三角形中的中点综合测试(北师版)(含答案)

合集下载

北师大七级下第四章三角形单元测试题(一)含答案

北师大七级下第四章三角形单元测试题(一)含答案

北师大版七年级下册三角形单元测试题(一)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A.10B.12C.14D.162.满足下列条件的△ABC中,不是直角三角形的是()A、∠B+∠A=∠CB、∠A:∠B:∠C=2:3:5C、∠A=2∠B=3∠CD、一个外角等于和它相邻的一个内角3.一个三角形的三个内角中,锐角的个数最少为 ( )A.0B.1C.2 D.34.三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B、钝角三角形C、直角三角形D、无法确定5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B7.下列命题中的真命题是()A、锐角大于它的余角B、锐角大于它的补角C、钝角大于它的补角D、锐角与钝角之和等于平角8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么( )A.M>0 B. M=0C.M<0 D.不能确定9.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A.5个B.4个C.3个D.2个二、填空题1.直角三角形中两个锐角的差为20º,则两个锐角的度数分别为.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.把下列命题“对顶角相等”改写成:如果 ,那么 .4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是△ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____.MHGFED CBA11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥AB5.如图5—21,△ABC 中,∠B=34°,∠ACB=104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.6.如图5—22,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.7.看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴∥( )CBA∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( ) ∵∠ABC =∠ADC (已知) ∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( ) ∴∠A +∠=180º ,∠C +∠=180º( ) ∴∠A =∠C ( )8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .1DCB A答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.; 3.锐角(等腰锐角); 4.;5.10; 6.和; 7.; 8.;9.; 10.; 11.; 12.. 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是的平分线.3.假设此零件合格,连接BD ,则;可知.这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,. ∵的周长-的周长=5cm . ∴. 又∵, ∴.5.由三角形内角和定理,得32周长20,164<<<<BC cm 37︒65︒25︒100GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,︒65︒120︒180126<<x BAC ∠︒=︒-︒=∠+∠37143180CBD CDB ()︒=︒+︒-︒=∠+∠40203090CBD CDB BD CD =ADC ∆ABD ∆cm AB AC 5=-cm AB AC 11=+cm AC 8=. ∴. 又∵ AE 平分∠BAC . ∴. ∴. 又∵,∴.6.(1)∵在△ABC 中,,,,(2)∵ CD 是AB 边上的高, ∴. 即. ∴. 7.如图,延长BP 交AC 于D , ∵, ∴. 8.∵, ∴, ∴. 又∵,∴. ∴,∵, ∴.︒=∠+∠+∠180BAC ACB B ︒=︒-︒-︒=∠4210434180BAC ︒=︒⨯=∠=∠21422121BAC BAE ︒=︒+︒=∠+∠=∠552134BAE B AED ︒=∠+∠90DAE AED ︒=︒-︒=∠-︒=∠35559090AED DAE ︒=∠90ACB cm AC 5=cm BC 12=().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆CD AB S ABC ⋅=∆21CD ⨯⨯=132130()cm CD 1360=A PDC PDC BPC ∠>∠∠>∠,A BPC ∠>∠A C ∠=∠74C A ∠=∠74C B C ∠<∠<∠74︒=∠+∠+∠180C B A ︒=∠+∠+∠18074C B C C B ∠-︒=∠711180C C C ∠<∠-︒<∠71118074︒<∠<︒8470C又∵为整数, ∴∠C 的度数为7的倍数. ∴,∴. 9.如图,延长BP 交AC 于点D .在△BAD 中,, 即:. 在△PDC 中,. ①+②得, 即.C A ∠=∠74︒=∠77C ︒=∠=∠4474C A BD AD AB >+PD BP AD AB +>+PC DC PD >+PC PD BP DC PD AD AB ++>+++PC BP AC AB +>+。

八年级数学下册第一章综合测试卷-北师大版(含答案)

八年级数学下册第一章综合测试卷-北师大版(含答案)

图1图2图3图4 图5图6图7八年级数学下册第一章综合测试卷-北师大版(含答案)一、填空题1. 如图1,等边△ABC 的周长是9,D 是AC 边上的中点,E 在BC 的延长线上.若DE= BD,则CE 的长为_ .2.下列命题是真命题的是_________.①有一个外角是120°的等腰三角形是等边三角形. ②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形. ④三个外角都相等的三角形是等边三角形.3.如图2,△ABC 为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且AE=CD=BF ,则△DEF 为_____三角形.4.如图3,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若BC =4,则BE+ BF=____________.5. 如图4,已知AB =AC =BC =AD,則∠BDC =_________.6. 如图5,已知ΔABC 中,AB =AC ,∠BAC =120°,DE 垂直平分AC 交BC 于D ,垂足为E ,若DE =2cm ,则BC =_____cm .7.如图6所示,∠A =60°,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 与CE 相交于点H ,HD =1,HE =2,则BD = ,CE = .8.利用反证法证明:垂直于同一条直线的两条直线平行。

