材料成型基本原理课后答案.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章思考与练习

简述滑移和孪生两种塑性变形机理的主要区别。

答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。

孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。

设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移

系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发

生滑移?为什么?

答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向,

而Ⅱ接近硬取向。

试分析多晶体塑性变形的特点。

答:①多晶体塑性变形体现了各晶粒变形的不同时性。

②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。

③多晶体变形的另一个特点还表现出变形的不均匀性。

④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。

4. 晶粒大小对金属塑性和变形抗力有何影响?

答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。

5. 合金的塑性变形有何特点?

答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。

单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用,

多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。

根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显著的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。

6. 冷塑性变形对金属组织和性能有何影响?

答:对组织结构的影响:晶粒内部出现滑移带和孪生带;

晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状;

晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。

对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。

随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。

7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响?

答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。

加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。

8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么?

答:动态回复是层错能高的金属热变形过程中唯一的软化机制。

对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使

异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。

9. 什么是动态再结晶?影响动态再结晶的主要因素有哪些?

答:在热塑性变形过程中,层错能低的金属在变形量很大时,当加热升温时,原子具有相当的扩散能力,变形后的金属自发地向低自由能状态转变,称为动态再结晶。

影响动态再结晶的主要因素有:金属的层错能高低,晶界迁移的难易程度有关。

10. 什么是扩散性蠕变?它的作用机理是什么?

答:扩散蠕变是在应力场作用下,由空位的定向移动引起的。

它的作用机理是在一定温度下,晶体中总存在一定数量的空位。显然,空位旁边的原子容易跳入空位,相应地在原子占据的结点上出现新的空位,相当于空位朝原子迁移的相反方向迁移。在应力场作用下,受拉应力的晶界的空位浓度高于其它部位的晶界,由于各部位空位的化学势能差,而引起空位的定向转移,即空位从垂直于拉应力的晶界析出,而被平行于拉应力的晶界所吸收。

11. 钢锭经热加工变形后的组织和性能发生什么变化?

答:组织和性能发生什么变化:①改善晶粒组织②锻合内部缺陷③形成纤维状组织④.改善碳化物和夹杂物分布⑤改善偏析。

12. 杂质元素和合金元素对钢的塑性有何影响?

答:杂质元素,如P、S、N、H、O等,合金元素Si、Mn、Cr、Ni、W、Mo、V、Ti等。对金属塑性的影响主要表现为:

①碳碳对碳钢性能的影响最大。碳能固溶于铁,形成铁素体和奥氏体,它们具有良好的塑性。当铁中的碳含量超过其溶碳能力时,多余的碳便以渗碳体Fe3C形式出现,它具有很高的硬度,而塑性几乎为零。

②磷磷是钢中的有害杂质,在钢中有很大的溶解度,易溶于铁素体,使钢的塑性降低,在低温时更为严重,这种现象称为冷脆性。。此外,磷具有极大的偏析倾向,能促使奥氏体晶粒长大。

③硫硫是钢中的有害物质,主要与铁形成FeS,FeS与铁形成易熔共晶体Fe-FeS,产生“热脆”现象。

④氮氮在钢中主要以氮化物Fe4N形式存在。在300oC左右加工,会出现所谓的“蓝脆”现象。

⑤氢、氧氧在钢中溶解度很小,主要以Fe3O4、 Al2O3和SiO2等夹杂物出现,降低钢的塑性; Fe3O4还与FeS形成易熔共晶体,分布于晶界处,造成钢的热脆性。钢中溶氢,会使钢的塑性、韧性下降,造成所谓“氢脆”。

⑥锰作用之一是显著提高铁素体强度;作用之二是脱硫,锰与硫化合生成MnS,以消除FeS的热脆现象。

⑦锡、铋、铅、锑、砷这几种低熔点合金元素在钢中的溶解度很低,它们在钢中以纯金属相存在于晶界,易造成钢的热脆性。

⑧稀土元素钢中加入少量稀土元素可以改善钢的塑性,但加入过量的稀土元素会在晶界处析出,反而会降低塑性。

13. 组织状态、变形温度应变速率对金属塑性有何影响?

答:组织状态状态对金属塑性的影响:当金属材料的化学成分一定时,组织状态的不同,对金属的塑性有很大影响。⑴晶格类型的影响,面心立方(滑移系12个)的金属塑性最好;体心立方晶格(滑移系12个)塑性次之,密排六方晶格的金属塑性更差。⑵晶粒度的影响,晶粒度越小,塑性越高,晶粒度均匀的塑性好,晶粒大小相差悬殊的多晶体,各晶粒间的变形难易程度不同,造成变形和应力分布不均匀,所以塑性降低。⑶相组成的影响,当合金元素以单相固溶体形式存在时,金属的塑性较高;当合金元素以过剩相存在时,塑性较低。⑷铸造组成的影响,铸造组织具有粗大的柱状晶粒,具有偏析、夹杂、气泡、疏松等缺陷,因而塑性较差。

变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。(蓝脆区和热脆区)

相关文档
最新文档