安防监控组网最大的坑-竟然是交换机

安防监控组网最大的坑-竟然是交换机
安防监控组网最大的坑-竟然是交换机

安防监控组网最大的坑,竟然是交换机

安防自模拟转IP之后,网络在安防的应用越来越重要,也越来越复杂。DOUDOU在安防网络领域从业多年,发现行业内的技术人员走了很多弯路,无论是安防厂商、集成商还是最终用户,对交换机如何选型及视频卡顿的原因存在不少误解。市面上流传的很多所谓选型经验和文档,其实都是满满的坑,比如最近某篇《一个交换机到底能带几台摄像头》……,所以,今天我把这些常识性错误简单总结一下。误区1:盲目根据交换容量计算摄像机带机数量这种算法,就是把交换机的交换容量简单除以摄像头的码流,然后计算出带机数量。如果根据这个理论,一台24口全千兆非网管交换机每个端口速率都是1000Mbps,下连端口只要合计接入不超过250路4M码流的摄像机就没有问题,那整台交换机就可以带几千路?估且按所谓的实际性能一般只有理论

值的60~70%,那每个下连端口也可以合计接入不超过150路就没有问题,整机怎么着也可以带1000多路?可实际情况是这样吗?照这个逻辑,千兆傻瓜机和网管机带机能力也没啥区别了。当我们按照这个理论去分析视频卡顿的网络原因,会分析到你怀疑人生。最后发现,网络的各个节点的带宽设计完全没有问题,流量根本不存在瓶颈,交换机运行状态看起来很正常的,可视频就是卡卡卡,马赛克花花花,怎

么解释?

误区2:交换机的实际性能一般只有理论值的60~70% ?很多人,甚至是交换机厂家的售前,会在做安防方案的时候,跟你说,交换机实际转发性能只有理论值的60%~70%,所以,计算待机数量要留余量。DOUDOU从事数通领域工作7年,在设备厂家待过,也在芯片公司待过,至少在这有限的从业期间,还从未见过哪家芯片公司推出的某一款芯片的实际性能(交换容量)达不到理论值的。24口全千兆交换芯片,交换容量必须≥48Gbps【24(24个端口)X1G(1000M)X2(全双工)=48G】,否则就达不到线速转发,我想没有哪一家芯片设计公司会犯这种低级的常识性错误,也没有哪一家正规交换机厂商会把一款达不到线速转发性能的交换机推

向市场(机箱式交换机线卡存在阻塞比另当别论)。

如果你真遇到过交换机的交换容量达不到理论值,只有

60~70%的性能,那恭喜你,你成功购买了一台次品,这种次品正规厂商想做都做不到,因为只有研发设计或者生产制程有缺陷,并且没有经过专业测试就直接市场销售的才有可能出现这种产品。同理,包转发率也是如此。

误区3:根据经验进行交换机选型目前各个网络设备厂商在涉足安防网络项目时,除了按端口规格选型,按交换容量选型,还有最重要的一个手段,就是根据以往的项目经验选型。可是我们常常遇到这样的情况,同一款交换机在不同项目

中,并且这些项目网络规模差不多,摄像机数量及码流也差不多,组网方案也是一样的。

A项目是好的,B项目也是好的,可是C项目就会出现卡顿,WHY?立马联系厂家换一台,一换就好了,嗯,看来真是运气不好。可是过段时间又出现卡顿了,WHY?不断的换设备,重启设备,调整网络结构等。反复折腾,也许好了,也许还是会随机卡顿,搞的筋疲力尽,最终也无法定论,甚至一线网络品牌厂家也给不出一个准确原因。首先,我们先来简单的剖析一下视频流传输的基础原理:视频流是由I帧和P帧组成,其中I帧为超大帧,在网络传输的过程,I帧的任何一个报文的丢失,就会导致视频无法成像,同时,由于视频的实时性要求,一般采用UDP的传输机制,即丢包不重传,所以,基本上网络只要出现丢包,就会卡顿。其次,再来简单介绍一下交换机的交换原理:当某个100M端口向另一个100M端口传输1M的数据流时,是以100M的速率传输了1/100秒。如果这1/100秒时有另外一个100M端口也向同一个100M端口传输1M的数据流,虽然两个端口加起来数据流只有2M,远没有达到100M的带宽瓶颈,但也会拥塞。同理,1000M端口在同一时间点只能接受一个1000M端口传输数据,但可以同一时间点接受10个100M端口传输数据,但超过10个,也会拥塞。所以,流量(带宽)与速率是二个概念,不能混为一谈。无论传输的数据流有多大,传输的

速率都是100M或1000M,只是不同数据流大小传输所需的时间长短不同罢了。当速率相同的情况下,两个及以上的端口在同一时间点向同一端口传输时,就会拥塞。此时缓存如果能够存放下拥塞的数据流,就不会丢包,如果缓存存放不下,就会丢包。通过以上两点的简单分析,我们可以明白,当交换机传输经过的视频流路数越多,瞬间并发的可能性就越大,那么拥塞的概率就越高,这也是为什么汇聚层或核心层更容易拥塞的原因,尤其是核心层,传输经过的视频流路数是最多的,整个网络几百路上千路都要经过核心交换机进行传输。这里要再次重点强调,安防网络中,卡顿丢包多数是因为这种拥塞而导致的,而不是转发性能导致的,这是两个完全不同的概念。备注:很多客户会将延时和卡顿混淆,延时指的是图像数据从前端的网络摄像机采集后到用户端

的监视设备观看到图像的时间差。摄像机采集后的图像通过压缩编码、网络传输、解码输出显示等处理,这些过程虽然很短暂,但我们仍然可以感觉显示的图像有滞后,这个滞后就是图像延时。但延时只要不超过1S,是很难直观感觉到,并且多数场景也不影响应用。除非是一些特定的工业领域,需要依据视频的分析做出毫秒级的处理的,那延时就比较关键了。延时并不会产生图像丢失,也不会丢包。而卡顿则会造成图像丢失,是因丢包引起的。除了拥塞丢包外,还有一种原因就是因为布线工程的质量引起的,比如线路老化,水