第一步应先假设: 。

二、选择题1. 如图7,△ABC 是等边三角形,点D 在AC 边上,∠DBC=35°,则∠ADB 的度数为( )A .25°B .60°C .85°D .95°2.下列每组三角形中,不一定全等的是( ) A.有一个角是60°且腰长相等的两个等腰三角形 B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形图8图9图10图11D.有两条边分别相等的两个等腰三角形3.以下叙述中不正确的是( ).A.等边三角形的每条高线都是角平分线和中线;B.有一个内角为60°的等腰三角形是等边三角形;C.等腰三角形一定是锐角三角形;D.在一个三角形中,如果有两条边相等,那么它们所对的角也相等;反之,在一个三角形中,如果有两个角相等,那么它们所对的边也相等.4.△ABC中三边为a、b、c,满足关系式(a-b)(b-c)(c-a)=0,则这个三角形一定为()A.等边三角形B.等腰三角形C.等腰钝角三角形D.等腰直角三角形5.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°6.如图8,等边三角形ABC中,D为BC的中点,BE平分∠ABC交AD 于E,若△CDE的面积等于1,则△ABC的面积等于()A.2 B.4 C.6 D.127.如图9,给出下列四组条件:①AB=DE, BC=EF, AC=DF; ②AB=DE,∠B=∠E, BC=EF;③∠B=∠E,BC=EF, ∠C=∠F;④AB=DE, AC=DF,∠B=∠E;其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组8.如图10所示,在△ABC中,AB=AC,AD⊥BC,则下列结论不一定正确的是()A.∠1=∠2B.BD=CDC.∠B=∠CD.AB=2BD9.如图11所示,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°10.已知点P在∠AOB的平分线上,∠AOB=60°,OP=10cm,那么点P到边OA,OB的距离分别是()A.5cm、53cm B.5cm、5cm C.4cm、5cm D.5cm、10cm三、解答题1.如图12.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.图12图13图15 图14(1)试判定△ODE 的形状,并说明理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.2.如图13等边△ABC ,P 为BC 上一点,含30°、60°的直角三角板60°角的顶点落在点P 上,如图,当P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状.3. 如图14,已知B 、C 、E 三点共线,,都是等边三角形,连结AE 、BD 分别交CD 、AC 于N 、M ,连接MN. 求证:AE =BD ,MN ∥BE.4、如图15所示,在等边△ABC 中,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 于Q ,求证:BP =2PQ .ABC ∆DCE ∆5. 如图16,已知点E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=6,AC=10,求DC的长;(3)若BE平分∠ABC,AF平分∠BAC,且FD∥BC交AC于点D,连接FC,则△DFC是什么三角形?为什么?图166.如图17,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.(3)连接OQ,当OQ∥AB时,求P点的坐标.图17参考答案第一章一、填空题1. 2. ①④ 3. 等边4. 2 5. 150° 6. 12 7. 5、4 8.略二、选择题1. D2. D3. C4. B5.B.6.C7.C8.D9.C10.B 三、解答题1. (1)△ODE 是等边三角形,其理由是:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°∴△ODE 是等边三角形; (2)答:BD =DE =EC ,理由:∵OB 平分∠ABC ,且∠ABC =60°,∴∠ABO =∠OBD =30°,∵OD ∥AB ,∴∠BOD =∠ABO =30°,∴∠DBO =∠DOB ,∴DB =DO , 同理,EC =EO ,∵DE =OD =OE ,∴BD =DE =EC .2. 解:∵PE ⊥AB ,∠B =60°, 因此直角三角形PEB 中,BE =BP =BC =PC ,∴∠BPE =30°,∵∠EPF =60°, ∴FP ⊥BC ,∵∠B =∠C =60°,BE =PC ,∠PEB =∠FPC =90°,∴△BEP ≌△CPF ,∴PE =PF ,∵∠EPF =60°,3. 证明:,都是等边三角形 ∴BC =AC ,CE =CD ,∠1=∠3=60° ∠1+∠2+∠3=180°∴∠2=60°∴∴△BCD ≌△ACE (SAS )∴BD =AE (全等三角形对应边相等) (全等三角形对应角相等) ∴△BMC ≌△ANC (ASA )∴MC =NC (全等三角形对应边相等) ∵∠2=60°∴△MCN 是等边三角形∴∠6=60°,∴∠6=∠1 ∴MN ∥BE (内错角相等,两直线平行)4.证明:∵ △ABC 为等边三角形, ∴ AC =BC =AB ,∠C =∠BAC =60°.∴ △ACD ≌△BAE(SAS).∴ ∠CAD =∠ABE .∵ ∠CAD +∠BAP =∠BAC =60°,∴ ∠ABE +∠BAP =60°,∴ ∠BPQ =60°. ∵ BQ ⊥AD ,∴ ∠BQP =90°,∴ ∠PBQ =90°-60°=30°,∴ BP =2PQ . 5.(1)证明:∵ ∠AEB=∠ABC , 且∠AEB=∠EBC +∠C ,∠ABC=∠EBC +∠ABE , ∴ ∠321213ABC ∆DCE ∆ ECA BCD ∠=∠54∠=∠EBC+∠C=∠EBC+∠ABE,∴∠ABE=∠C;(2)解:∵∠BAE的平分线AF交BE于F,∴∠BAF=∠DAF,∵FD∥BC交AC于D,∴∠ADF=∠C,∵∠ABE=∠C,∴∠ADF=∠ABE,即∠ADF=∠ABF,∵AF=AF,∴△BAF≌△DAF,∴AD=AB=6,∴DC=AC-AD=10-6=4.(3)解:△DFC是等腰三角形.理由是:过点F分别作FH⊥AB,FN⊥BC,FM⊥AC,易证:△AFH≌△AFM(AAS),从而知FH=FM,△BFH≌△BFM(AAS),从而知FH=FN,∴FM=FN,又FC=FC,可证Rt△CFM≌Rt△CFN(HL)∴∠MCF=∠NCF,∵FD∥BC,∴∠DFC=∠BCF,∴∠DFC=∠MCF,∴DF=DC,∴△DFC是等腰三角形.6(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=2,∴∠AOB=60°,OB=OA=2,∴∠BOC=30°,而∠OCB=90°,∴BC=OB=1,OC=,∴点B的坐标为B(,1);(2)∠ABQ=90°,始终不变.(3)∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠PAQ=∠OAB,∴∠PAO=∠QAB,∴△APO≌△AQB,∴∠ABQ=∠AOP=90°;(3)当点P在x轴负半轴上时,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.OB=OA=2,BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为(﹣,0).。

北师大版数学七年级下册第一章到第七章单元测试题-含答案(第五章三角形全等为三套-共10套)

北师大版数学七年级下册第一章到第七章单元测试题-含答案(第五章三角形全等为三套-共10套)

北师大版七年级下册第一章整式的运算单元测试题: 一、精心选一选(每小题3分,共21分) 1.多项式892334+-+xy y x xy 的次数是( )A. 3B. 4C. 5D. 6 2.下列计算正确的是( ) A. 8421262x x x =⋅ B. ()()m mmy y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a 5.下列结果正确的是( )A.91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D.8123-=- 6. 若()682b a b anm=,那么nm 22-的值是( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上( )A. xy 15B. xy 15±C. xy 30D.xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴=⋅52x x 。

⑵()=43y 。

⑶ ()=322b a 。

⑷()=-425y x 。

⑸=÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

⑵()()=+-55x x 。

七年级数学三角形全等之动点问题(建等式)(北师版)(专题)(含答案)

七年级数学三角形全等之动点问题(建等式)(北师版)(专题)(含答案)

