晶体结构分析教案

晶体结构分析教案
晶体结构分析教案

目录

一、结构解析的过程

(一)空间群的确定

(二)结构解析

(三)结构精修

1、结构精修

2、检验精修完毕的参考标准

3、Code.ins文件中的指令和意义

4、CIF文件

5、用WinGX生成键长键角表

二、画图

1、XP中的指令

2、操作实例

三、H键分析

1、策略

2、步骤

3、实例

四、芳香环间的相互作用

1、作用模型

2、判断芳香环间相互作用的步骤

3、实例

五、CIF格式

一、结构解析的过程

WinGX程序平台集成了下列主要程序:

1、确定空间群 (XPREP)

2、结构解析(SHELXS-97、SIR-92、SIR-97、SIR-2002)

3、结构精修 (SHELXL)

(一)空间群的确定

打开WinGX, 从标题栏File命令中选择CHANGE PROJECT下的Slect New Project, 此时会出现一个对话框,添加测得数据中的.hkl文件。

1)标题栏Data命令中选择Xprep, 出现一个新的对话框,输入.hkl的文件名。2)出现Select option命令,(HKLF代表衍射强度数据的格式, 矿物晶体通常用HKLF 3进行计算,合成晶体通常用HKLF 4进行计算)通常默认[4]。

3)出现Mean(I/sigma)代表平均信/噪比(该数值要求>7,12~20之间比较好)。

在Enter cell corresponding to indices in files: 命令下输入相应的晶胞参数。4)出现Select option 命令,选择对称性高的选项作为可能的空间群。[ent]后程

序接着显示有关参数,包括晶胞参数,体积,晶格类别等,并提示下一个选项H:Search for higher Metric Symmetry(寻找更高的对称性). H[ent]。

5)程序显示目前的晶胞参数和其它可能的晶胞选择A(或B, C) [ent]。认同程序的选择后,程序提示下一选项:S:Determine or input space group(确定或输入已知的空间群)。S[ent]。

6)程序提供可能的晶系选择,如三斜(P),单斜(M),正交(O)等。[ent]认同程序的选择后,程序将检查各种可能存在的系统消光现象,确认各种可能的空间群,并通过计算衍射数据的Mean[E*E-1]值,提示晶体所属的空间群

是否为中心对称。(例如Mean[E*E-1] = 0.995[expected.968 centrosym and .736 non-centrosym]。

7)程序提示下一选项:Define unit-cell CONTENTS (定义独立区的化学组成)C[ent]。输入所含元素及原子个数(元素要大写如C8 O7,注意中间要用空格)。

8)提示下一个选项[E]: EXIT to main menu。[ent] 提示下一个选项[F]: Set up shelxtl FILES(建立code.ins文件)。[ent]提示Output file name命名一个新的文件名(例如m1)。[ent]

9)提示Do you wish to write the intensity data file m1.hkl? (是否要重写code.hkl文件缺省值是NO, 要重写选Y: Yes) y[ent]提示下一个选项[Q]: Quit Program(退出程序)。

注意:Mean[E*E-1]值提示晶体所属空间群是否为中心对称(一般无心的概率较小,所以如果用无心解出来的晶体,在发表之前最好用有心群重试)。

(二)结构解析

1、确定初步的结构模型

用直接法或帕特森法解决相角问题,找出部分原子或重原子的位置。

直接法一般适用于有机分子和配合物。

帕特森法尤其适用于独立单元中含有少数几个重原子的化合物。

2、操作程序:

1)从标题栏File命令中选择CHANGE PROJECT下的Switch Project ID 出现一个小对话框,输入上面第8步取的文件名(如上的m1)。

2)从标题栏Solve命令选择SHELXS-97/SIR-92/SIR-97/ SIR-2002任意一个来解析结构。得出结构后,Exit退出该程序。

3)INS文件的格式

TITL c2c in C2/c

CELL 0.71073 21.8640 9.7408 7.2275 90.000 105.323 90.000

ZERR 2.00 0.0015 0.0007 0.0007 0.000 0.009 0.000

LATT 7

SYMM -X, Y, 0.5-Z

SFAC C H N O CU

UNIT 40 40 16 16 2

TREF (PATT)

HKLF 4

END

LATT 晶格种类:

1表示简单格子P;

2表示体心格子I;

3表示菱面体格子;

4表示面心格子;

5表示A心格子;

6表示B心格子;

7表示C心格子。

对于非中心对称空间群,n为负值;对于中心对称空间群,n为正值

(三)结构精修

1、结构精修

1)点击“圆规”图标,显示初结构。选中结构图中不确定的原子,从标题栏Delete 命令中选择Selected Atoms,删除这些原子。保存为INS文件后,再从标题栏Refinement命令中选择Run SHELXL进行精修。

2)在新产生的Q峰中,将所需Q峰选中(如Q1、Q2…等),按右键,弹出对话框。按顺序输入原子名称和种类。保存为INS文件后,再进行精修。

3)反复进行第二步,运算至结构模型收敛后,再加各向异性,在标题栏中 Select 命令下选择All Atoms,按右键,选择Set Uij`s anisotropic命令。保存为INS 文件后,再进行精修。

4)使处于割裂状态的有机分子连在一起

若独立区中出现两个不完整的分子片段,而实际上这两个分子片段应该连在一起,则应将其搬到一起。

①首先判断两片段是否连在一起

在XP中读入RES文件后

》envi C5 (查看片段中断开位置的环境) [ent]

C4 - - - - - -

C10 - - - - - -

(若为C5则自身对称无需搬移,否则要搬移)

②》sgen片段的另一半原子 [ent]

》kill删掉原先的另一半原子[ent]

》file Y22.res [ent] 产生新的RES文件。

在WinGX中将新的RES文件另存为INS文,并修改相应的原子名称后,重新精修即可。

5) 连续分子片段的质心应处在晶胞内

晶体结构解析中,连续分子片段的质心应处在晶胞内,若处在晶胞之外,可通

过下列操作,将其移入晶胞内。

①等效点间的对称变换

②平移操作。

6)将原子重新排序命名,并用SORT命令使原子按顺序排列。保存为INS文件后,重新编辑INS文件,将金属原子排在最前面,再进行精修。

7)理论加氢:选中该碳原子,从标题栏中Model命令选择Add Hydrogen中与之相应的氢,保存为INS文件后,再进行精修。

8)对于水或氮上的氢,采用差傅里叶图找氢,通过在INS文件中增加PLAN的数值,增加Q峰数,寻找位置合适的氢原子。

9)氢原子指定后,需进行固定。在INS中将H原子温度因子改为-1.5,并始终将H原子排在其母原子后面,中间不要插入其它非氢原子。固定键长,在INS 中加命令“DFIX 0.90 0.01 Ow1 h1a Ow1 h1b”,固定O—H距离。

