MATLAB数值计算
Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
Matlab中的数值计算方法简介

Matlab中的数值计算方法简介引言:Matlab是一种强大的数值计算软件,广泛应用于工程、科学、金融等领域。
它拥有丰富的数值计算方法库,可以帮助研究者和工程师解决各种数值计算问题。
本文将简要介绍几种常见的数值计算方法,并说明它们在Matlab中的实现和应用。
一、插值法插值法是一种通过已知数据点之间的插值,估计未知数据点的数值的方法。
常见的插值方法包括线性插值、拉格朗日插值和样条插值。
在Matlab中,我们可以使用interp1函数进行插值计算。
该函数可以根据给定的数据点,计算出在指定位置的插值结果。
我们可以通过设置插值的方法和插值节点的数目来调整插值的精度与计算效率。
二、数值积分数值积分是一种通过近似求解定积分的方法。
在Matlab中,我们可以使用quad和quadl函数进行数值积分。
这些函数可以自动选择合适的数值积分方法,并提供了较高的精度和计算效率。
我们只需提供被积函数和积分区间,即可获得近似的积分结果。
对于一些特殊形式的积分,如复杂函数或无穷积分,Matlab还提供了相应的函数供我们使用。
三、线性方程组求解线性方程组的求解是数值计算中的一个重要问题。
在实际应用中,我们经常会遇到大规模线性方程组的求解问题。
在Matlab中,我们可以使用矩阵运算功能和线性方程组求解函数来解决这类问题。
Matlab提供了一系列的求解函数,包括直接法和迭代法。
其中,直接法适用于小规模线性方程组,迭代法则适用于大规模线性方程组。
我们可以根据具体情况选择合适的方法和函数来求解线性方程组。
四、微分方程求解微分方程是许多科学和工程问题的数学模型,求解微分方程是数值计算中的常见任务。
在Matlab中,我们可以使用ode45函数来求解常微分方程的初值问题。
该函数采用龙格-库塔方法,对微分方程进行数值积分,并给出近似的解析结果。
对于偏微分方程和其他更复杂的微分方程问题,Matlab还提供了更多的求解函数和工具箱供我们使用。
五、最优化问题求解最优化问题是指在特定约束条件下,求解给定目标函数的最大值或最小值的问题。
matlab数值运算和符号运算

《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。
它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。
在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。
本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。
一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。
它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。
2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。
这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。
3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。
通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。
二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。
这为数学建模、符号推导和精确计算提供了强大的支持。
2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。
利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。
3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。
利用符号计算推导物理模型、利用符号运算求解工程问题等。
总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。
数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。
这两者相辅相成,在不同的领域中发挥着重要的作用。
希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。
MATLAB数值计算功能

MATLAB数值计算功能
MATLAB是一种非常强大的数值计算软件,被广泛应用于科学计算、
工程计算和数据分析等领域。
它提供了丰富的数值计算功能,包括基本的
数学运算、线性代数、数值积分、微分方程求解、优化算法等。
下面将详
细介绍一些常见的数值计算功能。
1.数学运算:
MATLAB提供了丰富的数学函数,可以进行各种基本的算术运算,如
加减乘除、幂运算、取模运算等。
同时,它还提供了一些高级的数学函数,如三角函数、指数函数、对数函数等。
通过这些函数,用户可以进行各种
复杂的数学运算。
2.线性代数:
3.数值积分:
4.微分方程求解:
5.优化算法:
MATLAB提供了各种优化算法,如线性规划、非线性规划、整数规划、二次规划等。
用户可以通过设定目标函数和约束条件,利用MATLAB的优
化函数寻找最佳的解。
这对于优化问题的求解非常有用,如工程设计、生
产调度等。
6.统计分析:
7.数据可视化:
总之,MATLAB的数值计算功能非常丰富,可以满足各种数学计算和数据分析的需求。
它不仅提供了各种基本的数学运算功能,还提供了高级的线性代数、数值积分、微分方程求解、优化算法和统计分析等功能。
同时,其强大的数据可视化功能也是很多用户选择MATLAB作为数值计算工具的重要原因之一。
matlab数值计算方法