晶头氧化,水晶头没有做好等,这些情况都会导致类似于FCS 错误帧而引起丢包。严格意义上,这跟交换机没有关系,在此就不细说。1、根据摄像机的码流和数量做好交换机规格选型,并设计好组网方案。DOUDOU相信,随着网络在安防的普及,从业人员的技术能力逐步加强,因规格选型和组网方案导致的网络故障会越来越少。如果因为这个原因导致带宽瓶颈,确实太低级了。某网络共有XX台X码流的摄像机,接入层该选多少台什么样端口规格(端口数量和端口速率)的交换机,汇聚层该选多少台什么样端口规格的交换机,核心层该怎么选,这类简单的知识我就不在这里浪费笔墨去写了,网上很多。同时,为了应对突发流量,在选型和设计方案时,交换机端口的带宽使用率建议不要超过70%,最好控制在60%以内。注意:并不是因为实际性能只有理论值的60~70%,而是为了预防突发流量,不建议使用率过高。转发性能是第一步要保证的,然后再去考虑避免拥塞。2、尽可能选用缓存大的网管型交换机。缓存是可以减少拥塞导致的丢包,理论上,如果缓存足够大,丢包为零,视频也不会因网络原因卡顿。好了,曾经有客户问过DOUDOU,那该怎么计算XX路XX码流的摄像机该用多大缓存的交换机?理论上是可以计算的,但实际上你计算完了之后,发现地球上目前还没有能满足这个缓存需求的交换机。拥塞是有概率性的,不可能每个端口都会同时拥塞,所以芯片公司不会这样

去设计缓存,因为缓存的成本太高。正常情况下,越高端的交换机,业务特性越丰富的交换机缓存越大。这也就是为什么当我们选择网管型,或者三层交换机,丢包卡顿的概率会低一些。同样24口千兆交换机,非网管的缓存可能只有几百K,而三层交换机缓存可能有几十M。所以,当预算足够,成本可以接受的时候,尽可能选择缓存大的网管型交换机,因为这是芯片公司设计芯片时的规律。普及一个小知识,同样24口千兆非网管芯片与24口千兆三层芯片,交换容量是一样的,不一样的是各种表项容量,缓存大小,业务特性(功能)等。对于设备厂商来说,研发交换机时,只能尽可能选择缓存大的芯片,并不能更改缓存的大小,这是芯片的硬件特性。可是,无论交换机怎么选型和组网设计,目前没有任何一家厂商敢保证他的产品和方案在任何安防项目中永

远都不会出现卡顿,包括我们所熟知的华为华三也不敢保证。因为摄像机码流的传输是动态的,拥塞的可能性随时存在,而交换机的缓存大小又不可能完全解决所有摄像机拥塞的需要。

三层交换机生成树协议

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 三层交换机生成树协议 甲方:___________________ 乙方:___________________ 日期:___________________

三层交换机生成树协议 篇一:网络工程技术生成树协议 1. 生成树stp的计算推导 (1) 手工计算推导出下图中的根交换机、根端口、指 定端口和阻塞端口 (假设每条链路带宽均为100mbps),最后 在packettracer6.0 模拟器上进行验证,通过抓包路径跟踪 的方法演示当主链路出现故障后的收敛过程和结果。 (2) 若使收敛时间更快速,可以采用哪种该进协议, 该方法的优势是什么? 优势: a、stp没有明确区分端口状态与端口角色,收敛时主要 依赖于端口状态的切换。Rstp比较明确的区分了端口状态与端口角色,且其收敛时更多的是依赖于端口角色的切换。 b、stp端口状态的切换必须被动的等待时间的超时。而 Rstp 端口状态的切换却是一种主动的协商。 c、stp中的非根网桥只能被动的中继bpdu。而Rstp中的非根网桥对bpdu的中继具有一定的主动性。 1、为根端口和指定端口设置了快速切换用的替换端口(alternateport) 和备

份端口(backupport) 两种角色,在根 端口/指定端口失效的情况下,替换端口/备份端口就会无 时延地进入转发状态,而无需等待两倍的转发时延(Forwarddelay)时间。 2、在只连接了两个交换端口的点对点链路中,指定端口只需与下游网桥进行一次握手就可以无时延地进入转发 状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forwarddelay 时间进入转发状态。 3、将直接与终端相连而不是与其他网桥相连的端口定义为边缘端口(edgeport)。边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口是否直接与终端相连,因此需要人工配置。 (3) 交换机端口的颜色灯和闪烁频率,分别代表哪些含义?若要求交换机的端口直接接用户的pc机而不参与stp 运算,应如何进行设置? 颜色灯: 绿色灯表示可以发出 而黄色灯表示阻塞,不能发出闪烁频率:灯光闪烁说明有数据在传输,闪的快就说明比较频繁,也就是连续在端口上酉己置spanning-treeportfast 或