10)由于每次精修完毕后,将RES文件存为INS文件时,程序会自动将所有从差傅里叶图找到的氢原子排在原子列表的最后面,从而导致H原子不能直接排在其母原子后面,这时需重新排列这些氢原子的位置。为了避免这种情况,可用MOLE命令将氢原子始终绑定在其母子后面。做法如下:

把O和H的数据按如下顺序排列好

O1 --- --- --- --- --- ---

H1 --- --- --- --- --- ---

Ow1 --- --- --- --- --- ---

H1A --- --- --- --- --- ---

H1B --- --- --- --- --- ---

Ow2 --- --- --- --- --- ---

H2A --- --- --- --- --- ---

H2B --- --- --- --- --- ---

在O1前打mole 1 (即把O1与H1绑定)

在OW1前打mole 2 (即把OW1与H1A, H1B绑定)

在OW2前打mole 3 (即把OW2与H2A, H2B绑定)

值得注意的是,此时不能再用SORT命令否则上述绑定无效。

11)检查所有原子是不是已找完,查看Q峰(Q<1时,认为原子找完)。独立区内电荷要平衡(如果不平衡,要找出合理的化学或晶体学解释)

12)将INS文件中的X射线波长(0.71073 或1.54184)、Z值和晶胞中的各类原子数目改为正确值,删除OMIT 4.0 180.0和LIST 1两条命令,并加入ACTA、SIZE、CONF和BOND $H三条命令。

13)结构全部解完后,若wR2值、GOOF(S)值仍不满意,可作如下处理:a)删坏点:从标题栏Edit命令中选择 Open SHELXL.LST。若Most Disagreeable Reflections中有个别Delta(F*2)/esd反常偏大的衍射。可

在INS中删除这些衍射,输入命令“omit h k l”。

b)改变权重因子:修改INS文件中的WGHT值。

2、检验精修完毕的参考标准

(1)化学合理

所有的键长,键角合理,电荷平衡

(2)CIF文件检测中发现的问题不论大小,应尽可能全部解决。

(3)晶体学合理

①R int值<10%;R sigma值 <10%。

②R1(all data)8%~9%;R1(obs data)<5%;wR2<20%;GOOF(S)接近1(±0.2)。

③ Maximum shift/esd收敛因子<0.1(一般接近于0)

△min>-1.0

△max<1.0,Deepest hole ρ

④ Highest peak ρ

⑤是否存在实际上可连为一体,但目前处于割裂状态的有机分子?

⑥独立区的质心是否处于晶胞内?

⑦晶体的Z值是否正确?晶胞内原子数是否正确?

⑧数据完整度是否达到97%?

⑨衍射数据与精修参数比要大于7。

⑩绝对结构是否正确?是否是孪晶?

3、Code.ins文件中的指令和意义

TITL cc in Cc

CELL 0.71069 8.8550 19.8770 26.0170 90.000 97.727 90.000

ZERR 2.00 0.0020 0.0030 0.0031 0.001 0.05 0.003

LATT -7

SYMM X, - Y, 1/2 + Z

SFAC C H N O NI

UNIT 160 160 32 32 16

MERG 2

dfix 0.90 0.01 ow1 h1a ow1 h1b

FMAP 2

PLAN 5

ACTA 50.00

SIZE 0.32 0.14 0.11

BOND $H

CONF

WGHT 0.01920

L.S. 4

FV AR 0.12092

C7 1 0.924942 -0.111604 0.679894 11.00000 0.01891 0.03216 =

0.02109 0.00007 0.00550 0.00561 ………………………………………………………………………………………… …………………………………………………………………………………………. ………………………………………………………………………………………..

OW1 4 0.464774 0.129698 0.884545 11.00000 0.05247 0.07829 =

0.05844 -0.00737 0.00238 0.00383

HKLF 4

END

4、CIF文件

CIF文件是晶体结构数据的标准格式

在SHELXL程序中,在控制文件(即code.INS)中加上指令“ACTA”,就会在精修之后产生相应的CIF文件,即code.CIF.

5、用WinGX生成键长键角表

在WinGX的标题框中Publish命令中选择CIF TABLES, 出现一新的对话框,选择Crystal/atom tables form.CIF命令,确定。其它均选默认格式,最终得到----.Tex文件,可用Word编辑此文件。

注意:

1)生成的键长、键角表中的两个有对称性相关的等价数值如Cu1—N1#1, N1—Cu1#1只留一个数据。

2)有对称性产生的键角N1#1—Cu—N1夹角为180o,应该删掉。

3)误差只保留1位有效数字,如2.137(12)应为2.14(1)。

二、画图

1、XP中的指令

read READ filecode读入指定文件中的原子和晶体参数。

fmol这通常是进入XP程序后使用的第一个指令,它从code.res文件读出晶胞参数和原子坐标等信息,并建立起原子间的连接方式。

proj显示分子的结构,可以选择旋转分子的立体结构。

kill 除所指定的原子,如kill $Q(删除所有Q峰),kill C1 to C2。

labl LABL code size将定义如何标注原子和标注字体的大小。

telp TELP [ent] 将产生球棍图,TELP 0 –30 [ent](概率为30%)。

view VIEW plotfile显示保存的图形文件

draw将文件转换成其它格式

2、操作实例

输入以下命令:

》read xx.res [ent]

》fmol all [ent]

》proj (看分子图形)

》kill type2 [ent] (去掉所有H原子)

》kill ow2 [ent] (去掉水)

》labl 1 400 [ent] (定义大小)

》telp all [ent]

出现plotfile命令,命名

》view 命名(查看刚刚画的图)

》draw 名称

出现提示:SLPT device 默认为A模式,[ent]

