(完整word)新北师大版八年级下册《三角形的证明》
北师大版八年级下册第一讲 三角形的证明

第一讲 三角形的证明【学习目标】1、掌握证明等腰三角形、直角三角形等图形的性质与判定的过程及推理能力;2、能证明线段垂直平分线、角平分线的性质定理及其逆定理,并解决相关真题与难题。
【学习重点】等腰三角形、直角三角形、线段垂直平分线、角平分线的性质定理的证明与应用。
【学习难点】明确推理证明的条件和结论,用数学符号语言解决相关题目。
【知识梳理】✧ 知识点一、等腰三角形的性质与判定 ✧ 知识点二、等边三角形的性质与判定 ✧ 知识点三、直角三角形的性质与应用✧ 知识点四、垂直平分线与角平分线的性质与判定记住以下结论:角平分线+平行线⇒等腰三角形出现. 角平分线+角平分线的垂线⇒等腰三角形出现.等腰三角形底边上任意一点到两腰距离的和等于腰上的高 ❖ 等腰三角形、直角三角形中几种常用的辅助线:【典型题例精讲精练】第一部分 基础知识过关考点一、等腰三角形性质和判定的应用例1、如图,在ABC Δ中,︒=∠90ACB ,B F B C AE AC ==,。
则ECF ∠=( )︒60A . ︒B.45 ︒30C . .D 不确定 【变式训练】1、在等腰三角形中,一个内角为︒30,则另外两个内角为__________。
一个等腰三角形一腰上的高与另一腰的夹角为︒45,则该三角形顶角的度数是____________。
2、等腰三角形的两边的边长分别为cm 16和cm 9,则第三边的长是______cm 。
3、等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2两部分,则此三角 形的底边长为 。
4、如图,边长为1的正方形ABCD 内有一正三角形CEB ,那么BDE Δ的面2.6m5.8积为______。
5、(2015龙东)△ABC 中,AB=AC=5,BC=8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,则PD+PE 的长是( )A .4.8B .4.8或3.8C .3.8D .5考点2、直角三角形性质的应用例2、(改编)在AB C R Δt 中,AC AB =,E D 、是斜边BC 上两点,且︒=∠45DAE ,将ADC Δ绕点A 顺时针旋转︒90后,得到AFB Δ,连接EF ,下列结论:①A EF ΔA ED Δ≅;②AB 垂直平分EF ;③DE DC BE =+;④222DE DC BE =+其中正确的是( )A.②④B.①④ .C ②③ .D ①③【变式训练】1、某宾馆在重新装修后,准备在大厅的主楼上铺设某种红色地毯,已知这种地毯每平方米售价为30元,主楼梯道宽2米,某侧面如图所示,则购买地毯至少需要_________元2、如图,已知ABC Δ中,B C AB 90ACB =︒=∠,,三角形的顶点在相互平行的三条直线321l l l 、、上,且21l l 、之间的距离为2 ,32l l 、 之间的距离为3,则AC 的长是( ) A.172 52B . .C 24 7D . 2、(2011七中初中阶段性测试)如图,等腰直角三角形ABC 的直角边AB 的长为6cm ,将△ABC 绕点A 逆时针旋转15°后得到△AB ′C ′,则图中阴影部分面积等于____________2cm 。
新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
北师大版八下数学三角形的证明

1.在△ABC中,BC=6,CA=8,AB=10,O为三条角平分线的交点,则点O到各边的距离为2.如图,在△ABC中,∠C=90°,AC=4,BC=3,若在△ABC所在的平面内有以点P(不与A、B、C 重合)为顶点的直角三角形与Rt△ABC全等,且这个三角形与Rt△ABC有一条公共边,则所有符合条件的点P的个数为3.若等腰三角形一边上的高线等于这条边的一半,则这个等腰三角形顶角等于.4.在Rt△ABC中,∠C=90°,AC=7,BC=24,AB=25,P为三内角平分线交点,则点P到各边的距离都等于.5.如图,已知E是正方形ABCD的边BC的中点,点F在边CD上,且∠BAE=∠FAE,求证:AF=AD+CF.6.如图,已知△ABC和△BDE均为等边三角形,求证:BD+CD=AD.7.已知AC是∠MAN的平分线.(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;8.如图,点P为OC上一点,PD=PE,∠0DP+∠OEP=180°,求证:0P平分∠A0B.9.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.10.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM ⊥AB与M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.11.如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点M自A向B以1cm/s的速度运动,动点N自B向C以2cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.12.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE ⊥AD,垂足为点E,BF∥AC交CE的延长线于点F,求证:(1)AC=2BF;(2)AB垂直平分DF.12.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F 在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)当t为何值时,△APQ是等腰三角形.13.如图(1),△ABC为等边三角形,动点D在边CA上,由C向A方向运动,动点P边BC上,由B向C运动,若这两点分别从C、B点同时出发,以相同的速度运动,连接AP,BD交于点Q,两点运动过程中(1)AP=BD;(2)探究:如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;(3)应用:如果把原题中“动点P在边BC上,由B向C运动”改为“动点P在AB 的延长线上由点B向F运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,①请猜想DE=线段;②根据上述猜想,加以证明.。
北师大版数学八年级下册《三角形的证明》课件(共22张)

∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E)
∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F(等量代换)
∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
(1)还记得我们探索过的等腰三角形的性质吗?尽可能回忆出来. (2)你能利用已有的公理和定理证明这些结论吗?
如图,先自己折纸视察探索并写出等腰三角形的性质, 然后再小组交流,互相补偿不足.
作图视察,我们可以发现:等腰三角形两底角的平分 线相等;两腰上的高、中线也分别相等.
我们知道,视察或度量是不够的,感觉不可靠.这 就需要以公理和已证明的定理为基础去证明它,让人们 坚定不移地去承认它,相信它.
下面我们就来证明上面提到的线段中的一种:等腰 三角形两底角的平分线相等.
用心想一想,马到功成
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等).
用心想一想,马到功成
例1. 证明: 等腰三角形两底角的平分线相等. A
已知:如图,在△ABC中, AB=AC,
BD、CE是△ABC的角平分线.
E
D
求证:BD=CE.
3
4
B
C
证明:∵AB=AC,∴∠ABC=∠ACB.
∵∠3=2 1∠ABC,∠4= 21∠ACB, ∴∠3=∠4.
又∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠A=∠B=∠C=60°.
随堂练习 及时巩固
如图,已知△ABC和△BDE都是等边三角形,
求证:AE=CD
A
B EC D
证明: ∵ △ABC和△BDE都是等边三角形
∴AB=BC,∠ABC=∠DBE=60°,BE=BD ∴ △ABE≌△CBD
北师大版 八年级下三角形的证明(一)

知识点一:公理:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS)知识点二:等腰三角形等边三角形等腰三角形的性质;(1)“等边对等角”(2)“三线合一”即等腰三角形顶角平分线,底边上的中线、高互相重合(3)等腰三角形的两腰上的高相等,(4)等腰三角形的两底角的平分线相等,等边三角形有一个角是60°的等腰三角形是等边三角形.等边三角形三个角都相等,且每个角都是60°定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.例1.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.例2.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.例3.已知△DEF是等边三角形,且∠EAB=∠DCA=∠FBC。
求证:△ABC是等边三角形一.选择题1. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是( )A .15cmB .16cmC .17cmD .16cm 或17cm2.给出下列命题,正确的有( ) ①等腰三角形的角平分线、中线和高重合; ②等腰三角形两腰上的高相等; ③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个B.2个C.3个D.4个3.满足下列条件的两个三角形一定全等的( )A .腰相等的两个等腰三角形 B.一个角对应相等的两个等腰三角形C .斜边对应相等的两个直角三角形 D.底相等的两个等腰直角三角形4.下列说法不正确的是 ( )A.等边三角形有三条对称轴B.线段AB 只有一条对称轴C.等腰三角形的对称轴是底边上的中线D.等腰三角形的对称轴是底边上的高所在的直线二.填空题1.等腰三角形底边上的__________,底边上的__________,顶角__________,均把它分成两个全等三角形2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3.“等边对等角”的逆命题是______________________________.“等腰三角形的两腰上的高相等”的逆命题是______________________________.4.在△ABC 中,∠A=∠B=21∠C ,则△ABC 是__________三角形.5. 边长为6cm的等边三角形中,其一边上高的长度为__________________.6.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是7. 如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=_______.8. 如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.解答题1.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.2.如图,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BAC.3.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.∴△AEB≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;4.如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.5.在△ABC中,AB=AC,点D在BC上,且AD=BD,AC=CD,求∠B的度数6.用反证法证明:一个三角形中至少有一个内角小于或等于60°7.如图,△ABC是等边三角形,AD为BC边的中线,AD=AE,求∠EDC的度数8.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE = CD.求证:BD = DE.9.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)求∠AFE的度数10.如图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.11.如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE; (2) 连接OA,BC,试判断直线OA,BC的关系并说明理由.12.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F使AD=BE=CF.求证:△DEF 是等边三角形.13.已知点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE为等边三角形14在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答題目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).。
八年级数学下册 第一章《三角形的证明》1.1《等腰三角形》课件4 (新版)北师大版.pptx