图解交换机与路由器组网方式

?图解交换机与路由器组网方式 ?说到交换机和路由器有的则根本搞不清楚它们各自到底有什么用,而有的则是弄不清它们之间的到底有什么区别,特别是在各媒体大肆宣扬三层交换机的“路由”功能的背景下。其实说到这里,我自己也不得不承认,现在交换机与路由器区别是越来越模糊了,它们之间的功能也开始相互渗透。 不仅三层交换机具有了部分原来独属于路由器的“路由”功能,而且现在宽带和高端企业级路由器中也开始兼备交换机的“交换”功能了。可谓是相互渗透,于是有人就预言,将来交换机和路由器很可能会合二为一,笔者也坚信这一点。 因为现在从技术上看,实现这一目标根本没有太大难度,同时对用户来说也是迫切需求的。一方面可以简化网络结构,另一方面用户不必购买两种价格那么昂贵的设备,何乐而不为呢?但就目前来说,它们之间还是存在着较大区别的,当然这不仅体现在技术理论上,更主要体现在应用上。 本文就要全面向大家解读交换机与路由器在应用的主要区别。 一、交换机的星形集中连接 我们知道,交换机的最基本功能和应用就是集中连接网络设备,所有的网络设备(如服务器、工作站、PC机、笔记本电脑、路由器、防火墙、网络打印机等),只要交换机的端口支持相应设备的端口类型都可以直接连接在交换机的端口,共同构成星形网络。基本网络结构如图1所示。在星形连接中,交换机的各端口连接设备都彼此平等,可以相互访问(除非做了限制),而不是像许多刚涉入网管行列的朋友那样,认为连接在交换机的服务器是最高级的。 二、交换机的级联与堆栈

拓扑图 上图所示的仅是一个最基本的星形以太网架构,实际的星形企业网络比这可能要复杂许多。这复杂性不仅表现在网络设备如何高档,配置如何复杂,更重要的是表现在网络交换层次比较复杂。企业网络中的路由器和防火墙通常只需配备一个,但交换机通常不会只是一个(除了只有20个用户左右的小型网络)。如果用户数比较多,如上百个,甚至上千个,就必须依靠交换机的级联或者堆栈扩展连接了。但级联技术和堆栈技术也有所不同,它们的应用范围也不同。 交换机级联就是交换机与交换机之间通过交换端口进行扩展,这样一方面解决了单一交换机端口数不足的问题,另一方面也解决离机房较远距离的客户端和网络设备的连接。因为单段交换双绞以太网电缆可达到了100米,每级联一个交换机就可扩展100米的距离。但这也不是说可以任意级联,因为线路过长,一方面信号在线路上的衰减也较多,另一方面,毕竟下级交换机还是共享上级交换机的一个端口可用带宽,层次越多,最终的客户端可用带宽也就越低(尽管你可能用的是百兆交换机),这样对网络的连接性能影响非常大,所以从实角度来看,建议最多部署三级交换机,那就是核心交换机-二级交换机-三级交换机。 这里的三级并不是说只能允许最多三台交换机,而是从层次上讲只能三个层次。连接在同一交换机上不同端口的交换机都属于同一层次,所以每个层次又能允许几个,甚至几十个交换机级联。层级联所用端口可以是专门的UpLink端口,也可以是普通的交换端口。有些交换机配有专门的级联(UpLink)端口,但有些却没有。如果有专门的级联端口,则最好利用,因为它的带宽通常比普通交换端口宽,可进一步确保下级交换机的带宽。如果没有则只能通过普通交换端口级联了。

基于物联网的智能安防系统的生产技术

图片简介: 本技术介绍了一种基于物联网的智能安防系统,该系统包括:社区环境安防子系统、家居环境安防子系统、门禁管控子系统和远程监控终端。设置社区环境安防子系统,能够实现对社区全方位监控,当遇到非法人员进入到监测区域时,可以进行准确定位并通过远程监控终端告知社区管理人员,保证社区环境安全;设置家居环境安防子系统,能够对社区内各住户的家居环境进行安全监测,并在家居环境不安全时,一方面通过报警单元进行报警,另一方面也会发送报警信息至远程监控终端和用户终端,不仅能够使安保人员及时赶到,也能够让住户通过用户终端了解到情况,以便及时应对;设置门禁管控子系统,可以对进出社区人员的身份进行管理,保障社区内住户安全。 技术要求 1.一种基于物联网的智能安防系统,其特征是,包括:社区环境安防子系统、家居环境安防子系统、门禁管控子系统和远程监控终端,其中,所述社区环境安防子系统、家居环境安防子系统、门禁管控子系统均与所述远程监控终端通讯连接; 所述社区环境安防子系统包括:摄像模块、图像分析模块和第一输出模块,所述摄像模块设置有多个,其分别安装在社区的各个角落,其用于采集各自监测区域内的视频图像,并将采集的视频图像发送至所述图像分析模块;所述图像分析模块,用于对接收到的视频图像进行处理,分析各监测区域环境是否安全,并在分析结果显示监测区域不安全时,经由第一输出模块输出该分析结果以及对应的不安全监测区域的视频图像至所述远程监控终端;

所述家居环境安防子系统包括:部署在小区各住宅内的家居环境安防模块,其中每个所述的家居环境安防模块携带有所在住宅的身份标签;所述家居环境安防模块包括:家居环境数据采集单元、家居环境分析单元、报警单元、第二输出单元和用户终端;所述家居环境数据采集单元包括:多个传感器监测节点和基站设备,多个所述传感器监测节点用于采集所在位置的家居环境参数,并将采集的家居环境参数发送至所述基站设备,所述基站设备汇聚各所述传感器监测节点采集的家居环境参数,经压缩处理后转发至所述家居环境分析单元;所述家居环境分析单元,用于基于接收到的家居环境参数,对该住宅内的家居环境安全与否进行判断,并在判断结果显示不安全时驱动所述报警单元进行报警,同时经所述第二输出单元将该判断结果输出至所述远程监控终端和用户终端; 所述门禁管控子系统包括:身份识别模块和门禁设备;其中,所述身份识别模块设置在所述门禁设备内。 2.根据权利要求1所述的一种基于物联网的智能安防系统,其特征在于,所述传感器监测节点包括:烟雾传感器、湿度传感器、温度传感器、甲醛传感器、一氧化碳传感器中的一种或者多种。 3.根据权利要求1所述的一种基于物联网的智能安防系统,其特征在于,所述摄像模块为高清摄像头。 4.根据权利要求1所述的一种基于物联网的智能安防系统,其特征在于,所述图像分析模块包括:人员检测单元、筛选单元、图像处理单元、特征提取单元和安全分析单元; 所述人员检测单元,用于根据预设的人体形态模型以及采集的视频图像,判断监测区域内是否有人员闯入,若有人员闯入,则将包含有该人员的视频图像转发至所述筛选单元; 所述筛选单元,用于对接收到的视频图像进行人脸检测,筛选出包含有人脸区域的目标图像; 所述图像处理单元,用于对所述目标图像进行处理; 所述特征提取单元,用于从处理后的目标图像中提取表征该目标图像中人员身份的人脸特征数据; 所述安全分析单元,用于基于提取到的人脸特征数据和预存的社区人员的人脸特征数据进行比对,若比对结果显示该人员非社区人员,则表明该监测区域环境不安全。 5.根据权利要求1所述的一种基于物联网的智能安防系统,其特征在于,所述身份识别模块包括:指纹采集单元、指纹处理单元、特征提取单元、身份识别单元、报警单元和第三输出单元; 所述指纹采集单元,用于获取进入社区人员的指纹图像; 所述指纹处理单元,用于对所述指纹图像作降噪、分割处理; 所述特征提取单元,用于从处理后的指纹图像中提取表征进入社区人员身份的指纹特征数据;