出现提示:Name of postscript file to be created:重新命名

出现提示:Color (C) or black/white(CR)选择颜色,彩色C[ent],黑白直接[ent]。

得到结构的圆球图。用Adobe Photoshop打开—.ps文件即可看到。

若想得到椭球图,将》telp all 命令改为telp 0 –30即可。

三、H键分析

1、策略

1)X代表给体原子,通常为O、N和F, 有时还包括C。其中X = O、N和F时,是经典的氢键;X = C时属于非经典氢键,此时氢键作用力比较小。

2)Y代表受体原子,通常包括O、N、F和Cl。

3)通常要求X-H…Y的夹角α>110°,理论上这个角度最理想时应为180°

4)对于O-H…O氢键,O…O的距离一般是2.6-3.3?;

5)分子内与分子间氢键:

分子内氢键(X、H、Y都在独立区内)

分子间氢键(X、H在一独立区内;Y在另一独立区)

2、步骤

1)确定给体X有哪些原子,分别列出;

2)在XP中,用ENVI命令经运算,找到所有可能的受体,并记录下来以备后用(一般选择距离在2.6-3.3 ?之内的受体)。

3)在XP中,找上述所有可能受体的对称代码(其中1555为独立区内的)。4)打开INS,将这些对称代码按格式输入(EQIV),并添加氢键计算命令(HTAB),

进行精修运算。程序会指出哪些氢键的角度不合理,打开INS文件, 删掉不合理氢键的计算命令,重新精修。

3、实例

相关指令意义:

envi ENVI delta KEYWORDS 计算出KEYWORDS所指定原子与在其半径加上delta值范围内所有原子的距离。

sgen SGEN symcode KEYWORDS 根据对称代码产生新的原子,对称性代码可以通过ENVI指令找出,如sgen 6555 O1[ent]将产生O1原子在6555

对称代码处的原子O1A。

info显示所有原子坐标信息。

步骤一(在XP中,输入给体受体的距离命令经程序运算,找到可能的受体。) ⑴中

XP

》read c2c.res

》fmol all

》proj

》envi O1 2.5 (找出可作为O1受体的所有原子)

………………….

………………….

N1 1555 2.701

OW2 1555 2.617

备注: 看到N1和OW2符合距离要求。记录下来:

O1--- H --- N1 (1555)

O1--- H --- Ow2(1555)

同理》envi Ow1 2.5(找出可作为O1受体的所有原子)

N1 2555 2.861

记录 OW1—H---N2 (2555)

步骤二(在XP中,找各上述所有可能受体的对称代码)

》sgen 2555 Ag1(求出对称代码为2555的Ag1原子坐标)

》info(与原始Ag1原子坐标比较,得到对称代码的坐标变换关系)(2555)→X+0.5,Y+0.5,Z

》sgen3776 Ag1(求出对称代码为3776的Ag1原子坐标)

》info(与原始Ag1原子坐标比较,得到对称代码的坐标变换关系) (3776) →2-X,1+Y,0.5-Z

………………………………

在INS中键入下列命令行:

Eqiv $1 X+0.5, Y+0.5, Z

Eqiv $2 2-X, 1+Y, 0.5-Z

Eqiv $3 2-X, 1+Y, 0.5-Z

………………………………

Htab O1 N1

Htab O1 OW2

Htab OW1 O2 $1

Htab OW1 O2 $2

…………………

保存INS文件后,重新精修。精修完毕后,会警告角度在100°以下的不合理氢键:

O1 N1

OW1 O3 $1

…………………….

在INS中将计算这些氢键的HTAB命令删掉,重新精修。

H键计算结果在CIF中的格式:

O1 H11 OW2 0.849(10) 1.8(4) 2.617(14) 169(16)

↓↓↓↓

D-H距离H-A距离D-A距离角度… …

最后得出结论

独立区内氢键:

O1-H11-OW2

独立区间氢键:

OW1-H1A-O4

OW1-H1B-O2

…………………………..

四、芳香环间的相互作用

1、作用模型

2、判断芳香环间相互作用的步骤

1)找出有可能与所研究芳香环存在相互作用的所有其它芳香环。

A、在XP中,找出独立区内所有芳香环的质心位置。

B、若其它芳香环质心与所研究芳香环质心距离l< 4.6?,则芳香环间可能

存在相互作用。

2)在l < 4.6 ?的情况下,计算其它芳香环质心与所研究芳香环所处平面的距离d。若d < 3.9 ?,则芳香环间可能存在相互作用。

3)在l < 4.6 ?,且d< 3.9 ?的情况下,计算其它芳香环与所研究芳香环的滑程s。若s< 2.1?,则芳香环间确实存在相互作用。

滑程Slippage s = (l 2-d 2)1/2

4)在l < 4.2 ?,d< 3.9 ?,s< 2.1?的情况下,若两个芳香环所处平面的夹角小于20度,则两芳香环间的作用为π-π堆积;若大于20度,则为C-H…π作用。

5)描述两芳香环间的作用时,应提供d值、s值,并指明是π-π堆积,还是C-H…π作用。

3、实例

1)相关指令意义:

cent计算并显示所指定原子的中心位置,如,cent C1 to C5 将计算这5个原子的中心点坐标。

mpln MPLN KEYWORDS 计算所指定原子所形成的最小二乘平面,并计算该平面与先前用MPLN或LINE指令所计算的平面的法线或矢量所形

成的夹角。

2)操作过程:

在XP中

》read _.res

》fmol all

》proj

》cent/x c1 c2 c3 c4 c5 n1苯环上的原子(生成x1a质心)

》cent/x c4 c5 c6 c7 c8 c9另一个苯环上的原子(生成x1b质心)》proj(看一下质心位置)

》envi x1a 4.0 (找出到x1a距离4.6内的共有几个质心)》sgen 3776 x1a (生成到x1a距离4.6内的质心)

》sgen 5755 x1a x1b(生成到x1a距离4.6内的质心)

》mpln c1 c2 c3 c4 c5 n1 (看质心到平面间的距离)

若质心到平面间的距离小于3.9,则进一步计算滑程。

》envi x1b 4.0 (找出到x1b距离4.6内的共有几个质心) 》sgen 5755 x1a x1b(生成到x1b距离4.6内的质心)

》… …

》quit

五、CIF格式

将CIF文件用记事本打开

data_p2c

_audit_creation_method SHELXL-97 (产生CIF的程序名称)

_chemical_name_systematic (系统命名法)

;

?

;

_chemical_name_common ? (俗名)

_chemical_melting_point ? (熔点)

_chemical_formula_moiety ?