Matlab提供了多种数值计算方法,以下是其中一些常用的方法:
1. 整数计算:Matlab中的计算方式和计算器类似,可以直接输入数值然后加上运算符进行运算。
2. 小数计算:小数计算的方式和整数相似。
3. 分数计算:Matlab可以切换至分数模式,这一点较计算器等具有较大优势。
4. 赋值运算:Matlab中除了和计算器一样直接运算,还能进行赋值运算,直接将其中一个值赋值后,带入运算即可。
5. 多重赋值运算:Matlab在数值计算的时候,还支持多重赋值计算。
这样可以很方便的求解列出的问题。
以上内容仅供参考,建议查阅Matlab官方文档获取更全面和准确的信息。
MATLAB_数值计算

b31 b32 b33
对于编程语言,矩阵就是二维的数组
2.1 MATLAB的基本计算
数学计算分为数值计算与符号计算,前者 不允许出现未定义变量,后者允许。(Eg 2-1) 常用的基本数学函数表。 (Eg 2-2)
Eg 2-1
三角函数
函数
sin sinh asin cos acos
说明
正弦函数 双曲正弦函数 反正弦函数 余弦函数 反余弦函数
MATLAB数值计算
2.1 MATLAB的基本计算 2.2 MATLAB矩阵和数组 2.3 关系和逻辑运算 2.4 多项式 2.5 稀疏矩阵 2.6 数据分析函数 2.7 数值分析
概述
在M语言中最常用的数据类型表现手段和形
式就是变量和常量
M语言的基本处理单位是数值矩阵或者数值
Eg 2-14 低维数组合成高维数组
建立3阶魔方及帕斯卡数组
将A、B串联成三维数组
cat(1,A,B)=[A;B]
cat(2,A,B)=[A,B]
>> A=eye(4) A= 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 >> A(:,:,2)=eye(4)*10; >> A(:,:,3)=eye(4)*100 A(:,:,1) = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 A(:,:,2) = 10 0 0 0 0 10 0 0 0 0 10 0 0 0 0 10 A(:,:,3) = 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
复数运算函数
函数
abs
பைடு நூலகம்
说明
求复数的模,若参数为实数则求绝对值
3MATLAB数值计算

第三节MATLAB数值计算数学计算分为数值计算和符号计算。
这两种计算的区别是:数值计算的表达式、变量中不得包含未定义的自由变量,而符号计算中则允许。
本节主要介绍MATLAB的数值计算。
一、多项式1.多项式的表达与创建MATLAB用行矢量表示多项式系数,其中各元素按降幂顺序排列,如果多项式表示为:p(x)=a0x n+ a1x n-1+…+ a n-1x+a n则系数矢量为:p=[a0 a1 …a n-1 a n] 。
例如:p(x)= x3-2x-5,其系数矢量为:p=[1 0 -2 -5]。
如果把根矢量表示为:ar=[ar1ar2…ar n],则根矢量与系数矢量之间满足下面的关系式:(x- ar1)(x- ar2) …(x- ar n)= a0x n+ a1x n-1+…+ a n-1x+a n多项式系数矢量通过调用函数p = poly(ar)产生。
例1将多项式(x-8)(x-3)(x-6)表示为系数形式(即求出系数矢量)。
a=[8 3 6];%写成根矢量pa=poly(a)%求出系数矢量ppa=poly2sym(pa) % 表示成符号形式ezplot(ppa,[-40,40]) % 绘图输出结果为:pa =1 -17 90 -144ppa =x^3-17*x^2+90*x-144图1说明:(1) n个元素的根矢量求出的多项式系数矢量的元素一定是n+1个。
(2) 函数poly2sym把多项式系数矢量表达成符号形式的多项式,缺省情况下自变量符号为x,可以指定其他自变量,如poly2sym(pa,’t’),则表达为t的多项式。
(3) 使用简单绘图函数ezplot可以直接绘制符号形式多项式的曲线,其中第二个输入参数是由方括号内的两个数值组成的,给定了绘图范围。
若省略该参数,系统将自动按缺省范围绘图。
例2求3阶方阵A的特征多项式。
A=[6 3 8;7 5 6;1 3 5];pa=poly(A)ppa=poly2sym(pa)输出结果为:pa =1.0000 -16.0000 38.0000 -83.0000ppa =x^3-16*x^2+38*x-83说明:n阶方阵的特征多项式系数矢量一定是n+1阶。
MATLAB的数值计算