三层交换机配置实例

三层交换综合实验 一般来讲,设计方案中主要包括以下内容: ◆????? 用户需求 ◆????? 需求分析 ◆????? 使用什么技术来实现用户需求 ◆????? 设计原则 ◆????? 拓扑图 ◆????? 设备清单 一、模拟设计方案 【用户需求】 1.应用背景描述 某公司新建办公大楼,布线工程已经与大楼内装修同步完成。现公司需要建设大楼内部的办公网络系统。大楼的设备间位于大楼一层,可用于放置核心交换机、路由器、服务器、网管工作站、电话交换机等设备。在每层办公楼中有楼层配线间,用来放置接入层交换机与配线架。目前公司工程部25人、销售部25人、发展部25人、人事部10人、财务部加经理共15人。 2.用户需求 为公司提供办公自动化、计算机管理、资源共享及信息交流等全方位的服务,目前的信息点数大约100个,今后有扩充到200个的可能。 公司的很多业务依托于网络,要求网络的性能满足高效的办公要求。同时对网络的可靠性要求也很高,要求在办公时间内,网络不能宕掉。因此,在网络设计过程中,要充分考虑到网络设备的可靠性。同时,无论是网络设备还是网络线路,都应该考虑冗余备份。不能因为单点故障,而导致整个网络的瘫痪,影响公司业务的正常进行。 公司需要通过专线连接外部网络。 【需求分析】 为了实现网络的高速、高性能、高可靠性还有冗余备份功能,主要用于双核心拓扑结构的网络中。

本实验采用双核心拓扑结构,将三层交换技术和VTP、STP、EthernetChannel 综合运用。 【设计方案】 1、在交换机上配置VLAN,控制广播流量 2、配置2台三层交换机之间的EthernetChannel,实现三层交换机之间的高速互通 3、配置VTP,实现单一平台管理VLAN, 同时启用修剪,减少中继端口上不必要的广播信息量 4、配置STP,实现冗余备份、负载分担、避免环路 5、在三层交换机上配置VLAN间路由,实现不同VLAN之间互通 6、通过路由连入外网,可以通过静态路由或RIP路由协议 【网络拓扑】 根据用户对可靠性的要求,我们将网络设计为双核心结构,为了保证高性能,采用双核心进行负载分担。当其中的一台核心交换机出现故障的时候,数据能自动转换到另一台交换机上,起到冗余备份作用。 注意:本实验为了测试与外网的连通性,使用一个简单网络

三层交换机端口IP地址配置方法

三层交换机端口IP地址配置方法 目前市场上的三层交换机有2种方式可以配置交换机端口的lP地址,一是直接在物理端口上设置.二是通过逻辑VLAN端口间接设置。为了分析这2种配置方法在交换机实际运行中会产生哪些差别.在详细分析了三层交换机端口工作原理的基础上.搭建测试环境,主要从端口初始化和三层路由收敛过程分析了2种方式的不同。通过分析发现,在交换机物理端口上直接配置IP地址,可以节省生成树协议(STP,Spanning Tree Protocol)收敛所需的时间,并且不需要规划额外的VLAN。为日后的运行维护工作带来了方便。 三层变换机能够快速地完成VIAN间的数据转发,从而避免了使用路由器会造成的三层转发瓶颈,目前已经在企业内部、学校和住宅小区的局域网得到大量使用。在配置三层交换机端口lP地址时,通常有2种方法:一是直接在物理端口上设置lP地址,二是通过逻辑VLAN端口间接地设置IP地址。 作者所在单位日前购得一批三层交换机,最初只立持第2种配置方法但在厂家随后升级的软件版本中可以支持以上2种配置方法。为了比较这2种方法的优缺点,本文首先阐述了三层交换机的工作原理,然后比较了这2种方法的操作命争和端口初始化时间.并通过测试得出结论。 1、三层交换机的工作原理 传统的交换技术是在OSI网络参考模型中的第二层(即数据链路层)进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,利用第三层协议中的信息来加强笫二层交换功能的机制(见图1) 从硬件的实现上看,目前笫二层交换机的接口模块都是通过高速背扳/总线交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块高速地进行数据交换,从而突破了外接路由器接口速率的限制。 假设有2个使用IP协议的站点,通过第三层交换机进行通信的过程为:若发送站点1在开始发送时,已知目的站点2的IP地址,但不知遒它在局域网上发送所需要的MAC地址,则需要采用地址解析(ARP)来确定站点2的MAC地址。站点1把自己的IP地址与站点2的IP地址比较,采用其软件配置的子网掩码提取出网络地址来确定站点2是否与自己在同一子网内。若站点2与站点1在同一子网内,那么站点1广播一个ARP请求,站点2返回其MAC地址,站点1得到站点2的MAC地址后将这一地址缓存起来,并用此MAC地址封包转发数据,第二层交换模块查找MAC地址表确定将数据包发向目的端口。若2个站点不在同子网