_chemical_formula_sum (化学式)

'C35 H46 Co3 N4 O12'

_chemical_formula_weight 891.55 (分子量)

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source (以下为衍射因子的来源)

'C' 'C' 0.0033 0.0016

'International Tables V ol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

_symmetry_cell_setting ? (晶系名称)

_symmetry_space_group_name_H-M ? (空间群名称)

loop_

_symmetry_equiv_pos_as_xyz (晶胞中等效点空间坐标)

'x, y, z'

'-x, y+1/2, -z+1/2'

'-x, -y, -z'

'x, -y-1/2, z-1/2'

(以下为晶胞参数)

_cell_length_a 10.122(5)

_cell_length_b 13.407(5)

_cell_length_c 26.346(5)

_cell_angle_alpha 90.000(5)

_cell_angle_beta 97.217(5)

_cell_angle_gamma 90.000(5)

_cell_volume 3547(2)

_cell_formula_units_Z 4 (晶胞中分子数)

_cell_measurement_temperature 293(2) (确定晶胞时衍射实验的温度)

_cell_measurement_reflns_used ? (确定晶胞时所用衍射点的数量)_cell_measurement_theta_min ? (确定晶胞时衍射点的最小θ值)_cell_measurement_theta_max ? (确定晶胞时衍射点的最大θ值)_exptl_crystal_description ? (衍射实验晶体的形状)

_exptl_crystal_colour ? (衍射实验晶体的颜色)

_exptl_crystal_size_max ? (衍射实验晶体的尺寸)

_exptl_crystal_size_mid ?

_exptl_crystal_size_min ?

_exptl_crystal_density_meas ? (晶体的测量密度)

_exptl_crystal_density_diffrn 1.670 (衍射实验计算得到的晶体密度)_exptl_crystal_density_method 'not measured' (测量晶体密度的方法)

_exptl_crystal_F_000 1844 (晶胞内电子的数目)

_exptl_absorpt_coefficient_mu 1.458 (晶体对X射线吸收系数)

_exptl_absorpt_correction_type ? (吸收校正的方法)

_exptl_absorpt_correction_T_min ? (最小透过率)

_exptl_absorpt_correction_T_max ? (最大透过率)

_exptl_absorpt_process_details ? (吸收校正所用程序的参考文献)_exptl_special_details (实验中的特殊情况)

;

?

;

_diffrn_ambient_temperature 293(2) (衍射实验温度)

_diffrn_radiation_wavelength 0.71069 (衍射波长)

_diffrn_radiation_type MoK\a (衍射光源)

_diffrn_radiation_source 'fine-focus sealed tube' (放射源)

_diffrn_radiation_monochromator graphite (用的单色器)

_diffrn_measurement_device_type ? (衍射仪的名称)

_diffrn_measurement_method ? (扫描方式)

_diffrn_detector_area_resol_mean ? ()

_diffrn_standards_number ? (标准衍射的数量)

_diffrn_standards_interval_count ? (标准衍射测量的间隔)

_diffrn_standards_interval_time ? (标准衍射测量的时间间隔)

_diffrn_standards_decay_% ? (测量过程中是否衰减)

_diffrn_reflns_number 17622 (总衍射数目)

_diffrn_reflns_av_R_equivalents 0.0523 (等效点平均标准误差)

_diffrn_reflns_av_sigmaI/netI 0.0619 (平均背景强度与平均衍射强度比值)_diffrn_reflns_limit_h_min -9 (最小和最大衍射指标)

_diffrn_reflns_limit_h_max 12

_diffrn_reflns_limit_k_min -15

_diffrn_reflns_limit_k_max 12

_diffrn_reflns_limit_l_min -31

_diffrn_reflns_limit_l_max 31

_diffrn_reflns_theta_min 1.56 (最小θ角)

_diffrn_reflns_theta_max 25.00 (最大θ角)

_reflns_number_total 6221 (参加精修的独立衍射数目)

_reflns_number_gt 4370 (强度大于2σ的衍射数目)

_reflns_threshold_expression >2sigma(I)

_computing_data_collection ?

_computing_cell_refinement ?

_computing_data_reduction ?

_computing_structure_solution ?

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics ?

_computing_publication_material ?

_refine_ls_structure_factor_coef Fsqd (基于F*F的精修)

_refine_ls_matrix_type full (精修矩阵类型)

_refine_ls_weighting_scheme calc (权重方案)

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0658P)^2^+0.1795P] where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct (获得粗结构的方法)

_atom_sites_solution_secondary difmap (进一步就解析结构的方法)

_atom_sites_solution_hydrogens geom. (获得氢原子的方法)

_refine_ls_hydrogen_treatment mixed (精修中氢原子的处理方案)

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 6221 (参加精修独立衍射点数目)

_refine_ls_number_parameters 490 (参数数目)

_refine_ls_number_restraints 2 (几何限制参数数目)

_refine_ls_R_factor_all 0.0748 (对于全部衍射点的R1值)

_refine_ls_R_factor_gt 0.0489 (对于可观测衍射点的R1值)

_refine_ls_wR_factor_ref 0.1374 (对于全部衍射点的wR2值)_refine_ls_wR_factor_gt 0.1226 (对于可观测衍射点的wR2值)

_refine_ls_goodness_of_fit_ref 1.072 (对于可观测衍射点的S值)

_refine_ls_restrained_S_all 1.083 (对与全部衍射点的S值)

_refine_ls_shift/su_max 0.001 (最后精修过程中的最大移动值)

_refine_ls_shift/su_mean 0.000 (最后精修过程中的平均移动值)loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

Co1 Co 0.24607(6) 0.22650(5) 0.68040(2) 0.02368(18) Uani 1 1 d

. . .

(以上为原子坐标,各向同性振动参数,原子占有率等)

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

Co1 0.0208(4) 0.0285(4) 0.0221(3) 0.0000(3) 0.0043(2) 0.0005(2)

O4 0.023(2) 0.047(2) 0.053(2) 0.0077(18) -0.0001(16) -0.0039(15)

. . .

(以上为原子各向异性振动参数)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

;

(以上为分子几何中要说明的问题)

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

Co1 O1 2.064(3) . ?

Co1 O2 2.064(3) . ?

. . .

(以上为键长数据以及对称代码。“yes”表示要列入精选键长,键角表,带“?”的不发表)loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

O1 Co1 O2 83.00(12) . . ?