求证:∠A=∠C.
证明:连接BD,
开拓思维
在△BAD和△DCB中,
∵ AB=CD(
)
AD=CB(
)
A
BD=DB(
)
∴ △BAD≌ △DCB( ) B
∴ :∠A=∠C (
)
D C
15
2.已知:如图,点B,E,C,F在同一条直线
上,AB=DE,AC=DF,BE=CFA.
D
求证:∠A=∠D
B E
C
F
16
A′ ●
● ● C′
AB=A′B′(已知),
∠B=∠B′ (已证),
驶向胜利 的彼岸
∴ △ABC≌△A′B′C′(ASA).
4
几何的三种语言
w推论: w两角及其一角的对边对应 相等的两个三角形全等
(AAS). 在△ABC与△A′B′C′中
●
A
′ ∵∠A=∠A′ ∠C=∠C′
AB=A′B′
A′ ●
∴△ABC≌△A′B′C′(AAS).
13
1.在△ABC中,AB=AC.
(1)若∠A=40°,则∠C等于多少度?
(2)若∠B=72°,则∠A等于多少度?
2. 如图,在△ABD中,C是BD上的一点,且AC⊥BD, AC=BC=CD,
(1)求证: △ABD是等腰三角形;
(2)求∠BAD的度数.
A
B
C
D
14
1.将下面证明中每一步的理由写在括号内: 已知:如图,AB=CD,AD=CB.
∴∠1=∠2,AD⊥BC(等腰三角形三线合一)
∵AB=AC, AD⊥BC(已知). ∴BD=CD, ∠1=∠2(等腰三角形三线合一)
w轮换条件∠1=∠2, AD⊥BC,BD=CD,可得三线合一的 三种不同形式的运用.
北师大数学八年级下册第一章三角形的证明

第一章 三角形的证明 学员姓名:【基础知识】知识点1 全等三角形的判定及性质 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理 等腰三角形的两底角相等。
简述为:等边对等角在△ABC 中,若AB=AC ,则∠B=∠C条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC ,AB=AC ,AD ⊥BC ,则AD 是BC 边上的中线,且AD 平分∠BAC条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也死其他两线等腰三角形中的相等线段:1等腰三角形两底角的平分线相等2等腰三角形两腰上的高相等3两腰上的中线相等4底边的中点到两腰的距离相等知识点3 等边三角形的性质定理内容性质定理 等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。
它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC 中,若∠B=∠C 则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读 【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果【当堂训练】1、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为( ) A 、22厘米 B 、17厘米 C 、13厘米 D 、17厘米或22厘米2、下列关于等腰三角形的性质叙述错误的是( ) A 、等腰三角形的两底角相等 B 、等腰三角形是轴对称图形C 、 等腰三角形是轴对称图形D 、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 3、如图1-Z-1所示,在△ABC 中,AC=DC=DB ,∠ACD=100°则∠B 等于( ) A 、50° B 、40° C 、 25° D 、 20°4、如图1-Z-2所示,在△ABC 与△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF , 不能添加的条件是( )A 、∠B=∠E ,BC=EFB 、BC=EF ,AC=DFC 、∠A=∠D ,∠B=∠E , D 、 ∠A=∠D ,BC=EF 5、已知:如图1-Z-3所示,m ∥n ,等边三角形ABC 的顶点B 在直线m 上,边BC 与直线m 所夹的锐角为 20°则∠a 的度数是( )A 、60°B 、30°C 、40°D 、45°6、如图1-Z-4所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于A图1-Z-1CBD DCEBAF图1-Z-2m nAa图1-Z-3BN ,若BM+CN=9,则线段MN 的长为( )A 、6B 、7C 、8D 、97、如图1-Z-5所示,在△ABC 中,CD 平分∠ABC ,∠A=80°,∠ACB=60°,那么∠BDC =( ) A 、80° B 、90° C 、100° D 、110°8、如图1-Z-6所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离 DE=3.8cm ,则线段BC 的长为( )A 、3.8cmB 、7.6cmC 、11.4cmD 、11.2cm9、如图1-Z-7所示,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P 、O 、A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A 、2个B 、3个C 、4个D 、5个【课后巩固】10、 如图1-Z-8所示,已知△ABC 是等边三角形,AD ∥BC ,CD ⊥AD ,垂足为D ,E 为AC 的中点,AD=DE=6cm,, 则∠ACD= °, AC= cm , ∠DAC= °,△ADE 是 三角形11、“两直线平行,内错角相等”的逆命题是CMCENB A图1-Z-4BD图1-Z-5D B EAC图1-Z-6oyx图1-Z-712、如图1-Z-9,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD= °13、 如图1-Z-10是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大的正方形E 的面积是 . 14、等腰三角形的一个角是80°,则它的顶角是 .15、已知:如图,把长方形纸片ABCD 沿EF 折叠后.点D 与点B 重合,点C 落在点C ′的位置上.若∠1=60°,AE=1.(1) 求∠2、∠3的度数;(2) 求长方形纸片ABCD 的面积S .16、已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.17、已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .18、已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.AB D OCE 图1-Z-9ABCDE图1-Z-1019、如图12,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BA C.20、如图,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.【冲击中考】21.(2013•郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°22.(2012•潍坊)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.2523.(2011•贵阳)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.724.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.925.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.526.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.27.(2007•芜湖)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.4。
北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)