三角形全等之动点问题(建等式)(北师版)(专题)一、单选题(共8道,每道10分)1.已知:如图,等边△ABC的边长为8,点D是BC上一点,且BD=6.动点P从点C出发,以每秒2个单位的速度沿CA—AB—BC向终点C运动,连接AD,AP,BP.设点P运动的时间为t秒.解答下列问题:(1)当4≤t≤8时,线段AP的长可用含t的式子表示为( )A.2tB.-2t+16C.2t-8D.-2t+8答案:C解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:1.研究基本图形,标注:2.研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:3.表达线段长,建等式.由题意,点P在运动过程中有2个状态转折点,需分成3种情况:①点P在CA上,对应的时间范围:0≤t≤4;②点P在AB上,对应的时间范围:4<t≤8;③点P在BC上,对应的时间范围:8<t≤12.由题意,当4≤t≤8时,点P在线段AB上运动,如图:点P已走路程为CA+AP=2t,因此AP=2t-CA=2t-8.故选C.试题难度:三颗星知识点:动点问题2.(上接第1题)(2)当点P在AC上运动时,若某一时刻△ABP≌△BAD,则t的值为( )A.1B.2C.3D.4答案:A解题思路:当点P在CA上时,即0≤t≤4,在等边△ABC中,AB=BA=8,∠BAP=∠ABD=60°,要使△ABP≌△BAD,则需AP=BD,即8-2t=6,解得t=1.故选A.试题难度:三颗星知识点:动点问题3.已知:如图,在长方形ABCD中,AB=4,AD=6.点E是BC上一点,CE=2,连接DE.动点P从点D出发,以每秒2个单位的速度沿DA-AB-BC向终点C运动,设点P的运动时间为t 秒.解答下列问题:(1)请你根据题意画出对应的运动状态分析图,并指出当P在DA,BC上运动时,对应的t 的取值范围分别为( )A.0≤t≤5;5<t≤8B.0≤t≤3;5≤t≤8C.0≤t≤3;3<t≤8D.0≤t≤3;3<t≤5答案:B解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:1.研究基本图形,标注:2.研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:3.表达线段长,建等式.由题意,点P在运动过程中有2个状态转折点,需分成3种情况:①点P在DA上,对应的时间范围:0≤t≤3;②点P在AB上,对应的时间范围:3<t≤5;③点P在BC上,对应的时间范围:5<t≤8.故选B.试题难度:三颗星知识点:动点问题4.(上接第3题)(2)当P在BC上运动时,线段BP的长可用含t的式子表示为( )A.2t-10B.2tC.-2t+10D.-2t+16答案:A解题思路:当P在BC上运动时,如图:点P已走路程为DA+AB+BP=2t,则BP=2t-DA-AB=2t-10.故选A.试题难度:三颗星知识点:动点问题5.(上接第3,4题)(3)连接AP,BP.若△ABP和△DEC全等,则此时t的值为( )秒A.2B.1或7C.1或6D.2或6答案:D解题思路:根据点P的运动状态分三种情况分析:①当点P在DA上运动时,0≤t≤3;∵AB=CD且∠A=∠C=90°,∴点A和点C,点P和点E是对应点,∴△ABP≌△CDE,∴AP=CE,即6-2t=2,解得:t=2;②当点P在AB上运动时,3<t≤5,不符合题意,舍去;③当点P在BC上运动时,5<t≤8,∵AB=CD且∠B=∠C=90°,∴点B和点C,点P和点E是对应点,∴△BAP≌△CDE,∴BP=CE,即2t-10=2,解得:t=6.综上,当t=2或6时,△ABP和△DEC全等.故选D.试题难度:三颗星知识点:动点问题6.已知:如图,在△ABC中,AB=AC=18,BC=12,点D为AB的中点.点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时点Q在线段CA上由C点向A点以每秒a个单位的速度匀速运动,连接DP,QP.设点P的运动时间为t秒,解答下列问题:(1)根据点P的运动,对应的t的取值范围为( )A.0≤t≤4B.0≤t≤6C.0≤t≤12D.0≤t≤18答案:A解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:③表达线段长,建等式.由点P的运动状态可知,对应的t的取值范围为0≤t≤4.故选A.试题难度:三颗星知识点:动点问题7.(上接第6题)(2)根据点P的运动,线段BP,PC的长可用含t的式子分别表示为( )A.at;3tB.3t;atC.12-3t;3tD.3t;12-3t答案:D解题思路:由题意,线段BP为点P已走路程,∴BP=3t,PC为点P未走路程,∴PC=12-3t.故选D.试题难度:三颗星知识点:动点问题8.(上接第6,7题)(3)若某一时刻△BPD与△CQP全等,则t的值与相应的CQ的长为( )A.t=2,CQ=9B.t=1,CQ=3或t=2,CQ=9C.t=1,CQ=3或t=2,CQ=6D.t=1,CQ=3答案:B解题思路:由题意,△BPD与△CQP全等,对应关系不明确,首先分析其对应情况,∵∠B=∠C,∴B和C是对应点,因此应分为两种情况:①△BPD≌△CQP,此时即解得②△BPD≌△CPQ,此时即解得综上:当t=1,CQ=3或t=2,CQ=9时,△BPD与△CQP全等.故选B.试题难度:三颗星知识点:动点问题。

北师大版数学七年级下册第四章三角形综合课时练(包含答案)

北师大版数学七年级下册第四章三角形综合课时练(包含答案)