O7 Co2 O9 171.62(12) . . ?

. . .

(以上为键角数据以及对称转换代码。“yes”表示要列入精选键长,键角表,带“?”的不发表)_diffrn_measured_fraction_theta_max 0.998 (对于最大θ角,收集的完整率)

_diffrn_reflns_theta_full 25.00 (精修中使用的θ角为25度)

_diffrn_measured_fraction_theta_full 0.998 (θ角为25度时,数据的完整程度)_refine_diff_density_max 1.129 (?F图中最大电子密度峰值)

······························································

Flack x parameter = 0.0193 with esd 0.0094

Expected values are 0 (within 3 esd's) for correct and +1 for inverted absolute structure. Note that this rough estimate ignores correlation with other parameters; if the above value differs significantly from zero, it is ESSENTIAL to test the inverted structure or refine x as a full-matrix parameter using TWIN and BASF。

(完整word版)人教版高中化学选修3物质结构与性质教案

物质结构与性质 第一章原子结构与性质 第一节原子结构 第二节原子结构与元素的性质 归纳与整理复习题 第二章分子结构与性质 第一节共价键 第二节分子的立体结构 第三节分子的性质 归纳与整理复习题 第三章晶体结构与性质 第一节晶体的常识 第二节分子晶体与原子晶体 第三节金属晶体 第四节离子晶体 归纳与整理复习题 (人教版)高中化学选修3 《物质结构与性质》全部教学案 第一章原子结构与性质 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。

第三章晶体结构与性质全章教案

第三章晶体结构与性质 第一节晶体常识 第一课时 教学目标: 1、通过实验探究理解晶体与非晶体的差异。 2、学会分析、理解、归纳和总结的逻辑思维方法,提高发现问题、分析问题和解决问题的能力。 3、了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。 教学重难点: 1、晶体与非晶体的区别 2、晶体的特征 教学方法建议:探究法 教学过程设计: [新课引入]:前面我们讨论过原子结构、分子结构,对于化学键的形成也有了初步的了解,同时也知道组成千万种物质的质点可以是离子、原子或分子。又根据物质在不同温度和压强 下,物质主要分为三态:气态、液态和固态,下面我们观察一些固态物质的图片。 [投影]:1、蜡状白磷;2、黄色的硫磺;3、紫黑色的碘;4、高锰酸钾 [讲述]:像上面这一类固体,有着自己有序的排列,我们把它们称为晶体;而像玻璃这一类 固体,本身原子排列杂乱无章,称它为非晶体,今天我们的课题就是一起来探究晶体与非晶体的有关知识。[板书]:—、晶体与非晶体 [板书]:1、晶体与非晶体的本质差异 [提问]:在初中化学中,大家已学过晶体与非晶体,你知道它们之间有没有差异? [回答]:学生:晶体有固定熔点,而非晶体无固定熔点。 [讲解]:晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,那么他 们在本质上有哪些差异呢? [投影]晶体与非晶体的本质差异 [板书]:自范性:晶体能自发性地呈现多面体外形的性质。 [解释]:所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。 [板书]:注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。 [投影]:通过影片播放出,同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:那么得到晶体的途径,除了用上述的冷却的方法,还有没有其它途径呢?你能列举 哪些? [板书]:2、晶体形成的一段途径: (1)熔融态物质凝固; (2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。

鲁科版高中化学选修三《物质结构与性质》全教案

鲁科版高中化学选修3 《物质结构与性质》教案

第一章物质结构与性质教案 第二节原子结构与元素周期表 一、学习目标 1理解能量最低原则、泡利不相容原理和洪特规则,学会原子核外电子排布式写法。知道元素周期表中元素按周期划分的原因,族的划分与原子中价电子数目和价电子排布的密切关系。 2、了解原子半径的周期性变化,能用原子结构的知识解释主族元素,原子半径周期性变化的原因。 3、明确原子结构的量子力学模型的建立使元素周期表的建立有了理论依据。 二、学习重点、难点 能量最低原则、泡利不相容原理和洪特规则、了解核外电子排布与元素周期表的周期,族划分的关系。 三、学习过程: 第一课时 (一)基态原子的核外电子排布 [探索新知](1—18号) 画出1—18号元素的原子结构示意图 a.以H为例 电子排布式轨道表示式 结论:

b. 以He为例 电子排布式轨道表示式 结论: c. 以C 为例 电子排布式轨道表示式 结论: [活动探究](1—18号) 书写下列基态原子核外电子排布式和轨道表示式(书写、对照、纠错、探因) N 、 O、 Ne 、 Al、 Mg 、 Si 、 [学无止境](19—36号) a.书写基态原子核外电子排布式(书写、对照、纠错、探因) Sc Fe 结论: b.再书写基态原子核外电子排布式(书写、对照、纠错、探因) Cr Cu 结论: 练习:V、As 第2、3课时 (二)核外电子排布与元素周期表 1.核外电子排布与周期的划分。

[看图·思考] 仔细观察图1-2-7鲍林近似能级图回答下面问题: 鲍林近似能级图中分为几个能级组?每一能级组中共有多少个原子轨道,最多能容纳多少个电子? [交流·研讨] 请根据1-36号元素原子的电子排布,参照鲍林近似能级图,尝试分析原子中电子排布与元素周期表中周期划分的内在联系,回答下题。 (1)周期的划分与什么有关? (2)每一周期(前4周期)各容纳几种元素?这又与什么有关? (3)周期的序数与什么有关?(从原子中电子排布式分析)[同步检测1] 已知某元素原子的核外电子排布式为:1s22s22p63s23p63d34s2,根据这一排布式可知该元素所在的周期是_______________________。 2.核外电子排布与族的划分。 [练习]书写19号钾原子,24号铬原子,30号锌原子和35号溴原子的价电子排布。 [共同分析]主族元素原子的价电子排布与过渡元素原子的价电子排布有什么区别? [观察讨论]仔细观察元素周期表中各族元素价电子排布,从中找出核外电子排布与族划分之间的内在联系,回答下列问题。