交换机家庭组网实例

交换机家庭组网实例 随着电脑价格的下降,硬件产品升级换代的加速,Internet的普及,还有SOHO一族的逐渐壮大,使得很多家庭都拥有了两台或两台以上的电脑。如何最有效地利用这些电脑资源呢?最好的办法是联个家庭网,把家里所有的电脑组建成一个小小的家庭局域网络,新旧电脑一块儿用,把这些电脑以很少的代价互连起来,既能起到共享资源(文件、打印机、Modem、ISDN等)的作用,又能节约家庭办公的经费开支,更好地发挥各自的作用。 如果家里只有两台电脑,我建议采用双绞线方案最为合理,即最简捷的双机直接连接方式,双绞线价格低廉、性能良好、连接可靠、维护简单,是两台电脑的家庭局域网络布线时最好的选择。但这不是今天我要谈的,因为两台机器之间的联网根本就用不着HUB或交换机! 但是如果家庭中拥有三台或以上的计算机时,那么就要使用到集线设备,我们可以根据自己的财力决定是购买HUB还是交换机。 HUB已经过时了,之所以好多人还在用它,只是因为它很便宜!而用交换机联网性能更好,以前交换机不普及是因为价格太贵,只在20~30台电脑以上的网络环境使用。近日清华同方网络促销的一款5口"网精灵"SOHO交换机,也称掌上型交换机,价格才280元(8口的320元),已经非常接近相同端口数的HUB了。赶快忘掉HUB吧,让家庭联网也过把"交换"的瘾!下面我就奉献一下本人用同方5口"网精灵"SOHO交换机进行家庭组网的实例,对于小型的公司、学生宿舍,这个例子也是适用的。 一、硬件准备 同方5口"网精灵"SOHO交换机、网卡、网线、RJ45水晶头、网钳、测线仪,缺一不可啊!接下来就是网络布线、网线的制作、网卡的安装(硬件的安装),以及计算机之间,计算机与交换机、猫、打印机间的连接了,这些都是比较简单的,相信一般的菜鸟都胜任了,实在不行,看看下图所示。

物联网智能安防家居系统介绍

物联网智能安防家居 系统介绍 系统的总体结构 ————本系统整个工程分成智能家居和安全防御两部分,同时可实现人机对话和网络功能.为实现住宅对外的接入,我们通过家庭网络或小区网络实现远程访问,同时为以后的系统升级预留基础平台。 住宅的安防系统是整个系统设计当中的重要组成部分。 通过周界的红外对射和周界的监控设施的控制,起到了住宅的第一层的安全保护,在出现非法入侵的情况,可及定位锁定入侵人员,做出必要的处理方法。 通过对住宅车辆的进出进行了周密的防御及监控措施,住宅门口的门禁系统的身份识别,以及周界于住宅过度区域的入侵定位,可在周界被侵入后起到后备防御,起到了住宅的第二层的安全保护。 第三层安全保护,体现在住宅内部系统中。通过户内传感元件以及门禁识别系统,在住宅内部构建了一套独特的防御体系,起到户内的实时防御及险情预警和自动处理。 在上述系统设备的有效配置后,通过平台管理中心的管理软件,集中控制管理,通过网络实现对智能系统各子系统的信息收集、管理。 我们在系统能化设计上,利用三层安防技术,解决住宅的安全管理问题,通过家庭网络的分布实施,实现了轻松的网络功能。 系统通过跟踪定位,实现了完善的智能家居功能,中心控制单元通过外部信号的反馈和处理,根据住户的实际需要以及生活起居习惯,进行人性化智能化的家居服务。 1.系统范围: 1.1安全防范部分 ☆监控及周界防范系统(包括公共区域监控,出入口管理) ☆门禁及语音系统(包括身份识别验证,语音问候喝止等) ☆家庭安防(包括精确定位,主动防御,燃气报警及处理,特殊情况紧急触发功能等) 1.2智能家居系统 ☆灯光场景自动控制

☆温度湿度自动调节 ☆背景音乐智能控制 ☆门窗自动控制 ☆居家电器自动控制 1.3人机对话及网络系统 ☆人机对话系统(系统参数设定,防御方式改变,智能家居功能搭配等) ☆网络访问控制(包括安防部分所有系统可控设备,远程监控功能,以及家居控制等) 安全防范系统 系统特点 ●安全性: 系统采取全访问立体式主动防御,真正做到了防御在前不再是事后防御,变技防为物防更加提高了安全保障 ●实用性: 针对用户的具体情况、具体要求,做个性化设计,使系统最大限度地切合用户要求,并且使用方便、维护方便。 ●可靠性: 系统应能保证长期稳定、可靠运行。设计首先从结构上提供系统可靠的基础,在设备上精心选择,严格按照工程标准和规范进行设计以保证系统最终稳定、可靠。 ●先进性: 系统设计不仅在当前具有先进性,而且在今后很长一段时间内保证一定的先进性。因此在系统结构设计上采用以模块化的处理单元为主体的控制系统,这在目前是先进的,而且也是安全系统的发展趋势,可以随着技术的发展升级,保证其先进性。 ●经济性 系统要有很好的性能价格比。从系统结构上考虑整体方案,节省预算是控制成本最有效的手段。由于采用以模块化的处理单元为主体的结构,系统大部分功能可由软件实现同时可自由拆分自合,在保证系统强大功能的同时,节省了费用。 ●可扩充性 ☆本系统中的软、硬件都采用模块化设计,系统是根据具体需求灵活组织,所以具有非常好的扩充性,保证在用户要求发生变化时,在原系统的结构上,无需增加更多相关设备,通过软件平台即可满 1.外围区域监控及周界防范报警系统