北师大版数学七年级下册第四章三角形综合课时练班级:_____姓名:_____ 得分:______一.选择题1.如图所示,图中以AB为边的三角形的个数共有()A.1个B.2个C.3个D.4个2.△ABC中,△A=50°,△B=70°,则△C的度数是()A.40° B.50°C.60° D.70°3.现有两根木棒,它们长分别是40 cm和50 cm,若要钉成一个三角形木架,则下列四根木棒应选取()A.10 cm的木棒B.40 cm的木棒C.90 cm的木棒D.100 cm的木棒4.三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A.10或12 B.10或14 C.12或14 D.14或165.如图,已知AE=CF,△AFD=△C EB,那么添加一个条件后,仍无法判定△ADF△△CBE的是()A.△A=△C B.AD=CB C.BE=DF D.AD△BC6.如图,OA=OC,OB=OD,OA△OB,OC△OD,下列结论:△△AOD△△COB;△CD=AB;△△CDA=△ABC.其中正确的结论是()A.△△ B.△△△ C.△△ D.△△7.如图,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,可以说明△EDC△△ABC,得到ED=AB,因此测得ED的长就是AB的长,那么判定△EDC△△ABC的理由是()A.SSS B.SAS C.ASA D.AAS8.如果在△ABC中,△A=60°+△B+△C,那么△A等于()A.30° B.60° C.120° D.140°9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D.B,C两种取法都可以10.如图所示,△E=△F=90°,△B=△C,AE=AF,有以下结论:△EM=FN;△CD=DN;△△FAN=△EAM;△△ACN△△ABM.其中正确结论的个数为()A.1 B.2 C.3 D.411.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3 D.412.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1C.2n-1D.2(n+1)二.填空题13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则△1的度数为度.14.已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,则AC=.15.如图,若AE是△ABC边BC上的高,AD是△EAC的角平分线交BC于点D,若△ACB=40°,则△DAE等于.16.如图,E点为△ABC的边AC的中点,CN△AB,若MB=6 cm,CN=4 cm,则AB=.17.若等腰三角形的周长为26 cm,一边长为11 cm,则腰长为.18.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为.19.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则△1+△2=.20.如图,在△ABC,△ADE中,△BAC=△DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE.有以下四个结论:△BD=CE;△BD△CE;△△ACE+△DBC=45°;△△ACE=△DBC.其中结论正确的是.(填序号)三.解答题21.如图,AC和BD相交于点O,OA=OC,OB=OD.试说明:(1)△ODC△△OBA;(2)DC△AB.22.如图,在8×8的正方形网格中,有十二棵小树,请你把这个大正方形划分成四块,要求每块的形状、大小都相同,并且每块中恰好有三棵小树,你能行吗?23.如图,已知△ABC△△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC△△ADE除外),并选择其中的一对加以说明.24.如图,在Rt△ABC中,△ACB=90°,BC=2 cm,CD△AB,在AC上取一点E,使EC=BC,过点E作EF△AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.如图,△ABC中,△A=20°,CD是△BCA的平分线,△CDA中,DE是CA 边上的高,又有△EDA=△CDB,求△B的大小.26.已知:如图,在△ABC,△ADE中,△BAC=△DAE=90°,AB=AC,AD =AE,点C,D,E三点在同一直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)试猜想BD,CE有何特殊位置关系,并说明理由.答案提示1.B2.C3.B4.C5.B6.B7.C8.C9.B10.C11.B解:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.12.B解:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.13.7514.3cm15.25°16.10 cm解:由CN△AB,点E平分AC,可得△EAM=△ECN,AE=CE.又因为△AEM=△CEN,所以△AEM△△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).17.7.5 cm或11 cm解:△当腰长为11 cm时,底边长为26-11-11=4(cm),此时能构成三角形;△当底边长为11 cm时,腰长为(26-11)÷2=7.5(cm),此时能构成三角形.18.5解:由已知可得,△ADC=△BDF=△BEC=90°,所以△DAC=△DBF.又因为AC=BF,所以△ADC△△BDF.所以AD=BD=8,DC=DF=3.所以AF=AD-DF=8-3=5.19.90°解:如图,由题意可知,△ADC=△E,AD=BE,CD=AE,所以△ADC△△BEA.所以△CAD=△2.所以△1+△2=△1+△CAD=90°.20.△△△解:因为△BAC=△DAE=90°,所以△BAC+△CAD=△DAE+△CAD,即△BAD=△CAE.因为在△BAD和△CAE中,AB=AC,△BAD=△CAE,AD=AE,所以△BAD△△CAE(SAS).所以BD=CE.故△正确.因为△BAD△△CAE,所以△ABD=△ACE.因为△ABD+△DBC=45°,所以△ACE+△DBC=45°.所以△DBC+△DCB=△DBC+△ACE+△ACB=90°.所以BD△CE.故△△正确.只有当△ABD=△DBC时,△中结论才成立.故正确的结论有△△△.21.解:(1)在△ODC和△OBA中,OD=OB,△DOC=△BOA,OC=OA,所以△ODC△△OBA(SAS).(2)因为△ODC△△OBA,所以△C=△A.所以DC△AB.22.解:如图所示.(答案不唯一)23.解:△AEM△△ACN ,△BMF△△DNF ,△ABN△△ADM .(任写其中两对即可) 选择△AEM△△ACN .因为△ABC△△ADE ,所以AC=AE ,△C=△E ,△CAB=△EAD .所以△EAM=△CAN .在△AEM 和△ACN 中,因为{∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM△△ACN(ASA).选择△ABN△△ADM ,因为△ABC△△ADE ,所以AB=AD ,△B=△D .因为△BAN=△DAM ,所以△ABN△△ADM(ASA).选择△BMF△△DNF ,因为△ABC△△ADE ,所以AB=AD ,△B=△D .因为△BAN=△DAM ,所以△ABN△△ADM(ASA).所以AN=AM .所以BM=DN .因为△B=△D ,△BFM=△DFN ,所以△BMF△△DNF(AAS).(任选一对进行说明即可)24.解:因为△ACB=90°,所以△ECF+△BCD=90°.因为CD△AB ,所以△BCD+△B=90°.所以△ECF=△B .在△ABC 和△FCE 中,△B=△ECF,BC=CE,△ACB=△FEC=90°,所以△ABC△△FCE(ASA).所以AC=FE.因为AE=AC-CE,EC=BC=2 cm,EF=5 cm,所以AE=5-2=3(cm).25.解:因为DE是CA边上的高,所以△DEA=△DEC=90 °.因为△A=20 °,所以△EDA=90 °-20 °=70 °.因为△EDA=△CDB,所以△CDE=180 °-70 °×2=40 °.在Rt△CDE中,△DCE=90 °-40 °=50 °,因为CD是△BCA的平分线,所以△BCA=2△DCE=2×50 °=100 °.在△ABC中,△B=180 °-△BCA-△A=180 °-100 °-20 °=60 °.26.解:(1)全等.因为△BAC=△DAE=90 °,所以△BAC+△CAD=△DAE+△CAD,即△BAD=△CAE.又因为AB=AC,AD=AE,所以△BAD△△CAE(SAS).(2)BD,CE的特殊位置关系为BD△CE.理由:由(1)知△BAD△△CAE,所以△ADB=△E.因为△DAE=△90 °,所以△E+△ADE=90 °.所以△ADB+△ADE=90 °,即△BDE=90 °.所以BD,CE的特殊位置关系为BD△CE.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.下列各组长度的三条线段能组成三角形的是()A.1,2,3B.1,1,2C.1,2,2D.1,5,72.在△ABC中作AB边上的高,下图中不正确的是()A.B.C.D.3.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 4.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形5.如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS6.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是()A.①②B.①③C.①②③D.①②③④8.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2cm2,则S△ABC为()A.4 cm2B.6 cm2C.8 cm2D.10 cm29.如图所示,BE=3EC,D是线段AC的中点,BD和AE交于点F,已知△ABC的面积是7,求四边形DCEF的面积()A.1B.C.D.210.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是()A.75°B.105°C.135°D.125°11.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形12.如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD ≌△CEB的有()组.A.4B.3C.2D.113.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是()A.AF=FC B.GF=BG C.AG=2GD D.EG=CE 14.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°15.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°16.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为()A.32B.24C.40D.3618.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.319.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.20.(1)线段AD是△ABC的角平分线,那么∠BAD=∠=∠.(2)线段AE是△ABC的中线,那么BE==BC.21.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.22.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E=.23.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.24.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.25.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是.26.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.27.如图,点B、F、C、E在同一条直线上,∠B=∠E,∠A=∠D,BF=CE.求证:△ABC≌△DEF.28.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.29.如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC =100°.求∠BDE的度数.30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.31.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案1.解:A.1+2=3,不能构成三角形,不合题意;B.1+1=2,不能构成三角形,不合题意;C..1+2>2,能构成三角形,符合题意;D.1+5<7,不能构成三角形,不合题意.故选:C.2.解:由题可得,过点C作AB的垂线段,垂足为H,则CH是BC边上的高,∴A、B、D选项正确,C选项错误.故选:C.3.解:∵AD是△ABC的中线,∴BD=DC,故选:B.4.解:A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.5.解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,即OP平分∠AOB.故选:D.6.解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.7.解:∵DH⊥BC,∠ABC=45°,∴△BDH为等腰直角三角形,∴BH=DH,故①正确,∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故②正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC(ASA).∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故③正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1)可知:BF=AC,∴CE=AC=BF;故④正确;故选:D.8.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴S△ABC=8cm2故选:C.9.解:∵AD=DC,BE=3EC,∴可以假设S△ADF=S△DFC=x,S△EFC=y,则S△EFB=3y,则有,解得,∴四边形DCEF的面积=x+y=,故选:B.10.解:由题意得,∠ACB=45°,∠DEC=60°,∵∠DFC是△CFE的一个外角,∴∠DFC=∠ACB+∠DEC=105°,故选:B.11.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.12.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∴若①②③为条件,不能证明△AFD≌△CEB,若①②④为条件,能证明△AFD≌△CEB(AAS),若①③④为条件,不能证明△AFD≌△CEB,若②③④为条件,能证明△AFD≌△CEB(AAS),故选:C.13.解:如图连接DE.∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴DF也是△ABC的中线,∴AF=FC,故A不符合题意,∵BE=AE,BD=CD,∴DE∥AC,DE=AC,∴===,∴AG=2DG,EG=CE,故C,D不符合题意,故选:B.14.解:如图:∵m∥n,∠1=30°,∴∠3=∠1=30°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣30°=60°,∴∠2=180°﹣∠4=180°﹣60°=120°.故选:C.15.解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,故选:D.16.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=8;∴2a2=64,a2=32,故选:A.18.解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.19.解:如图,,要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.20.解:(1)线段AD是△ABC的角平分线,那么∠BAD=∠CAD=∠BAC.故答案为:CAD,BAC;(2)线段AE是△ABC的中线,那么BE=CE=BC.故答案为:CE,.21.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.22.解:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A,∵∠A=60°,∴∠E=30°.故答案为30°.23.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.24.解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.25.解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.26.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.27.证明:∵BF=EC∴BF+CF=EC+CF,∴BC=EF,∵∠B=∠E,∠A=∠D,∴180°﹣∠B﹣∠A=180°﹣∠E﹣∠D,即∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).28.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.29.解:如图,∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=100°﹣60°=40°∵BD平分∠ABC,∴∠DBC=∠ABD=40°,又∵DE∥BC,∴∠BDE=∠DBC=40°.30.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.31.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP 全等。