晶体的常识(晶胞)教学设计复习进程

晶体的常识(晶胞)教 学设计

教学设计]第三章第一节晶体的常识(晶胞) 江苏省如东高级中学张霞 教学设想 从教材看,本章首先从人们熟悉的固体出发,把固体分为晶体和非晶体两大类,引出了晶体的特征和晶胞的概念。晶胞是描述晶体结构的基本单元,是研究晶体结构的最基本概念,教科书利用图片、比喻等方式介绍了晶体与晶胞的关系,并通过例子介绍了如何计算晶胞中所含的原子数。 本教案选择《晶胞》作为学生自主学习的课题,试图利用多媒体课件和形象比喻等教学方式,使学生建构起晶胞的概念,通过动手制作晶胞模型并把自己制作的晶胞模型拼凑成晶体模型,体会晶胞与晶体之间的关系;再以课本上的问题设置矛盾,通过学生自学讨论,教师的适当点拨,总结归纳出一个晶胞中平均所含粒子个数的计算方法,在此过程中,提升学生的空间想象能力。 一、教学目标分析 知识与技能 1.了解晶体与晶胞的关系,体会由晶胞“无隙并置”构成晶体的过程。 2.通过自学讨论,掌握不同晶胞中平均所含粒子个数的计算方法。 过程与方法 1.运用多种教学媒体,借助形象的比喻,帮助学生建构抽象的空间结构。 2.知道研究晶体结构的一般方法。 情感态度和价值观 1、进一步形成求真务实、勤于思考的科学态度;形成敢于质疑、勇于创新的科学精神。 二、教学内容分析 对本节教学内容的处理方法:利用多媒体演示若干晶体和晶胞,组织学生讨论晶体与晶胞的关系,动手制作晶胞模型,引导学生建立以晶胞为基本结构研究晶体的思想,结合课本图3-7铜晶胞,展示实物模型,提出问题:为什么说一个晶胞里只含4个铜原子?学生自学、讨论并归纳出立方晶胞中平均所含粒子个数的计算方法,然后设置问题:如果为三棱柱晶胞或者六棱柱晶胞,又该如何计算?举一反三,巩固了学生对空间结构的理解和计算。最后利用课本学与问与课后习题3,进行训练反思。 三、教学过程设计 [多媒体演示](1)不同类型的晶体图片:玛瑙、水晶、碘等; (2)同一晶体,不同大小的图片。

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

【VIP专享】晶体结构分析教案

目录 一、结构解析的过程 (一)空间群的确定 (二)结构解析 (三)结构精修 1、结构精修 2、检验精修完毕的参考标准 3、Code.ins文件中的指令和意义 4、CIF文件 5、用WinGX生成键长键角表 二、画图 1、XP中的指令 2、操作实例 三、H键分析 1、策略 2、步骤 3、实例 四、芳香环间的相互作用 1、作用模型 2、判断芳香环间相互作用的步骤 3、实例 五、CIF格式

一、结构解析的过程 WinGX程序平台集成了下列主要程序: 1、确定空间群 (XPREP) 2、结构解析(SHELXS-97、SIR-92、SIR-97、SIR-2002) 3、结构精修 (SHELXL) (一)空间群的确定 打开WinGX, 从标题栏File命令中选择CHANGE PROJECT下的Slect New Project, 此时会出现一个对话框,添加测得数据中的.hkl文件。 1)标题栏Data命令中选择Xprep, 出现一个新的对话框,输入.hkl的文件名。2)出现Select option命令,(HKLF代表衍射强度数据的格式, 矿物晶体通常用HKLF 3进行计算,合成晶体通常用HKLF 4进行计算)通常默认[4]。 3)出现Mean(I/sigma)代表平均信/噪比(该数值要求>7,12~20之间比较好)。 在Enter cell corresponding to indices in files: 命令下输入相应的晶胞参数。4)出现Select option 命令,选择对称性高的选项作为可能的空间群。[ent]后程 序接着显示有关参数,包括晶胞参数,体积,晶格类别等,并提示下一个选项H:Search for higher Metric Symmetry(寻找更高的对称性). H[ent]。 5)程序显示目前的晶胞参数和其它可能的晶胞选择A(或B, C) [ent]。认同程序的选择后,程序提示下一选项:S:Determine or input space group(确定或输入已知的空间群)。S[ent]。 6)程序提供可能的晶系选择,如三斜(P),单斜(M),正交(O)等。[ent]认同程序的选择后,程序将检查各种可能存在的系统消光现象,确认各种可能的空间群,并通过计算衍射数据的Mean[E*E-1]值,提示晶体所属的空间群

最新物质结构与性质教案

第一节原子结构:(第一课时) 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 方法和过程:复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。 情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。 教学过程: 1、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律: 核外电子排布的尸般规律 (1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次 排布在能量逐步升高的电子层(能量最低原理)。 (2)原子核外各电子层最多容纳29’个电子。 (3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子 (4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒 数第三层电子数目不能超过32个。 说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层时,最多可排8个电子;当M层不是最外层时,最多可排18个电子 〖思考〗这些规律是如何归纳出来的呢? 2、能层与能级 由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为: 第一、二、三、四、五、六、七……能层 符号表示 K、 L、 M、 N、 O、 P、 Q…… 能量由低到高 例如:钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。理论研究证明,原子核外每一层所能

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

高二化学选修3第3章第3节金属晶体教案一

高中化学选修——物质结构与性质 专题3 微粒间作用力与物质性质 【教材内容分析】 在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等微粒间作用力的知识,又初步了解了离子晶体、分子晶体和原子晶体等结构知识。本专题内容是在学生学习必修2和从原子、分子水平上认识物质构成的基础上,以微粒之间不同的作用力为线索,侧重研究不同类型物质的有关性质,使学生能更深层次上认识物质的结构与性质之间的关系。本专题分四个单元介绍微粒间作用力与物质性质的关系。第一单元的内容首先从介绍金属键入手,对金属的特性作出了解释,又介绍了影响金属键的主要因素;并在金属键的基础上,简单介绍了金属晶体中晶胞的几种常见的堆积模型以及有关晶胞的计算;最后又拓展了合金的性质与结构。让学生对金属晶体有一个较为全面的认识。第二单元通过复习钠与氯形成氯化钠的过程,使学生理解离子键的形成过程和特点;晶格能与离子型化合物的物理性质的关系以及有关晶胞的计算;最后拓展了离子晶体中阴、阳离子半径比与配位数的关系。使学生对于离子晶体有一个较全面的了解。第三单元通过对氢分子的形成过程的分析,使学生理解共价键的本质和特征;以氮分子、乙烯等共价型物质为例介绍共价键的类型;共价键的键能与化学反应热的关系;原子晶体的性质与键能的内在联系。第四单元介绍范德华力、氢键的形成,以及范德华力、氢键对分子晶体性质的影响。通过本专题的学习,使学生进一步认识晶体的结构与性质之间的关系,也可使学生进一步深化“结构决定性质”的认识。 【课时分配】 第一单元 3课时 第二单元 3课时 【教案设计】 第一单元金属键金属晶体 【知识与技能】 1.通过联系金属实物,复习金属的一些物理共性,使学生理解金属键的概念,初步学会用金属键知识解释金属的物理性质 2.理解金属晶体的概念、构成及物理性质特征;了解金属晶体中晶胞的堆积方式,掌握有关晶胞的计算方法。 【过程与方法】1。通过多媒体动画来展示金属的导电、导热、延展性,使学生理解金属键与金属性质的关系。培养学生的想象力和从微观到宏观的认识方法。 2.通过对晶体结构示意图和晶体模型的观察认识,教会学生研究方法,培养学生的观察