三层交换机配置实例

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三层交换机配置实例 三层交换综合实验一般来讲,设计方案中主要包括以下内容: 用户需求需求分析使用什么技术来实现用户需求设计原则拓扑图设备清单一、模拟设计方案【用户需求】 1. 应用背景描述某公司新建办公大楼,布线工程已经与大楼内装修同步完成。 现公司需要建设大楼内部的办公网络系统。 大楼的设备间位于大楼一层,可用于放置核心交换机、路由器、服务器、网管工作站、电话交换机等设备。 在每层办公楼中有楼层配线间,用来放置接入层交换机与配线架。 目前公司工程部 25 人、销售部 25人、发展部 25 人、人事部 10 人、财务部加经理共 15 人。 2. 用户需求为公司提供办公自动化、计算机管理、资源共享及信息交流等全方位的服务,目前的信息点数大约 100 个,今后有扩充到 200 个的可能。 公司的很多业务依托于网络,要求网络的性能满足高效的办公要求。 同时对网络的可靠性要求也很高,要求在办公时间内,网络不能宕掉。 1 / 14

因此,在网络设计过程中,要充分考虑到网络设备的可靠性。 同时,无论是网络设备还是网络线路,都应该考虑冗余备份。 不能因为单点故障,而导致整个网络的瘫痪,影响公司业务的正常进行。 公司需要通过专线连接外部网络。 【需求分析】为了实现网络的高速、高性能、高可靠性还有冗余备份功能,主要用于双核心拓扑结构的网络中。 本实验采用双核心拓扑结构,将三层交换技术和 VTP、 STP、EthernetChannel综合运用。 【设计方案】 1、在交换机上配置 VLAN,控制广播流量 2、配置 2 台三层交换机之间的 EthernetChannel,实现三层交换机之间的高速互通 3、配置 VTP,实现单一平台管理 VLAN,同时启用修剪,减少中继端口上不必要的广播信息量 4、配置 STP,实现冗余备份、负载分担、避免环路 5、在三层交换机上配置 VLAN 间路由,实现不同 VLAN 之间互通 6、通过路由连入外网,可以通过静态路由或 RIP 路由协议【网络拓扑】根据用户对可靠性的要求,我们将网络设计为双核心结构,为了保证高性能,采用双核心进行负载分担。 当其中的一台核心交换机出现故障的时候,数据能自动转换到另一台交换机上,起到冗余备份作用。 注意: 本实验为了测试与外网的连通性,使用一个简单网络【设备

华为交换机典型组网案例

典型组网案例目录 目录 第1章 Quidway系列以太网交换机简介................................................................................1-1 1.1 Quidway系列以太网交换机简介........................................................................................1-1 1.1.1 低端以太网交换机...................................................................................................1-1 1.1.2 中端以太网交换机...................................................................................................1-1 1.1.3 高端以太网交换机...................................................................................................1-1 1.2 本模块简介........................................................................................................................1-2第2章宽带小区网络.............................................................................................................2-1 2.1 组网需求............................................................................................................................2-1 2.2 使用CAMS构造宽带小区网络..........................................................................................2-1 2.2.1 解决方案.................................................................................................................2-1 2.2.2 配置步骤.................................................................................................................2-2 2.3 利用MA5200构造宽带小区网络.......................................................................................2-8 2.3.1 解决方案.................................................................................................................2-8 2.3.2 配置步骤.................................................................................................................2-9第3章中小企业/大企业分支机构组网...................................................................................3-1 3.1 组网需求............................................................................................................................3-1 3.2 利用华为交换机构造企业网络...........................................................................................3-1 3.2.1 解决方案.................................................................................................................3-1 3.2.2 配置步骤.................................................................................................................3-2

消防安防物联网解决方案

消防安防物联网解决案 一、行业概述 1、行业发展趋势 目前的消防监控系统基本上都是各单位独立选购安装、独立工作,很容易导致火灾信息漏报、迟报,报警设备出现故障没有及时恢复开通,对设备的故障更是无法评判、预测。 因此,打造信息化和智能化的消防远程监控系统,已成为行业发展趋势。 2、行业应用价值 城市消防远程监控系统可以采用消防自动报警系统已有的各种感知设备、视频采集设备等,将感知和采集到的大量现场信息,借助消防物联网网络层传输到消防指挥中心,再通过消防指挥中心的信息平台整理后进行辅助决策,通过消防指挥中心下发指令及时对灾情的消防处置,并结合消防应急预案组织救援力量、救援物资及救援装备的部署。 系统架构图:

二、智物联解决案 1、建筑消防物联网系统架构 智物联的消防物联网,是指通过使用物联网技术,消防远程监控系统可以24小时工作,并且变的“耳聪目明”。在此基础上搭建的消防信息数据平台,将传统消防工作提升到“智能消防”时代。通过消防安全信息中心的搭建,主要依靠物联网和云计算这两项核心技术。整个系统可分为感知层、网络层和应用层。 如图:

2、智物联消防物联网特点 智物联基于物联网技术的消防远程管控系统,通过物联网传输终端、物联智能终端实现物联网监控中心、消防相关人员与各地消防设施的沟通与对话,这种将消防领域的人与物、物与物联系起来的网络就形成了消防物联网。 智物联提供集“安装—检查—快速查询—实时监控”一体化的消防产品设备信息化作业链,将消防主管、产品用户、工程维保商三大建筑消防产品设施关联角色的职能融入到系统中,把对建筑消防产品设施的重视提到日常工作上,加强消防监督管理力度。 智物联针对建筑消防设备的生产厂商及运营商的客户众多,且分布在全国各地,设备繁多、信息传输的及时性、准确性要求很高等特点。智物联的物联网系统平