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。

(常考题)北师大版高中数学必修五第二章《解三角形》测试卷(包含答案解析)(4)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C 3 kmD 2 km2.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .)2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .5B .5C .52D .628.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 9.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形10.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .911.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =52cos 8A =,32b =时,则ABC 的面积为( ) A .37B .372C .374D .378二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6a =,2c b =,则ABC 面积的最大值是______.15.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.17.在ABC 中,60,12,183ABCA b S=︒==,则sin sin sin a b cA B C____________.18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.19.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短. 22.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠.23.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围.24.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C . (1)求cos B ; (2)求sin(2)6B π+的值.25.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )3sin a B b A +=,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______. (1)求角B ;(2)若25a c +=ABC 周长的最小值,并求周长取最小值时ABC 的面积.26.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知()3cos cos A c a C -=.(1)求c b; (2)若cos 2c A b =,且ABC 的面积为9114,求a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形,故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】11sin 1222ABC S ac B c ∆==⨯⨯== ,c =2222cos 132338252b ac ac B =+-=+-=-= ,5b = ,2sin b R B === ,选C. 8.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b AB =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a bA B=, 又a =即31sin cos A A=. 所以tan 3A =.因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.9.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭,所以211cos 23sin sin sin sin 23244B B B B B B B π⎫-⎛⎫-=+=+=⎪⎪⎪⎝⎭⎝⎭,2cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭,即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.10.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.11.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos15033h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.B解析:B 【分析】结合同角三角函数的基本关系可求出14sin 4C =,2cos 4C =,14sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】 因为sin tan 7cos C C C ==,且22sin cos 1C C +=,解得14sin C =,2cos C =,又cos 8A =,所以sin 8A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 22242ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.【分析】先根据余弦定理求出结合平方关系求得利用三角形的面积公式及二次函数可求面积的最大值【详解】∵∴可得∴由可得即则的面积当且仅当时即时取等号故答案为:【点睛】本题主要考查三角形的面积最值常见求解思 解析:12【分析】先根据余弦定理求出cos A ,结合平方关系求得sin A ,利用三角形的面积公式及二次函数可求ABC 面积的最大值. 【详解】∵6a =,2c b =,∴2222644cos b b b A =+-,可得22536cos 4b A b-=,∴sin A ==,由()2223043600b --≥,可得2436b ≤≤,即26b ≤≤,则ABC的面积221sin sin 122S bc A b A b ====≤,当且仅当2360b =时,即b =故答案为:12. 【点睛】本题主要考查三角形的面积最值,常见求解思路是建立关于三角形面积的表达式结合二次函数或者基本不等式的知识求解,侧重考查数学运算的核心素养.15.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+ ()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=,60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.16.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得3c =,进而可得3a b =,再由余弦定理即可求得cos 10B=,利用平方关系求得sin 10B =,进而求得sin tan 3cos B B B ==.【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b ac -=-,又22212b ac -=, 所以2212c c =-,所以3c =,222222145299a b c b b b =-=-=,所以3a b =,所以22222258cos 2b b ba cb B ac +-+-===,所以sin B ==,所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.17.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.18.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.19.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+1=2+12+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =,由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确. 故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤, 故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解. 22.5c =,34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1c A =,5b c =求出5c =,5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin 5BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为sin 5A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以cos 5A ==.在ABC 中,由余弦定理,得a ==由正弦定理,得sin sin a b A ABC =∠,即5sin ABC =∠sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.23.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解. (2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解.【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=, 2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 222322A A A A A π⎛⎫⎡⎤⎛⎫=-+-=-- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭,111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭. 24.(1)14-;(2)716-. 【分析】(1)由正弦定理化角为边,再结合2b c a +=,把,b c 用a 表示,然后由余弦定理得cos B ;(2)由同角关系求出sin B ,利用二倍角公式求得sin 2,cos 2B B ,再由两角和的正弦公式求得结论. 【详解】(1)因为3c sin B =4a sin C ,由正弦定理得34cb ac =,所以43b a =, 又2b c a +=,所以23c a =,所以222222416199cos 22423a a a a cb B ac a a +-+-===-⋅. (2)因为(0,)B π∈,所以sin B ==sin 22sin cos B B B ==,27cos 212sin 8B B =-=-,所以sin(2)sin 2coscos 2sin666B B B πππ+=+71()82=+-⨯= 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 25.(1)3π;(2)4. 【分析】若选①:(1)利用诱导公式和正弦定理化简,再利用余弦定理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.若选②:(1)利用正弦定理以及同角三角函数的基本关系化简求解即可;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积. 若选③:(1)利用正弦定理以及辅助角公式化简整理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.【详解】若选①:(1)sin()sin ()sin c A B b B c a A +=+-,sin()sin sin sin c C b B c A a A π-=+-, sin sin sin sin c C b B c A a A =+-,222c b ac a =+-,222a c b ac +-=,2221cos 22a cb B ac +-==, 0B π<<,3B π∴=; (2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 若选②:(1)由tan 2sin b a B A=,得2sin tan b A a B =, 则sin 2sin cos AsinB AsinB B=, 又0,0A B ππ<<<<,则sin 0,sin 0A B >>, 所以1cos 2B =, 即3B π=;(2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒=若选③:(1)(1cos )sin a B A +=,sin (1cos )sin A B A B +,0A π<<,sin 0A ∴>,1cos +=B B ,2sin 16B π⎛⎫-= ⎪⎝⎭, 1sin 62B π⎛⎫-= ⎪⎝⎭, 66B ππ∴-=或566B ππ-=,即3B π=或B π=(舍);(2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 【点睛】思路点睛:本题首先利用正弦定理,同角三角函数的基本关系,诱导公式,辅助角公式以及余弦定理进行化简求角;其次利用余弦定理,基本不等式,三角形面积公式求解.26.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果;(2)根据三角形的面积公式以及余弦定理可求得结果.【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 27923276a b c bc A =+-=+-⨯⨯=,解得a =.【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键.。