获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的证明【知识点一:全等三角形的判定与性质】 1.判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法斜边和一条直角边对应相等(HL )性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 【典型例题】1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( ) A .SSS B .ASAC .AASD .角平分线上的点到角两边距离相等 2.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等 3.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC 的度数为( ) A .40°B .35°C .30°D .25°4.已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .5.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N 作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7【巩固练习】1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-95.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10 (2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.182.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【巩固练习】1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B 在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6 B.7 C.8 D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D 作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【知识点三:等边三角形的判定与性质】判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形.性质:等边三角形的三边相等,三个角都是60°.【典型例题】1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°3、如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.【变式练习】1.下列命题:①两个全等三角形拼在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线所在直线;③等边三角形一边上的高所在直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.其中错误的有()A.1个B.2个C.3个D.4个2.如图,AC=CD=DA=BC=DE.则∠BAE是∠BAC的()A.4倍B.3倍C.2倍D.1倍3.如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为.4.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是()A.60°B.110°C.120°D.135°5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.646.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立? 若成立,给予证明;若不成立,说明理由.7.如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.【知识点四:反证法】反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【基础练习】1、否定“自然数a、b、c中恰有一个偶数”时的正确反正假设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数2、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°3、证明:在一个三角形中至少有两个角是锐角.【知识点五:直角三角形】1、直角三角形的有关知识.●勾股定理:直角三角形两条直角边的平方和等于斜边的平方;●勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;●在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.2、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.【典型例题】1、说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab=0,那么a=0,b=0;(4)在一个三角形中有两个角相等,那么这两个角所对的边相等2.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B.6 C.5 D.44.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.25.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于()A.6 B.4 C.3 D.26.如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.3B.22C.4 D.37.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗? 请证明你的结论.8.如图,在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重合.(1)在图中画△BCD,使△BCD的面积=△ABC的面积(点D在小正方形的顶点上).(2)请直接写出以A、B、C、D为顶点的四边形的周长.9.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.【变式练习】1.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A.已知斜边和一锐角B.已知一直角边和一锐角C.已知斜边和一直角边D.已知两个锐角2.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.333.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E 的面积是.4.已知Rt△ABC中,∠C=90°,且BC=12AB,则∠A等于()A.30°B.45°C.60°D.不能确定5.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.6.如图,在5×5的方格纸中,每一个小正方形的边长都为1,∠BCD是不是直角? 请说明理由.7.正方形网格中的每个小正方形边长都是1.每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中,画△ABC,使△ABC的三边长分别为3、22、5;(2)在图2中,画△DEF,使△DEF为钝角三角形且面积为2.【提高练习】1.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.62.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.55n 2 3 4 5 …3.张老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n (n >1)的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.4.如图,AC =BC =10cm ,∠B =15°,AD ⊥BC 于点D ,则AD 的长为( )A .3cmB .4cmC .5cmD .6cm5.如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交AB 于E ,交BC 于D ,BD =8,则AC = .6.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A 、B 两点在小正方形的顶点上,请在图1、图2中各取一点C (点C 必须在小正方形的顶点上),使以A 、B 、C 为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC ,使△ABC 为面积为5的直角三角形; (2)在图2中画一个△ABC ,使△ABC 为钝角等腰三角形.7.已知,如图,△ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P . (1)求证:△AEB ≌△CDA ; (2)求∠BPQ 的度数;a 22-1 32-1 42-1 52-1 … b46810…c 22+1 32+1 42+1 52+1 …(3)若BQ ⊥AD 于Q ,PQ =6,PE =2,求BE 的长.【知识点六:线段的垂直平分线】● 线段垂直平分线上的点到这一条线段两个端点距离相等。