三层交换机基本配置及利用三层交换机实现不同VLAN间通信

实验四 三层交换机基本配置及利用三层交换机实现不同VLAN 间通信 一、实验名称 三层交换机基本配置及VLAN/802.1Q -VLAN 间通信实验。 二、实验目的 理解和掌握通过三层交换机的基本配置及实现VLAN 间相互通信的配置方法。 三、实验内容 若企业中有2个部门:销售部和技术部(2个部门PC 机IP 地址在不同网段),其中销售部的PC 机分散连接在2台交换机上,配置交换机使得销售部PC 能够实现相互通信,而且销售部和技术部之间也能相互通信。 在本实验中,我们将PC1和PC3分别连接到SwitchA (三层交换机)的F0/5端口和SwitchB 的F0/5端口并划入VLAN 10,将PC2连接到SwitchA (三层交换机)的F0/15端口并划入VLAN 20,SwitchA 和SwitchB 之间通过各自的F0/24端口连接。配置三层交换机使在不同VLAN 组中的PC1、PC2、PC3能相互通信。 三、实验拓扑 四、实验设备 S3550-24(三层交换机)1台、S2126交换机1台、PC 机3台。 五、实验步骤 VLAN/802.1Q -VLAN 间通信: 1.按实验拓扑连接设备,并按图中所示配置PC 机的IP 地址,PC1、PC3网段相同可以通信,但是PC1、PC3和PC2是不同网段的,所以PC2(技术部)不能和另外2台PC 机(销售部)通信。 2.在交换机SwitchA 上创建VLAN 10,并将0/5端口划入VLAN 10中。 SwitchA(config)#vlan 10 !创建VLAN 10 SwitchA (config-vlan)#name sales ! 将VLAN 10 命名为sales SwitchA (config)#interface f0/5 !进入F0/5接口配置模式 SwitchA (config-if)#switchport access vlan10 !将F0/5端口划入VLAN 10 SwitchA #show vlan id 10 !验证已创建了VLAN 10并已将F0/5端口划入VLAN 10中 PC2

三层交换机基本配置

三层交换机基本配置 【实验名称】 三层交换机端口配置 【实验目的】 配置开启三层交换机的三层功能,实现路由作用。 【背景描述】 为了隔离广播域而划分了VLAN,但不同的VLAN之间需要通信,本实验将实现这一功能。即同一VLAN里的计算机能跨交换机通信,不同VLAN里的计算机系统也能互相通信。 【技术原理】 三层交换机是在二层交换的基础上实现了三层的路由功能。三层交换机基于“一次路由,多次交换”的特性,在局域网环境中转发性能远远高于路由器。而且三层交换机同时具备二层的功能,能和二层交换机进行很好的数据转发。三层交换机的以太网接口要比一般的路由器多很多,更加适合多个局域网段之间的互联。 三层交换机本身默认开启了路由功能,可利用IP Routing命令进行控制。 【实验设备】 S3350(一台),PC机(两台)。 【实验拓扑】

注意:先连线,在进行配置,注意连接线缆的接口编号。S3350为三层交换机。 【实验步骤】 步骤一 开启三层交换机的路由功能: Switch>enable //进程特权模式 Switch #configure terminal //进入全局模式 Switch (config)#hostname s3350-24 S3350-24 (config)#ip routing //开启三层交换机的路由功能 步骤二 配置三层交换机端口的路由功能: S3350-24>enable //进入特权模式 S3350-24#configure terminal //进入全局模式 S3350-241 (config)#interface fastethernet 0/2 //进入fa0/2端口 S3350-24 (config-if)#no switchport //开启端口的三层路由功能 S3350-24 (config-if)#ip address 192.168.5.254 255.255.255.0 //配置ip地址S3350-24 (config-if)#no shutdown //启用端口,使其转发数据

物联网智能安防监控系统方案

物联网智能安防监控系统方案 人们生活水平的不断提高,同时居住环境也不断在升级,越来越重视自己的个人安全与财产安全,以及对家庭住宅的小区的安全方面也及其重视,同时,经济的快速的发展,城市流动人口也急剧增加,这给社会治安带来了一个大难题,为了要保障小区的安全,防止偷抢事件发生,那么就必须有自己的一套防范系统。 智能家居安防系统是传感技术、无线电技术、模糊控制技术等多种技术为一体的综合应用,利用现代的宽带信息网络和无线电网络平台,将家电控制、家庭环境控制、家庭监视监测、家庭安全防范、家庭信息交流、家庭娱乐、小区管理和服务集为一体构成的智能系统产品,是具有较强的技术性和前瞻性的新产品。这套系统包含门磁传感器、红外广角探测器、红外幕帘探测器等。 智能安防监控五大系统 防盗报警系统

防盗报警系统是通过安装在防护现场的各种入侵探测器对所保护的区域进行人员活动的探测,一但发现有入侵行为的时候产生报警信号,以达到防盗的作用。 视频监控系统 视频监控系统是以图像监视为手段,对现场图像进行实时监视与录像。视频监控系统可以让安保人员直观的掌握现场情况,并能通过录像回放对事件进行分析和取证。视频监控系统是安防系统的重要组成部分,当前视频监控系统与防盗报警系统有机的结合在一起,形成了一个更为可靠的监控系统。 出入口控制系统 出入口控制系统又称门禁系统,其功能是控制人员的出入,还能控制人员在防范区域内的活动。在防范区域内,必须使用各类卡内、密码或通过生物识别技术经控制装置识别确认,才能通过。停车场管理系统实际上也属于出入口控制系统。 楼宇对讲系统 楼宇对讲系统为访客与室内人员提供双向通话或可视通话、遥控开锁以及报警功能。 电子巡更系统 在大型楼宇或室内外场所中,出入口很多,来往人员复杂,必须有专人巡逻,较为重要的地点应设巡更点或巡更路线,定期进行巡逻。电子巡更系统是安保人员在规定的巡更路线上,在指定的时间和地点向中心控制室传送巡更信号,以表明巡视过相关路线和地点。

