步,输出d.程序框图:程序框图的应用如图1­1­2所示是解决某个问题而绘制的程序框图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)该框图解决的是怎样的一个问题?(2)若最终输出的结果y1=3,y2=-2,当x取5时输出的结果5a+b的值应该是多大?(3)在(2)的前提下,输入的x值越大,输出的ax+b是不是越大,为什么?(4)在(2)的前提下,当输入的x值为多大时,输出结果ax+b等于0?图1­1­2【精彩点拨】根据程序框图的意义进行分析.【尝试解答】(1)该框图解决的是求函数f(x)=ax+b的函数值的问题.其中输入的是自变量x的值,输出的是x对应的函数值.(2)y1=3,即2a+b=3.①y2=-2,即-3a+b=-2.②由①②得a=1,b=1.所以f(x)=x+1.所以当x取5时,5a+b=f(5)=5+1=6.(3)输入的x值越大,输出的函数值ax+b越大,因为f(x)=x+1是R上的增函数.(4)令f(x)=x+1=0,得x=-1,因此当输入的x值为-1时,输出的函数值为0.由程序框图识别算法功能应注意的问题根据算法功能求输出结果,或根据输出结果求框图中某一步骤,应注意以下几点:(1)要明确各框图符号的含义及作用;(2)要明确框图的方向流程;(3)要正确认图,即根据框图说明该算法所要解决的问题.其中,明确算法功能是解决此类问题的关键.[再练一题]3.写出下列算法的功能:(1)图1­1­3(1)中算法的功能是(a>0,b>0)________.(2)图1­1­3(2)中算法的功能是__________________________.图1­1­3【答案】(1)求以a,b为直角边的直角三角形斜边c的长(2)求两个实数a,b的和[探究共研型]程序框图的画法与特征探究1【提示】(1)使用标准的程序框图的图形符号.(2)程序框图一般按照从上到下、从左到右的顺序画.(3)一个完整的程序框图必须有终端框,用于表示一个算法的开始和结束.(4)除判断框外,大多程序框图的图形符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.(5)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另外一种是多分支判断,可能有几种不同的结果.(6)在程序框图的图形符号内,用于描述的语言要简练、清楚.探究2 画程序框图时,一般共分几步?【提示】画程序框图一般分三步:(1)第一步:用自然语言表述算法步骤(又称算法分析);(2)第二步:确定每一个算法步骤所含的逻辑结构,并用相应的程序框图表示;(3)第三步:将所有步骤的程序框图用流程线连接起来,并加上终端框,得到整个表示算法的程序框图.探究3 程序框图与计算机程序的关系是什么?【提示】在设计计算机程序时要画出程序运行的程序框图,有了这个程序框图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端.1.对程序框图叙述正确的是( )A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是【解析】由程序框的算法功能可知选项C正确.【答案】 C2.根据所给的程序框图,如图1­1­4所示,输出的结果是( )图1­1­4A.3 B.1C.2 D.0【解析】由X=Y,得X=2;由Y=X,得Y=2;由Z=Y,得Z=2.【答案】 C3.若R =8,则如图1­1­5所示的程序框图运行后的结果为a =________.图1­1­5【解析】 由R =8得b =R2=2,a =2b =4. 【答案】 44.如图1­1­6是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________.图1­1­6【解析】 根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.【答案】5.写出解不等式2x +1>0的一个算法,并画出程序框图. 【解】 第一步,将1移到不等式的右边; 第二步,不等式的两端同乘12;第三步,得到x >-12.程序框图如图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第1章算法初步1-2流程图互动课堂学案互动课堂疏导引导1.