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

北师大版下册第一章《三角形的证明》之直角三角形综合练(一)1.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.2.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE ∥DF.3.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE 与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程:6.如图在正方形ABCD中,E,F,G,H分别是AD,BC,AB,CD上的点,连接EF,GH.①若EF⊥GH,则必有EF=GH.②若EF=GH,则必有EF⊥GH.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.7.在△AOB中,∠AOB=90°,点C为直线AO上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求∠BEC的度数;(2)当点C在直线AO上运动时,∠BEC的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出∠BEC的度数.8.已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.9.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.10.锐角三角形ABC中,AC>BC,点D是边AC的中点,点E在边AB上.①如果DE∥BC,那么DE=BC②如果DE=BC,那么DE∥BC.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.11.如图,在△ABC中,AC=CB,∠ACB=90°,在AB上取点F,过A作AB的垂线,使得AD=BF,连接BD,CD、CF,CE是∠ACB的角平分线,交BD于点M,交AB于点E.(1)若AC=6,AF=4.求BD的长:(2)求证:2CM=AF12.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC=60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.13.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?参考答案1.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.2.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE3.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∴∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.4.解:(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.5.解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.6.解:①成立,②不成立;理由如下:①作GM⊥CD于M,FN⊥AD于N,如图1所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∴∠OGQ+∠OQG=90°,∵EF⊥GH,∴∠PFQ+∠PQF=90°,∵∠OQG=∠PQF,∴∠OGQ=∠PFQ,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在△EFN和△HGM中,,∴△EFN≌△HGM(ASA),∴EF=GH;②作GM⊥CD于M,FN⊥AD于N,如图2所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在Rt△EFN和Rt△HGM中,,∴Rt△EFN≌Rt△HGM(HL),∴∠OGQ=∠PFQ,∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,∴∠PQF+∠PFQ=90°,∴∠FPQ=90°,∴EF⊥GH;作GH关于GM的对称线段GH',则GH'=GH=EF,显然EF与GH'不垂直;综上所述,若EF=GH,则必有EF⊥GH.不成立.7.解:(1)①图形如图所示.②设∠EBO=∠EBC=x,∠OCE=∠ECK=y.则有:,可得∠E=×90°=45°.(2)如图,当点C在OA的延长线上时,结论∠BEC=135°.理由:∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵∠EBC=∠OBC,∠ECB=∠OCB,∴∠EBC+∠ECB=×90°=45°,∴∠BEC=180°﹣45°=135°.如图当点C在AO的延长线上时,同法可证:∠BEC=135°.8.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∴∠BFD=180°﹣45°=135°,∴∠G=180°﹣20°﹣135°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,设∠ABG=x,∠CDF=y,∵∠ACB=∠DCF,∴∠A+∠ABC=∠CDF+∠CFD,即∠A+2x=2y,∴y=,同理得∠A+∠ABG=∠G+∠CDF,∴∠A+x=∠G+y,即∠A+x=∠G++x,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,△FBG中,∠G+∠FBG+∠BFG=180°,∠BFG+∠DFC=180°,∴∠DFC=∠G+∠FBG,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.9.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.10.解:①∵锐角三角形ABC中,AC>BC,点D是边AC的中点,DE∥BC,∴AE=EB,即DE是△ABC的中位线,∴DE=BC故①正确;②令E为AB中点,可以在AB上取到一点F,使DF=DE,但DF与BC不平行.故②错误.11.解:(1)∵AC=CB=6,∠ACB=90°,∴AB=12∵AF=4,∴BF=AB﹣AF=12﹣4=8,∴AD=BF=8,在Rt△ADB中,BD==4;(2)∵AC=CB,∠ACB=90°,CE平分∠ACB,∴AE=BE=CE=AB,CE⊥AB,∵∠DAB=∠MEB=90°,∠DBA=∠MBE,∴△MBE∽△DBA,∴==,∴ME=AD,∴ME=BF,∵CE=AB,∴CM+ME=(BF+AF),∴CM+BF=BF+AF,∴CM=AF,即AF=2CM.12.解:(1)∵CE⊥BE,∴∠E=90°,∵∠ECD=15°,∴∠ADB=∠CDE=90°﹣15°=75°故答案为75°.(2)证明:∵BD平分∠ABC,∠ABC=60°,∴∠ABD=∠DBC=30°,∵∠ADB=75°,∴∠A=75°,∴∠A=∠ADB,∴AB=DB.(3)过点D作DF⊥BC,交BC于F点.∵DF⊥BC,∴∠DFB=∠DFC=90°,∵∠DBF=30°,∴DF=BD,∵BD=AB=2,∴DF=1,∴FB=,∵CE⊥BE,∴∠E=90°,∵∠DBC=30°,∴∠ECB=60°,∵∠ECD=15°,∴∠DCB=45°,∴∠DCF=∠FDC=45°,∴FD=FC=1,∴BC=.13.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=10;②当P运动到与C点重合时,AP=AC,不合题意.综上所述,当点P运动到距离点A为10时,△ABC与△APQ全等.。