三层交换机的配置命令

三层交换机的图,如图所示: 一.交换机的配置: S2的配置命令: Enable Conf terminal Hostname S2 Switch(config)#vlan 10 Switch(config-vlan)#name stu10 Switch(config-vlan)#vlan 20 Switch(config-vlan)#name stu20 Switch(config)#interface f0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 10 Switch(config)#interface f0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 20 Switch(config)#inte f0/24 Switch(config-if)#switchport mode trunk

S3的配置命令: Enable Conf terminal Hostname S3 Switch(config)#vlan 10 Switch(config-vlan)#name stu10 Switch(config-vlan)#vlan 20 Switch(config-vlan)#name stu20 Switch(config)#interface f0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 10 Switch(config)#interface f0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 20 Switch(config)#inte f0/24 Switch(config-if)#switchport mode trunk 二.三层交换机的配置命令 Enable Conf terminal Switch(config)#vlan 10 Switch(config-vlan)#vlan 20 Switch(config)#interface f0/1 Switch(config-if)#switchport trunk encapsulation dot1q Switch(config-if)#switchport mode trunk Switch(config)#interface f0/2 Switch(config-if)#switchport trunk encapsulation dot1q Switch(config-if)#switchport mode trunk Switch(config)#interface vlan 10 Switch(config-if)#ip address 192.168.10.254 255.255.255.0 Switch(config-if)#no shutdown

3三层交换机、路由端口配置

Sw-a Switch>en Switch#conf t Switch(config)#int fa0/24 Switch(config-if)#no switchport Switch(config-if)#ip address 10.1.1.2 255.255.255.0 Switch(config-if)#no shut Switch(config-if)#exit Switch(config)#hostname sw-a sw-a(config)#router sw-a(config)#router rip sw-a(config-router)#version 2 sw-a(config-router)#no auto-summary sw-a(config-router)#net 10.1.1.0 sw-a(config-router)#net 192.168.10.0 sw-a(config-router)#net 192.168.20.0 sw-a(config-router)#net 192.168.30.0 sw-a(config-router)#exi sw-a(config)#ip router sw-a(config)#ip route 0.0.0.0 0.0.0.0 10.1.1.1 sw-a(config)#end sw-a#show ip route sw-b Switch>enable Switch#conf t Switch(config)#interface fastEthernet0/24 Switch(config-if)#no switchport Switch(config-if)#ip add 20.2.2.2 255.255.255.0 Switch(config-if)#no shut Switch(config-if)#exi Switch(config)#hostname Switch(config)#hostname sw-b sw-b(config)#route rip sw-b(config-router)#version 2 sw-b(config-router)#no auto-summary sw-b(config-router)#network 20.2.2.0 sw-b(config-router)#network 192.168.10.0 sw-b(config-router)#network 192.168.20.0 sw-b(config-router)#network 192.168.30.0 sw-b(config-router)#exi sw-b(config)#ip route 0.0.0.0 0.0.0.0 20.2.2.1

三层交换机的概念及其组网应用

三层交换机的概念及其组网应用 一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件和软件简单的叠加在局域网交换机上。 近年来,随着互联网和信息化建设的迅猛发展,使人们越来越感觉到传统路由器已经从原来的交通指挥员变成了现在的路口瓶颈。传统路由器在网络中起到隔离网络、隔离广播、路由转发、防火墙的作业,并且随着网络的不断发展,它们的工作量也在迅速增长。如今出于安全和管理方便等方便的考虑,VLAN(虚拟局域网)技术在网络中大量应用。VLAN技术可以逻辑隔离各个不同的网段、端口甚至主机,而各个不同VLAN间的通信都要经过路由器来完成转发。由于局域网中数据流量很大,VLAN间大量的信息交换都要通过路由器来完成转发,这时候随着数据流量的不断增长路由器就成为了网络的瓶颈。 为了解决局域网络的这个瓶颈,很多企业内部、学校和小区建设局域网时都采用了三层交换机。三层交换是相对于传统交换概念而提出的。传统的交换技术是在OSI网络标准模型中的第二层—数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,三层交换技术就是:二层交换技术+三层转发技术。一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件和软件简单的叠加在局域网交换机上。 三层交换机与路由器 三层交换机和路由器之间的区别,最根本就是三层交换机也具有“路由”功能,与传统路由器的路由功能总体上是一致的。虽然如此,三层交换机与路由器还是存在着相当大的本质区别的。三层交换机并不等于路由器,同时也不可能取代路由器。第三层交换机非常适应局域网环境,而路由器非常适合应用于广域网中。也就是说,第三层交换机无法适应网络拓扑各异,传输协议不同的广域网络系统。具体而言,有下面几点: 1. 三层交换机与路由器的主要功能不变 虽然三层交换机与路由器都具有路由功能,但不能因此而把它们等同起来。现在有许多宽带路由器不仅具有路由功能,还提供了交换机端口、硬件防火墙功能,但不能把它与交换机或者防火墙等同起来一样。因为这些路由器的主要功能还是路由功能,其它功能只不过是其附加功能,其目的是使设备适用面更广、使其更加实用。这里的三层交换机也一样,它仍是交换机产品,只不过它是具备了一些基本的路由功能的交换机,它的主要功能仍是数据交换。也就是说它同时具备了数据交换和路由由发两种功能,但其主要功能还是数据交换;而路由器仅具有路由转发这一种主要功能。 2. 三层交换机与路由器使用的场所不同 三层交换机主要是用于简单的局域网连接。正因如此,三层交换机的路由功能通常比较简单,路由路径远没有路由器那么复杂。它用在局域网中的主要用途还是提供快速数据交换功能,满足局域网数据交换频繁的应用特点。

相关文档
最新文档