流程图流程图又称程序框图,是一种用规定的图形、流程线及文字说明来准确、直观地表示算法的图形.通常,流程图由一些图框和流程线组成,一个或几个图框的组合表示算法中的一个步骤;流程线是方向箭头,按照算法进行的顺序将图框连接起来.框图的名称与功能(1)起止框起止框表示算法的开始和结束,通过用圆角矩形表示,它一般出现在一个流程的开头或结尾.(2)输入、输出框输入、输出框表示一个算法的输入和输出的操作,一般画成平行四边形.(3)处理框处理框通常表示对输入或输出的信息进行处理,一般是“赋值”“计算”.其形状通常为矩形.(4)判断框判断框的功能是根据条件决定执行两条路线中的某一条,它有两条输出路线.如果判断某条件成立,则出口处标明“是”或“Y”,若不成立时则标明“否”或“N”.一般画成菱形.(5)流程线流程线表示算法执行的步骤或者说流程进行的方向.疑难疏引 (1)对于以上几个常见的图框,要明确.①起、止框是任何流程不可少的,表明程序开始和结束;②输入和输出可用在算法中任何需要输入、输出的位置;③算法中间要处理数据或计算,可分别写在不同的处理框内;④当算法要求你对两个不同的结果进行判断时,判断条件要写在判断框内;⑤一个算法步骤到另一个算法步骤用流程线连结.(2)画流程图的规则①使用标准的框图的符号;②框图一般按从上到下、从左到右的方向画;③除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号;④一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果,另一种是多分支判断,有几种不同的结果;⑤在图形符号内描述的语言要非常简练清楚.(3)画流程图的注意事项①画流程图时要注意模仿、操作、探索,进一步体会算法的思想,提高逻辑思维能力.②开始框只有一个出口无入口;结束框只有一个入口无出口;菱形判断框有一个入口和两个出口;输入、输出框、处理框各有一个入口、一个出口.(4)用流程图表示算法的优点用流程图表示算法可以使算法的基本逻辑结构变得清晰、直观,可将依次设计好的算法清晰直观地表示出来,且使算法变得容易阅读、理解和修改,为将算法语言转化为计算机语言提供了一定的依据.2.算法的三种逻辑结构任何一种算法都是由三种基本逻辑结构组成的,分别是顺序结构、选择结构、循环结构,用这三种基本结构表述的算法及其框图,整齐美观,容易阅读和理解.(1)顺序结构顺序结构指的是依次进行多个处理的结构,它是由若干个依次执行的处理步骤组成的,是任何一个算法都离不开的最基本、最简单的基本结构.其特点是各部分按照出现的先后顺序执行.如右图所示,虚线框内是一个顺序结构,它由A和B两个语句块组成,且仅有一个入口和一个出口.最简单的情况是每一语句块中只含有一条不产生控制转移的执行语句.每个语句块本身也可以是一个顺序结构,因此一个顺序结构可以由许多顺序执行的语句组成.(2)选择结构在一个算法中经常会遇到一些条件的判断,因此在算法的流程图中根据条件是否成立,有着不同的流向.像这种根据条件作出判断,再决定执行哪一种操作的结构称为选择结构(分支结构).一个选择结构都包含一个判断框,当条件成立时执行标有“Y”或“是”的分支,当条件不成立时则执行标有“N”或“否”的分支.对于选择结构要注意以下几点:①在选择结构中不论条件是否成立,只能执行A框或B框之一,不能既执行A框又执行B框;②A框或B框中可以有一个是空的,即可以不执行任何操作;③无论走哪条路径,执行完A或B之后,都经过点b,然后脱离本选择结构.④选择结构是可以镶嵌的,即在选择结构中还可以出现选择结构.这种结构主要出现在有多个条件判断的算法中.如下图所示,虚框内就是两个比较常见的选择结构,在(1)中当条件“n>3”成立时则执行A,否则执行B;在(2)中当条件“n>3”成立时执行框A,当条件“n>3”不成立时,直接脱离选择结构.(3)循环结构在某一算法中也经常会出现从某处开始,按照一定条件反复执行某一处理步骤的情况.在算法中像这样重复执行同一操作的结构称为循环结构.反复执行的处理步骤称为循环体,在循环体中一定有一个选择结构.此外,循环结构中通常都有一个起到循环计数的变量,这个变量一般都含在执行或终止循环体的条件中,如右图所示,虚框中的流程就是一种常见的循环结构.