北师大版初中数学七下第四章综合测试试题试卷含答案

第四章综合测试一、选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .72.在ABC △中,作BC 边上的高,以下作图正确的是( )A .B .C .D .3.如图,已知BD CD =,则AD 一定是ABC △的( )A .角平分线B .高线C .中线D .无法确定4.如图,在ABC △中,点D 在BC 的延长线上,若60A ︒∠=,40B ︒∠=,则ACD ∠的度数是( )A .140︒B .120︒C .110︒D .100︒5.如图,在ABC △中,CD 平分ACB ∠,DE BC ∥.已知74A ︒∠=,46B ︒∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,AB AC =,若要使ABE ACD △≌△.则添加的一个条件不能是( )A .BC ∠=∠ B .ADC AEB ∠=∠ C .BD CE = D .BE CD =7.如图,A B 、两点分别位于一个池塘的两端,小明想用绳子测量A B 、间的距离,如图所示的这种方法,是利用了三角形全等中的( )A .SSSB .ASAC .AASD .SAS8.小明学习了全等三角形后总结了以下结论: ①全等三角形的形状相同、大小相等; ②全等三角形的对应边相等、对应角相等; ③面积相等的两个三角形是全等图形; ④全等三角形的周长相等. 其中正确的结论个数是( ) A .1B .2C .3D .49.如图,AD 是ABC △的高,BE 是ABC △的角平分线,BE AD ,相交于点F ,已知42BAD ︒∠=,则BFD ∠=( )A .45︒B .54︒C .56︒D .66︒10.如图,ABC △的三边长均为整数,且周长为22,AM 是边BC 上的中线,ABM △的周长比ACM △的周长大2,则BC 长的可能值有( )个.A .4B .5C .6D .7二、填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是________.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带________块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是________.13.如图,Rt ABC △中,90C ︒∠=,25B ︒∠=,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M N 、两点,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数是________.14.如图,在ABC △中,AC BC =,过点A B ,分别作过点C 的直线的垂线AE BF ,.若3AE CF ==,4.5BF =,则EF =________.15.边长为整数、周长为20的三角形的个数为________.16.如图,Rt ABC △中,90BAC ︒∠=,6AB =,3AC =,G 是ABC △重心,则AGC S =△________.三、解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.19.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ︒∠=),点C 在DE 上,点A 和B 分别与木墙的顶端重合. (1)求证:ADC CEB △≌△;(2)求两堵木墙之间的距离.20.如图,已知B D ,在线段AC 上,且AD CB =,BF DE =,90AED CFB ︒∠=∠= 求证:(1)AED CFB △≌△;(2)BE DF ∥.21.如图,已知锐角ABC △,AB BC >.(1)尺规作图:求作ABC △的角平分线BD ;(保留作图痕迹,不写作法) (2)点E 在AB 边上,当BE 满足什么条件时?BED C ∠=∠.并说明理由.22.如图,ABC △中,90ACB ︒∠=,D 为AB 上一点,过D 点作AB 垂线,交AC 于E ,交BC 的延长线于F .(1)1∠与B ∠有什么关系?说明理由.(2)若BC BD =,请你探索AB 与FB 的数量关系,并且说明理由.23.如图1,点A B 、分别在射线OM ON 、上运动(不与点O 重合),AC BC 、分别是BAO ∠和ABO ∠的角平分线,BC 延长线交OM 于点G .(1)若60MON ︒∠=,则ACG ∠=________︒;若90MON ︒∠=,则ACG ∠=________︒; (2)若MON n ︒∠=.请求出ACG ∠的度数;(用含n 的代数式表示)(3)如图2,若MON n ︒∠=,过C 作直线与AB 交F .若CF OA ∥时,求BGO ACF ∠−∠的度数.(用含n 的代数式表示)24.如图1所示,在Rt ABC △中,90C ︒∠=,点D 是线段CA 延长线上一点,且AD AB =,点F 是线段AB上一点,连接DF ,以DF 为斜边作等腰Rt DFE △,连接EA ,EA 满足条件EA AB ⊥.(1)若20AEF ︒∠=,50ADE ︒∠=,2BC =,求AB 的长度;(2)求证:AE AF BC =+;(3)如图2,点F 是线段BA 延长线上一点,探究AE AF BC 、、之间的数量关系,并证明你的结论.第四章综合测试答案解析一、 1.【答案】C【解析】解:设第三边的长为x , 由题意得:4242x −+<<,26x <<,故选:C. 2.【答案】D【解析】解:BC 边上的高应从点A 向BC 引垂线,只有选项D 符合条件,故选:D. 3.【答案】C【解析】解:由于BD CD =,则点D 是边BC 的中点,所以AD 一定是ABC △的一条中线.故选:C.4.【答案】D【解析】解:ACD ∠是ABC △的一个外角,100ACD A B ︒∴∠=∠+∠=,故选:D. 5.【答案】A【解析】解:74A ︒∠=,46B ︒∠=,60ACB ︒∴∠=,CD 平分ACB ∠,11603022BCD ACD ACB ︒︒∴∠=∠=∠=⨯=,180104BDC B BCD ︒︒∴∠=−∠−∠=,故选:A. 6.【答案】D【解析】解:A 、添加B C ∠=∠可利用ASA 定理判定ABE ACD △≌△,故此选项不合题意;B 、添加ADC AEB ∠=∠可利用AAS 定理判定ABE ACD △≌△,故此选项不合题意;C 、添加BD CE =可得AD AE =,可利用利用SAS 定理判定ABE ACD △≌△,故此选项不合题意;D 、添加BE CD =不能判定ABE ACD △≌△,故此选项符合题意;故选:D.7.【答案】D【解析】解:观察图形发现:AC DC BC BC ACB DCB ==∠=∠,,,所以利用了三角形全等中的SAS ,故选:D. 8.【答案】C【解析】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C. 9.【答案】D 【解析】解:AD 是ABC △的高,90ADB ︒∴∠=,42BAD ︒∠=,18048ABD ADB BAD ︒︒∴∠=−∠−∠=,BE 是ABC △的角平分线, 1242ABF ABD ︒∴∠=∠=,422466BFD BAD ABF ︒︒︒∴∠=∠+∠=+=,故选:D. 10.【答案】A【解析】解:ABC △的周长为22,ABM △的周长比ACM △的周长大2,222BC BC ∴−<<,解得211BC <<,又ABC △的三边长均为整数,ABM △的周长比ACM △的周长大2,2222BC AC −−∴=为整数, BC ∴边长为偶数, 46810BC ∴=,,,,故选:A. 二、11.【答案】①③【解析】解:根据全等三角形的判定(SAS )可知属于全等的2个图形是①③,故答案为:①③. 12.【答案】② ASA【解析】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带②去.故答案为:②,ASA . 13.【答案】40︒【解析】解:Rt ABC △中,90C ︒∠=,25B ︒∠=,90902565CAB B ︒︒︒︒∴∠=−∠=−=,由作图过程可知:MN 是AB 的垂直平分线,DA DB ∴=, 25DAB B ︒∴∠=∠=,652540CAD CAB DAB ︒︒︒∴∠=∠−∠=−=.答:CAD ∠的度数是40︒. 故答案为:40︒. 14.【答案】7.5【解析】解:过点A B ,分别作过点C 的直线的垂线AE BF ,,90AEC CFB ︒∴∠=∠=,在Rt AEC △和Rt CFB △中,AC BCAE CF =⎧⎨=⎩,Rt Rt AEC CFB HL ∴△≌△(), 4.5EC BF ∴==,4.537.5EF EC CF ∴=+=+=,故答案为:7.5. 15.【答案】8【解析】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8. 16.【答案】3【解析】解:延长AG 交BC 于E .90BAC ︒∠=,63AB AC ==,,192ABC S AB AC ∴==△, G 是ABC △的重心,2AG GE BE EC ∴==,,19 4.52AEC S ∴=⨯=△,233AGC AEC S S ∴=⨯=△△,故答案为3. 三、17.【答案】解:如图所示,图中三角形的个数有ABC △,ACD △,ADE △,AEF △,AFG △,ABD △,ABE △,ABF △,ABG △ACE △,ACF △,ACG △,ADF △,ADG △,AEG △.18.【答案】解:BE CF =,BE EC CF EC ∴+=+,即BC EF =,在ABC △和DEF △中,AB DE AC DFBC EF =⎧⎪=⎨⎪=⎩(已知)(已知)(已知), ABC DEF SSS ∴△≌△().19.【答案】(1)证明:由题意得:AC BC =,90ACB ︒∠=,AD DE BE DE ⊥⊥,,90ADC CEB ︒∴∠=∠=,9090ACD BCE ACD DAC ︒︒∴∠+∠=∠+∠=,, BCE DAC ∴∠=∠在ADC △和CEB △中ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB AAS ∴△≌△();(2)解:由题意得:236cm AD =⨯=,7214cm BE =⨯=,ADC CEB △≌△,6cm EC AD ∴==,14cm DC BE ==, 20cm DE DC CE ∴=+=(),答:两堵木墙之间的距离为20cm .20.【答案】证明(1)90AED CFB ︒∠=∠=, 在Rt AED △和Rt CFB △中AD BCDE BF =⎧⎨=⎩, Rt Rt AED CFB HL ∴△≌△().(2)AED CFB △≌△,BDE DBF ∴∠=∠,在DBE △和BDF △中DE BFBDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩,DBE BDF SAS ∴△≌△(),DBE BDF ∴∠=∠, BE DF ∴∥.21.【答案】解:(1)如图,线段BD 即为所求.(2)结论:BE BC =. 理由:BD 平分ABC ∠, EBD CBD ∴∠=∠, BE BC BD BD ==,,BDE BDC SAS ∴△≌△(), BED C ∴∠=∠.22.【答案】解:(1)1∠与B ∠相等,理由:ABC △中,90ACB ︒∠=,190F ︒∴∠+∠=,FD AB ⊥,90B F ︒∴∠+∠=,1B ∴∠=∠;(2)若BC BD =,AB 与FB 相等,理由:ABC △中,90ACB ︒∠=,DF AB ⊥,90ACB FDB ︒∴∠=∠=,在ACB △和FDB △中,B B ACB FDB BC BD ∠=∠∠=∠=⎧⎪⎨⎪⎩,ACB FDB AAS ∴△≌△(),AB FB ∴=.23.【答案】(1)60 45(2)在AOB △中,180180OBA OAB AOB n ︒︒︒∠+∠=−∠=−,OBA OAB ∠∠、的平分线交于点C ,1118022ABC BAC OBA OAB n ︒︒∴∠+∠=∠+∠=−()(), 即1902ABC BAC n ︒︒∠+∠=−, 11180180909022ACB ABC BAC n n ︒︒︒︒︒︒∴∠=−∠+∠=−−=+()(), 1809090ACG n n ︒︒︒︒︒∴∠=−+=−();(3)AC BC 、分别是BAO ∠和ABO ∠的角平分线,1122ABC ABO BAC OAC BAO ∴∠=∠∠=∠=∠,, CF AO ∥,ACF CAG ∴∠=∠,BGO BAG ABG ∠=∠+∠,°12902BGO ACF BAG ABG ACF BAC ABG BAC ABG BAC n ︒∴∠−∠=∠+∠−∠=∠+∠−∠=∠+∠=−. 【解析】解:(1)60MON ︒∠=,120OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,1120602ABC BAC ︒︒∴∠+∠=⨯=, 18060120ACB ︒︒︒∴∠=−=,60ACG ︒∴∠=;90MON ︒∠=,90OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,195452ABC BAC ︒︒∴∠+∠=⨯=, 18045135ACB ︒︒︒∴∠=−=;45ACG ︒∴∠=;故答案为:60,45.24.【答案】解:(1)在等腰直角三角形DEF 中,°90DEF ∠=, 120︒∠=,2170DEF ︒∴∠∠−∠==,23180EDA ︒∠+∠+∠=,360︒∴∠=,EA AB ⊥,°90EAB ∴∠=,3180EAB A ︒∠+∠+∠=,430︒∴∠=,90C ︒∠=,24AB BC ∴==;(2)如图1,过D 作DM AE ⊥于M ,在DEM △中,2590︒∠+∠=, 2190︒∠+∠=,15∴∠=∠,DE FE =,在DEM △与EFA △中,51DME EAF DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, DEM EFA ∴△≌△,AF EM ∴=,490B ︒∠+∠=,34180EAB ︒∠+∠+∠=,3490︒∴∠+∠=,3B ∴∠=∠,在DAM △与ABC △中,3B DMA C AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,DAM ABC ∴△≌△,BC AM ∴=,AE EM AM AF BC ∴=+=+;(3)如图2,过D 作DM AE ⊥交AE 的延长线于M , 90C ︒∠=,190B ︒∴∠+∠=,°°2118090MAB MAB ∠+∠+∠=∠=,,21902B ︒∴∠+∠=∠=∠,,在ADM △与BAC △中,2M CB AD AB∠=∠∠=∠=⎧⎪⎨⎪⎩,ADM BAC ∴△≌△,BC AM ∴=,°90EF DE DEF =∠=,,34180DEF ︒∠+∠+∠=,°3490∴∠+∠=,°3590∠+∠=,45∴∠=∠,在MED △与AFE △中,54M EAFDE EF∠=∠∠=∠=⎧⎪⎨⎪⎩,MED AFE ∴△≌△,ME AF ∴=,AE AF AE ME AM BC ∴+=+==,即AE AF BC +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 11 页
学生做题前请先回答以下问题
问题1:三角形的中位线定义是:_______________________________________.
问题2:三角形中位线定理是:_________________________________________.
问题3:中点的五种处理思路分别是什么?