高中化学《物质结构与性质》1.1原子结构教案新人教版选修3

第一章原子结构与性质 第一节原子结构:(第一课时) 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 方法和过程:复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。 情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。 教学过程: 1、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律: 核外电子排布的尸般规律 (1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次 排布在能量逐步升高的电子层(能量最低原理)。 (2)原子核外各电子层最多容纳29’个电子。 (3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子 (4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒 数第三层电子数目不能超过32个。 说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层时,最多可排8个电子;当M层不是最外层时,最多可排18个电子 〖思考〗这些规律是如何归纳出来的呢?

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

《分子晶体与原子晶体》教案(人教版选修3)

2 分子晶体与原子晶体 第一课时分子晶体 [教材内容分析] 晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。 [教学目标设定] 1.使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2.使学生了解晶体类型与性质的关系。 3.使学生理解分子间作用力和氢键对物质物理性质的影响。 4.知道一些常见的属于分子晶体的物质类别。 5.使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 [教学重点难点] 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 [教学方法建议] 运用模型和类比方法诱导分析归纳 [教学过程设计] 复问:什么是离子晶体?哪几类物质属于离子晶体? (离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书分子通过分子间作用力形成分子晶体 二、分子晶体 1.定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体? 2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。 3.分子间作用力和氢键

MaterialsStudio软件辅助晶体结构教学-最新教育资料

Materials Studio 软件辅助晶体结构教学 i=r 晶体的结构及其规律性是固体物理课程的重要组成部分,时也是材料科学与基础、固体电子学等课程的重要基础内容 [1-4] 。其所涉及的晶体结构复杂,概念、原理抽象,学生普遍反映难学、教师感觉难教。鉴于晶体结构的教学对于后续课程内容的基础地位,如何激发学生学习这部分内容的兴趣进而提高教学效果,教师教学观念的转变、教学方法的改进以及先进教学手段的引入就显得尤为重要。Materials Studio 是一款功能强大,操作简便且可在一般PC 机上运行的分子模拟软件[5]。该软件不仅能方便地建立各种晶体的三维结构模型,还能计算和模拟晶体的X 射线、中子及电子等粉末衍射图谱,进而确定晶体的结构 [6-7] 。本文选取晶体结构教学中晶体的结构及其对称性、晶胞/ 原胞、晶面/晶向、X射线衍射等概念及原理,使用Materials Studio 分子模拟软件对这些知识点、概念及原理进行了可视化及具体的计算分析,以期为提高晶体结构的教学效果提供参考。 1 Materials Studio (MS 软件应用 1.1直观显示晶体结构,加深对晶体对称性的认识 中导入不同从MS软件菜单命令File f Import f Structure 的晶体结构,图1给出了超导体YBa2Cu3O7勺晶体结构,向学生直观、生动形象地展示了YBa2Cu3O7l体的3D结构,以开阔学

生的视野;通过旋转、移动、缩放所建晶体结构,使学生从不同角度观察认识所建的晶体结构及其对称性;再从菜单命令 Build fShow SymmetryfSymmetry Group,向学生讲解菜单对话框中各种符号的含义,加深学生对晶体对称性的认识。 1.2晶胞、原胞的区别 晶胞与原胞是晶体学中两个重要且易混淆的概念。在教学中一般告诉学生原胞是晶体中最小的周期性重复单元,而晶胞是晶 体最小周期性重复单元的几倍。多数教材此处是以简立方、体心 立方、面心立方结构为例向学生说明原胞、晶胞的区别[1-3] 。有了MS软件以后,可以扩充到其它结构的晶体。以图2给出的 Si的晶体结构为例来说明原胞与晶胞的区别。从MS软件点击菜 单命令File f Import f Structure f Semic on ductor f Si,导入 的结构即为Si 的晶胞结构(也叫惯用原胞,单胞),接着点击菜单Build fSymmetryfPrimitive Cell ,即可得到该晶体的原 胞,点击菜单Build fSymmetryfConventional Cell ,可在Si 晶体的晶胞和原胞间进行转换。引导学生得出以下结论:晶胞所在重复单元体积大于原胞所在单元的体积;一个晶胞中可包含多个原子(一个Si 晶胞中包含8 个原子),而一个原胞中一般仅含一个原子;晶胞的对称性程度高于原胞的。 1.3晶面、晶向概念的引入 以Cu晶体结构为例,在一个新的3D文档中导入金属Cu的 晶体结构,建立Cu晶体的超胞结构,显示该晶体在不同平面上 及不同方向上原子的排列情况,使学生首先对晶体的周期性结构 有一个直观的认识,接着向学生演示Cu晶体可看成是由一系列 分布在(100)、(110)或(111)等相互平行等距的晶面上的

高中化学——化学教案物质结构与性质

第一章物质结构与性质教案 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。 第一节原子结构 第一课时 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 方法和过程: 复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。 情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。 教学过程: 1、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律:

高中化学选修3第三章《晶体结构与性质》章教学设计

选修3第三章《晶体结构与性质》章教学设计 东莞市第一中学刘国强 一、本章教材体现的课标内容 1、主题:第一节晶体的常识 了解晶胞的概念,会计算晶胞中原子占有个数,并由此推导出晶体的化学式。 2、主题:第二节分子晶体与原子晶体 知道分子晶体与原子晶体的结构微粒、微粒间作用力的区别。 了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 3、主题:第三节金属晶体 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 能列举金属晶体的基本堆积模型。 知道金属晶体的结构微粒、微粒间作用力与分子晶体、原子晶体的区别。 4、主题:第四节离子晶体 能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质。 知道离子晶体的结构微粒、微粒间作用力与分子晶体。原子晶体、金属晶体的区别。 了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱。 二、本章教材整体分析 (一)教材地位 本单元知识是在原子结构和元素周期律以及化学键等知识的基础上介绍的,是原子结构和化学键知识的延伸和提高;本单元知识围绕晶体作了详尽的介绍,晶体与玻璃体的不同,分子晶体、原子晶体、金属晶体、离子晶体,从构成晶体的微粒、晶胞、微粒间的作用力,熔沸点比较等物理性质做了比较,结合许多彩图及详尽的事例,对四大晶体做了阐述;同时,本单元结合数学立体几何知识,充分认识和挖掘典型晶胞的结构,去形象、直观地认识四种晶体,在学习本单元知识时,应多联系生活中的晶体化学,去感受生活中的晶体美,去感受环境生命科学、材料中的晶体知识。 “本章比较全面而系统地介绍了晶体结构和性质,作为本书的结尾章,与前两章一起构成“原子结构与性质、分子结构与性质、晶体结构与性质”三位一体的“物质结构与性质”模块的基本内容。” “通过本章的学习,结合前两章已学过的有关物质结构知识,学生能够比较全面地认识物质的结构及结构对物质性质的影响,提高分析问题和解决问题的能力。” (二)内容体系 本单元知识内容分为两大部分,第一节简单介绍晶体的常识,区别晶体与非晶体,认识什么是晶胞:第二部分分为三节内容,第二节“分子晶体和原子晶体”分别介绍了分子晶体和原子晶体的结构特征及晶体特性,在陈述分子晶体的结构特征时,以干冰为例,介绍了如果分子晶体中分子问作用力只是范德华力时,分子晶体具有分子密堆积特征;同时,教科书以冰为例,介绍了冰晶体里由于存在氢键而使冰晶体的结构具有其特殊性。在第三节“金属晶体”中,首先从“电子气理论”介绍了金属键及金属晶体的特性,然后以图文并茂的方式描述了金属晶体的四种基本堆积模式。在第四节“离子晶体”中,由于学生已学过离子键的概念,教科书直接给出了NaCl和CsCl两种典型离子晶体的晶胞,然后通过“科学探究”讨论了NaCl和CsCl两种晶体的结构;教科书还通过例子重点讨论了影响离子晶体结构的几何因素和电荷因素,而对键性因素不作要求。晶格能是反映离子晶体中离子键强弱的重要数据,教科书通过表格形式列举了某些离子晶体的晶格能,以及晶格能的大小与离子晶体的性质的关系。

高中化学选修三——晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=×晶胞顶角上的原子数+×晶胞棱上的原子+×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图,其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇,冰醋酸,蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例,可说明氢键具有方向性 ④笼状化合物--天然气水合物

物质结构与性质1教案

(新人教版)高中化学选修3 《物质结构与性质》 第一章原子结构与性质 相关知识回顾(必修2) 1.原子序数 (1)原子序数与构成原子的粒子间的关系: 原子序数=核电荷数=质子数=核外电子数。 (2)原子组成的表示方法 a. 原子符号:A z X A z b. O原子结构示意图: c. O电子式: 2.元素周期表:(1)编排原则:把电子层数相同的元素,按原子序数递增的顺序从左到右排成横行叫周期; 再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序有上到下排成纵行,叫族。 (2)结构:各周期元素的种数0族元素的原子序数 第一周期 2 2 第二周期8 10 第三周期8 18 第四周期18 36 第五周期18 54 第六周期32 86 第七周期26 118 ②族族序数罗马数字用表示;主族用A 表示;副族用B 表示。 主族7个 副族7 个 第VIII族是第8、9、10纵行 零族是第18 纵行 2 3 4 5 6 7 8 罗马数字:I II III IV V VI VII VIII (3)元素周期表与原子结构的关系: ①周期序数=电子层数②主族序数=原子最外层电子数=元素最高正化合价数 (4)元素族的别称:①第ⅠA族:碱金属第ⅠIA族:碱土金属②第ⅦA 族:卤族元素 ③第0族:稀有气体元素 3、有关概念: (1)质量数:将质子数和种子数去整数相加而得的数值 (2)质量数()=()+() (3)元素:具有相同质子数的一类原子的总称。 (4)核素:具有一定数目的质子数和一定数目中子数的一类原子。

(5)同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(6)同位素的性质:①同位素的化学性质几乎完全相同②在天然存在的某种元素里, 无论是游离态还是化合态,各种元素所占的百分比是不变的。 (7)元素的相对原子质量: 某种核素的相对原子质量:M核素= m核素/(1/12·m (C12)) 元素的相对原子质量:M=M1·a% +M2·b% + M3·c%+·····Mn·n% 练习:用A质子数B中子数C核外电子数D最外层电子数E电子层数填下列空格。 ①原子种类由 A B 决定②元素种类由 A 决定 ③元素有无同位素由 B 决定④同位素相对原子质量由 B 决定 ⑤元素原子半径由 E 决定⑥元素的化合价由 D 决定 ⑦元素的化学性质由 A 决定 4、元素周期律: (1)原子核外电子的排布:电子层K、L、M、N、P、O、Q 。 分别用n=1、2、3、4、5、6、7 来表示从内到外的电子层。 (2)排布原理:核外电子一般总是尽先从K 排起,当一层充满后再填充下一层。 5、判断元素金属性或非金属性的强弱的依据 6、比较微粒半径的大小 (1)核电荷数相同的微粒,电子数越多,则半径越大 如: H+<H<H-; Fe >Fe2+>Fe3+ Na+Na; Cl Cl- (2)电子数相同的微粒,核电荷数越多则半径越小.如: ①与He电子层结构相同的微粒: H->Li+>Be2+ ②与Ne电子层结构相同的微粒:O2->F->Na+>Mg2+>Al3+ ③与Ar电子层结构相同的微粒: S2->Cl->K+>Ca2+ 7、电子数和核电荷数都不同的微粒: (1)同主族的元素,半径从上到下 (2)同周期:原子半径从左到右递减.如:Na Cl Cl-Na+ (3)比较Ge、P、O的半径大小Ge>O>P

相关文档
最新文档