例:a=[1 2 3;4 5 6;7 8 0]; p=poly(a) p =1.00 -6.00 -72.00 -27.00 p是多项式p(x)=x3-6x2-72x-27的matlab描述方法,我们可用: p1=poly2str(p,‘x’) — 函数文件,显示 数学多项式的形式 p1 =x^3 - 6 x^2 - 72 x - 27
a./b=b.\a a.\b=b./a a./b=b.\a — 都是a的元素被b的对应元 素除 a.\b=b./a — 都是a的元素被b的对应元 素除 例: a=[1 2 3];b=[4 5 6]; c1=a.\b; c2=b./a c1 = 4.0000 2.5000 2.0000 c2 = 4.0000 2.5000 2.0000
—— 给出a,b对应元素间的商.
3. 数组乘方(.^) — 元素对元素的幂 例: a=[1 2 3];b=[4 5 6]; z=a.^2 z = 1.00 4.00 9.00 z=a.^b z = 1.00 32.00 729.00
对于p的其它值,计算将涉及特征值 和特征向量,如果p是矩阵,a是标量 a^p使用特征值和特征向量自乘到p次 幂;如a,p都是矩阵,a^p则无意义。
a=[1,2,3;4,5,6;7,8,9];a^2 ans =30 36 42 66 81 96 102 126 150
2. 数组乘除(,./,.\) ab —— a,b两数组必须有相同的行 和列两数组相应元素相乘。 a=[1 2 3;4 5 6;7 8 9]; b=[2 4 6;1 3 5;7 9 10]; a.*b ans = 2 8 18 4 15 30 49 72 90
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)代数多项式求值
y = polyval(P,x)
若x为一数值,则求多项式在该点的值;若x为向量或矩阵,则 对向量或矩阵中的每个元素求其多项式的值。
(2)矩阵多项式求值 Y = polyvalm(P,X)
•
polyvalm函数要求x为方阵,它以方阵为自变量求多项式的值
设A为方阵,P代表多项式x3-5x2,那么polyvalm(P,A)的含义是: A*A*A-5*A*A 而polyval(P,A)的含义是: A.*A.*A-5*A.*A
[I,n]=quad(fx,1,2.5,1e-10)
(2) k = polyder(P,Q)
例:求有理分式的导数。 命令如下: P=[1]; Q=[1,0,5]; [p,q]=polyder(P,Q)
求两个多项式乘积P·Q的导函数
(3) [p,q] = polyder(P,Q)
求两个多项式除法P/Q的导函数,导函数的分子存入p,分母存入q。
8. 多项式积分
例:求定积分。 (1) 建立被积函数文件fesin.m。
function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。 [S,n]=quad('fesin',0,3*pi) S=
0.9008 n= 77
(2) 牛顿-柯特斯法
➢ method 用 于 指 定 插 值 的 方 法 : ‘ l i n e a r ’ 、 ‘nearest’、‘cubic’、‘spline’
➢ X1,Y1的取值范围不能超出X,Y的给定范围,否则,会 给出“NaN”错误。
运行结果如下图所示。
代数方程
线性方程
方程
非线性方程
微分方程
常微分方程
第四章 数值计算功能
MATLAB提供大量具有强大数值计算功能的函数。本章着重介绍关于数值计算的函数。
4.1 多项式计算 4.2 数值插值和曲线拟合 4.3 线性方程组求解 4.4 非线性方程问题求解 4.5 常微分方程的数值求解 4.6 数值微分与积分 4.7 函数极值
4.1 多项式运算
1.多项式表示法 2.多项式求根 3.多项式求值 4.多项式乘法和除法 5.多项式的微积分 6.多项式曲线拟合
12
5. 多项式乘法-向量卷积 (conv)
w = conv(P1,P2)
用于求多项式P1和P2的乘积。这里,P1、P2是两个多 项式系数向量,返回结果也为多项式的系数向量;
例: 求多项式x4+8x3-10与多项式2x2-x+3的乘积。
6. 多项式除法-向量解卷积(deconv)
[Q,r] = deconv(P1,P2)
4. 多项式加减
多项式加减运算
次数相同的多项式,可直接对其系数向量进行加减运算, 如果两个多项式次数不 同,则应该把低次多项式中系数不足的高次项用 0 补足,然后再进行加减运算
例:
p1 = 2x3 - x2 + 3
p2 =
2x + 1
p1 + p2 = 2x3 - x2 + 2x + 4
[2, -1, 0, 3] [0, 0, 2, 1[2], 1] [2, -1, 2, 4]
病态方程组
4.3.1 直接解法
1.左除运算符“\”或逆矩阵
Ax=b的解 x=A\b或 inv(A)*b
例 用直接解法求解下列线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b or x=inv(A)*b
• >> eig(A) 16.1168 -1.1168 -0.0000
2. 多项式求根
(1)多项式的根
==0
n次多项式具有n个根,当然这些根可能是实根,也可能 含有若干对共轭复根。MATLAB提供的roots函数用于求 多项式的全部根,其调用格式为:
r = roots(P)
P为多项式的系数向量,求得的根赋给向量r,即 b(1),b(2),…,b(n)分别代表多项式的n个根。
基于牛顿-柯特斯法,MATLAB给出了quad8函数 来求定积分。该函数的调用格式:
[I,n]=quad8('fname',a,b,tol,trace)
其中参数的含义和quad函数相似,只是tol的缺省 值取10-6。 该函数可以更精确地求出定积分的值, 且一般情况下函数调用的步数明显小于quad函数, 从而保证能以更高的效率求出所需的定积分值。积 分精度更高。
例:求多项式x4+8x3-10的根。 命令如下:
P=[1,8,0,0,-10];
r=roots(P) 若已知多项式的全部根,则可以用poly函数建立起 该多项式,其调用格式为:
P=poly(r) 若r为具有n个元素的向量,则poly(r)建立以r为其根 的多项式,且将该多项式的系数赋给向量P。
3.多项式求值(polyval)
注意:X1的取值范围不能 超出X的给定范围,否则, 会给出“NaN”错误。
运行结果如下图所示。
3. 二维插值
二维插值是对两变量的函数z=f(x,y)进行插值,二维插值的原理如 下图所示:
2. 函数interp2二维插值:
zi = interp2(x,y,z,xi,yi,method)
➢其中X,Y是两个向量,分别描述两个参数的采样点,Z 是与参数采样点对应的函数值,Xi,Yi是两个向量或标 量,描述欲插值的点。Zi是根据相应的插值方法得到的 插值结果。
采用n次多项式p来拟合数据x和y。
p = polyfit(x,y,n)
拟合的数据
x 1 2 3 4 5 6 7 8 9 10
y 1 3 11 12 28 32 45 70 80 104
x=1:10; y=[1,3,11,12,28,32,45,70,80,104]; %2次多项式拟合 p1=polyfit(x,y,2); y1=polyval(p1,x); %5次多项式拟合 p2=polyfit(x,y,5); y2=polyval(p2,x); hold on; plot(x,y,'or--'); plot(x,y1,'b--'); plot(x,y2,'*--'); xlabel('x'); ylabel(‘y’) Legend(‘原始数据’,’二阶多项式拟合’,’五 次多项拟合’)
➢函数根据X,Y的值,计算函数在Xi处的值。X,Y是两个等 长的已知向量,分别描述采样点和样本值,Xi是一个向 量或标量,描述欲插值的点,Yi是一个与Xi等长的插值 结果。
➢method用于指定插值的方法:‘线性linear’、‘最近 点nearest’、‘立方cubic’、
‘三次样条spline’
4.2曲线拟合和数据插值 4.2.1曲线拟合 4.2.2数据插值
数据插值、拟合的背景知识
在解决实际问题的生产、工程实践和科学实验中,常常需 要从一组实验中观测数据
xi , yi , i 0,1, , n,
揭示自变量与因变量之间的关系,从而帮助人们认识事物的 内在规律和本质属性。
数据插值、拟合的背景知识
1.多项式表示法
多项式
(1)直接法: P=[a0,a1,...an-1,an]
MATLAB采用行向量Байду номын сангаас示多项式系数,多项式系 数按降幂排列。 假如缺某个幂次项,则其幂次项系数为零。
(2) 完整形式法:poly2str(P,'X')
将多项式系数向量转换为完整形式,是一个字符串形式。
(3)根创建多项式
偏微分方程
4.3 线性方程组求解 4.4 非线性方程问题求解 4.5 常微分方程的数值求解
4.3 线性方程组求解
Ax=b,A(n×m);m是独立方程个数,n是未知量x个数
线性方程组
线性方程组分类
唯一解的恰定 线性方程组(n=m)
A为方阵,行列式不等于0,(非奇异)
无数多解的欠定方程组(m<n)
解不存在的超定方程)(m>n)
给出函数关系式的方 法,因观测数据与要求 的不同而异,通常可以 采用两种方法: ✓ 拟合 ✓ 插值
简单的插值与拟合可 以通过手工计算而得出, 但是复杂的计算只能求 助于计算机。
4.2.1. 多项式曲线拟合
1. 多项式曲线拟合
函数polyfit()采用最小二乘法(误差平方和最小)对给定数据 进行多项式拟合.
多项式积分: polyint
I=polyint(p,c) I=polyint(p)
不定积分,常数项取 c 不定积分,常数项取 0
例:已知 p(x) = 2x3 - x2 + 3
求 p( x) dx,常数项取 5
I=polyint([2,-1,0,3],5);
16
MATLAB提供多项式的函数:
多项式的值;根和微分;拟合曲线;部分分式
练习1
设有某实验数据如下:
(1)在MATLAB中作图观察离散点的结构,用多项式拟合的方法拟合一个合适的 多项式函数;
(2)在MATLAB中作出离散点和拟合曲线图.
练习2
在一天24小时内,从零点开始每间隔2小时测得的环境温度( ℃),如下表所示。
一天内间隔2小时测得环境温度表
时间 环境温度 时间 环境温度 时间 环境温度
例:求定积分。 (1) 被积函数文件fx.m。 function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x)); (2) 调用函数quad8求定积分。 I=quad8('fx',0,pi) I=