三角形中的中点综合测试(北师版)
一、单选题(共9道,每道11分)
1.在四边形ABCD中,E,F分别是AB,AD的中点,EF=2,BC=5,CD=3.
若∠ADC=129°,则∠AFE的度数为( )

A.59° B.49°
C.39° D.29°

答案:C
解题思路:
第 2 页 共 11 页
试题难度:三颗星 知识点:三角形的中位线

2.如图,在直角梯形ABCD中,P是下底BC边上一动点,点E,F,G分别是AB,PE,DP的
中点,AB=AD=4,则FG=( )

A. B.
C.2 D.不确定

答案:A
解题思路:
第 3 页 共 11 页

试题难度:三颗星 知识点:三角形的中位线
3.如图,点E是正方形ABCD的边BC的中点,∠BAE=∠FAE,则下列结论正确的是( )

A.AF=FC+AE B.AE=FC+AB
C.AE=EC+DF D.AF=FC+AB

答案:D
解题思路:
第 4 页 共 11 页

试题难度:三颗星 知识点:平行夹中点
4.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.
若AB=BC=3DE=6,则四边形DEFG的周长为( )

A.6 B.9
C.11 D.12

答案:C
解题思路:
第 5 页 共 11 页

试题难度:三颗星 知识点:直角三角形斜边中线等于斜边一半
5.如图,在等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于
D.若BF=2,则AD的长为( )

A. B.1
C.1.5 D.2

答案:B
解题思路:
第 6 页 共 11 页
试题难度:三颗星 知识点:等腰三角形三线合一
6.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠ABE=54°,那么∠BED的度数为( )
第 7 页 共 11 页

A.108° B.120°
C.126° D.144°

答案:C
解题思路:

试题难度:三颗星 知识点:等腰三角形三线合一
7.如图,在△ABC中,点E是AC的中点,过点E作AB的平行线,与∠ABC的平分线交于点
F,连接CF.若∠CFB=90°,AB=8,EF=1,则BC=( )

A.3 B.7
C.4 D.6

答案:D
解题思路:
第 8 页 共 11 页

试题难度:三颗星 知识点:等腰三角形三线合一
8.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于
H.若AB=9,AC=14,BC=18,则GH的长为( )

A. B.5
C.3 D.6
第 9 页 共 11 页

答案:A
解题思路:

试题难度:三颗星 知识点:等腰三角形三线合一
9.如图,在△ABC中,O是BC边的中点,D是AC边上一点,E是AD的中点,直线OE交BA
的延长线于点G,若AB=DC=5,∠OEC=60°,则OE=( )

A. B.
第 10 页 共 11 页

C.1.5 D.2
答案:B
解题思路:

试题难度:三颗星 知识点:多个中点构造中位线
学生做题后建议通过以下问题总结反思
问题1:完成有关中点的这几套试题后,我们一起来进行一下总结吧!
《三角形中的中点》是把“中点”特征打包成工具箱和结构,然后用几何综合题的处理思路中
“组合搭配”来迭代、重复,你在做的过程中有哪些题目比较困难?
问题2:针对这些困难题目,回顾做题过程,是什么原因导致没有完成呢?
①对中点的常见搭配不熟悉;②做几何题没有思考流程.
第 11 页 共 11 页

问题3:本次主要是对“中点”特征的打包,在此之前我们还讲解过__________、_____________
等结构,在几何综合题目中也经常出现,同学们需要能够根据不同的特征进行组合搭配来使
用.

相关文档
最新文档