其功能是:先执行框A,然后判断给定的条件P是否成立,若给定的条件P不成立,再执行框A,执行完框A后,再判断条件P是否成立,如果不成立,再执行框A……如此反复执行框A,直到某一次条件P成立为止,此时不再执行框A,而从b点脱离循环结构.常见的循环结构有两种,上面介绍的是直到型循环,另一种是当型循环,其框图如右图所示.其功能是:当给定的条件P成立时,执行框A,执行完框A后,再判断条件P是否成立,如果成立,再执行框A,如此反复执行框A,直到某一次条件P不成立为止,此时不再执行框A,而从b点脱离循环结构.当型循环和直到型循环是可以相互转化的.疑难疏引(1)在一个算法中,可以包含顺序结构、选择结构和循环结构的任意组合,顺序结构一般是必不可少的,另外可以有选择结构或者循环结构中的一种,也可以同时含有选择结构和循环结构.(2)算法的三种基本逻辑结构的共同特点①只有一个入口,一个出口.②结构内的每一部分都有机会被执行到.也就是说,对每一个框来说,都应当有一条从入口到出口的路径通过它.图(a )中没有一条从入口到出口的路径通过A 框,所以该图就不合理.③结构内不存在“死循环”(无终止的循环),图(b )就是一个死循环.图(a ) 图(b )三种基本结构的共同特点也是检查一个流程图或算法是否正确、合理的方法和试金石.案例 1 求1×2×3×4×5×6×7的值,试设计不同结构的算法并画出流程图.【探究】由于在算法执行的过程中不断地进行乘法运算,则可利用顺序结构或循环结构来处理此题.【解】如下图所示.算法1 算法2规律总结 对顺序结构和循环结构要正确理解,要学会推理分析.算法都可以由顺序结构、选择结构和循环结构这三块“积木”通过组合和嵌套来完成.案例2 假设超市购物标价不超过100元时按九折付款,如标价超过100元,则超过部分按七折收费.写出超市收费的算法,并画出流程图.【探究】本题相当于求分段函数的函数值的问题.设所购物品标价为x 元,超市收费为y 元,则收费时应先判断标价是否大于100,且应采用选择结构.⎩⎨⎧>⨯+⨯≤=100. x 100)-(x 0.71000.9100, x 0.9x,y 【解】其算法如下:第一步:输入标价x ;第二步:如果x ≤100,那么y=0.9x ;否则y=0.9×100+0.7×(x-100);第三步:输出标价x 和收费y.流程图如下:规律总结 ①解决求分段函数的函数值问题时,一般要采用选择结构来设计算法.②解决这类题的关键是设计好正确的算法步骤,然后画出准确的流程图. 案例3 设计一个算法,计算12-22+32-42+…+992-1002的值,并画出程序框图.【探究】可以用循环结构来实现累加,设计一个累加变量,用s 表示,设计一个计数变量,用i表示,另外还要对i进行奇偶的判断,以决定是加还是减,因此还需要用到选择结构.算法步骤如下:第一步:s←0,i←1.第二步:如果i≤100,则执行第三步;否则输出s.第三步:如果i是偶数,则s←s-i2;否则s←s+i2.第四步:i←i+1,转到第二步.程序框图:规律总结从本题可以发现,在解决一些有规律的科学计算问题,尤其是累加、累乘等问题时,往往可以利用循环结构来实现算法.如果还有其他附加条件,应再结合选择结构进行算法设计.活学巧用1.下列关于流程图的说法中正确的个数是…()①用流程图表示算法直观、形象,容易理解②流程图能够清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言③在流程图中,起、止框是任何流程不可少的④输入和输出框可用在算法中任何需要输入、输出的位置A.1个B.2个C.3个D.4个解析:根据流程图的定义及对框图表示算法的理解,①②③④都正确.答案:D2.在流程图中,算法中间要处理数据或计算,可分别写在不同的()A.处理框内B.判断框内C.输入、输出框内D.循环框内解析:在流程图中,算法中间要处理数据或计算,可分别写在不同的处理框内,选A.答案:A3.下列图形符号属于判断框的是()解析:当算法要求你对两个不同的结果进行判断时,判断条件要写在判断框内.答案:C4.以下给出对流程图的几种说法,其中正确说法的个数是()①任何一个流程图都必须有起、止框②输入框只能放在开始框后,输出框只能放在结束框前③判断框是唯一具有超过一个退出点的符号④对于一个程序来说,判断框内的条件表达方法是唯一的A.1个B.2个C.3个D.4个解析:任何一个程序都有开始和结束,因而必须有起止框;输入和输出可以放在算法的任何需要输入、输出的位置,判断框内的条件不是唯一的,如a>b,亦可写为a≤b.答案:B5.下列流程图表示的算法是()A.输出c,b,aB.输出最大值C.输出最小值D.比较a,b,c大小解析:第一个判断框判断是否c最大,“是”则输出c,“否”则执行第二个判断框,第二个判断框判断a与b的大小,哪一个大则输出哪一个.答案:B6.算法的三种基本结构是()A.顺序结构、选择结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、选择结构、流程结构D.流程结构、循环结构、选择结构解析:本题考查算法的三种基本结构,常见算法的三种基本结构是:顺序结构、选择结构、循环结构.答案:A7.在算法基本逻辑结构中,描述最简单的算法结构是()A.选择结构B.循环结构C.递归结构D.顺序结构解析:在算法的三种基本结构中,描述最简单的算法结构是顺序结构.答案:D8.下列关于选择结构的说法中正确的是()A.选择结构的流程图有一个入口和两个出口B.无论选择结构中的条件是否满足,都只能执行两条路径之一C.选择结构中的两条路径可以同时执行D.对于一个算法来说,判断框中的条件是唯一的解析:根据选择结构的定义知B正确.答案:B9.流程图:是算法结构中的哪种结构()A.选择结构B.顺序结构C.递归结构D.循环结构解析:这是一个选择结构.答案:A10.下面的流程图中是循环结构的是( )A.①②B.②③C.③④D.②④ 解析:①是顺序结构,②是选择结构,③④是循环结构,选C.答案:C11.写出下列流程图表示的算法功能.(1)图(1)的算法功能是(a >0,b >0)________________.(2)图(2)的算法功能是________________.(1) (2)解析:图(1)(2)均为顺序结构.图(1)算法的功能是求以a 、b 为直角边的直角三角形斜边的长.图(2)算法的功能是求两个数的平均数.12.写出计算1+++…+的值的算法并画出流程图.213110001 解析:用i 表示循环次数,用sum 表示总和,算法步骤如下: 第一步:输入i,sum,i 的初始值为1,sum 的初始值为0;第二步:i 从1开始循环到1 000,sum=sum+1/i;第三步:循环结束后,输出sum.流程图是点评:该题解法具有普遍性.sum=sum+1/i 表示前i-1项的和加上第i 项.如果将sum=sum+1/i 变为sum=sum+i,则变为求1+2+3+…+1 000的值;若sum=sum+1/i 不变,而i=i+1变为i=i+2,则变为求1+++…+的值.31519991 13.设计算法,求出小于1 000的能被3和5整除的所有正整数,并画出算法流程图.解析:引入变量a 表示待输出的数,则a=15n(n=1,2,3,…,66).n 从1变到66,反复输出a,就能输出小于1 000的所有能被3和5整除的正整数.算法流程图如下图所示.14.给出求满足1×3×5×7×…×_____________>10 000最小正整数的一种算法,并画出流程图.分析:在解题的时候经常会遇到需要重复处理一类相同的事或类似的操作,当用算法解决此类问题时,一般用循环结构.如此题就需要重复地做乘法运算.如果用逐一相乘算法,步骤太多,采用循环结构可以很好地解决此类问题.解:其算法如下:第一步:n←1;第二步:T←1;第三步:T←T×n;第四步:如果T>10 000,输出n,结束.否则使n的值增加2重新执行第三步、第四步.流程图如下图所示:15.如下图所示的流程图是当型循环还是直到型循环?它表示了一个什么样的算法?解析:两种循环结构的区别是(1)执行情况不一样.当型结构是先判断循环条件,当条件成立时,才执行语句块A, 若循环条件一开始就不成立,则语句块A一次也不执行,而直到型结构是先执行语句块A,后判断循环条件,且语句块A至少要执行一次.(2)循环结束条件不一样.当型结构是条件不成立时结束循环,而直到型结构是条件成立时结束循环.且由流程图可以看出,只要n的值不大于100就反复执行sum←sum+n、n←n+1.所以它表示的是求1+2+3+…+100的算法.答案:此流程图为先判断后执行,为当型循环,它表示求1+2+3+…+100的值的算法.。

相关文档
最新文档