2015年河北省地区中考数学总复习考点跟踪突破18 概率的应用
河北省地区2015中考数学总复习 第14讲 函数的应用考点跟踪突破

函数的应用一、选择题(每小题6分,共30分)1.(2013·某某)已知矩形的面积为36 cm 2,相邻的两条边长为x cm 和y cm ,则y 与x 之间的函数图象大致是( A )2.(2013·某某)若一次函数y =ax +b(a≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+bx 的对称轴为( C )A .直线x =1B .直线x =-2C .直线x =-1D .直线x =-4解析:∵一次函数y =ax +b (a≠0)的图象与x 轴的交点坐标为(-2,0),∴-2a +b =0,即b =2a ,∴抛物线y =ax 2+bx 的对称轴为直线x =-b 2a=-1.故选C3.(2014·某某)如图,双曲线y =mx 与直线y =kx +b 交于点M ,N ,并且点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程mx=kx +b 的解为( A )A .-3,1B .-3,3C .-1,1D .-1,3解析:∵M (1,3)在反比例函数图象上,∴m =1×3=3,∴反比例函数解析式为y =3x ,∵N 也在反比例函数图象上,点N 的纵坐标为-1.∴x =-3,∴N (-3,-1),∴关于x 的方程mx=kx +b 的解为-3,14.(2014·某某)图象中所反映的过程是:X 强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示X 强离家的距离.根据图象提供的信息,以下四个说法错误的是( C )A .B .X 强在体育场锻炼了15分钟C .体育场离早餐店4千米D .X 强从早餐店回家的平均速度是187千米/小时解析:A.由函数图象可知,体育场离X 强家千米,故此选项正确;B.由图象可得出X 强在体育场锻炼30-15=15(分钟),故此选项正确;C.体育场离X 强家千米,体育场离早餐店-=1(千米),故此选项错误;D.∵X 强从早餐店回家所用时间为100-65=35分钟,距离为1.5 km ,∴X 强从早餐店回家的平均速度1.5÷3560=187(千米/时),故此选项正确.故选:C.5.某广场有一喷水池,水从地面喷出,如图,以水平面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( A )A .4米B .3米C .2米D .1米二、填空题(每小题8分,共24分)6.(2013·某某)如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数y =kx (x <0)的图象上,则k 的值等于__-12__.解析:如图,过C ,D 两点作x 轴的垂线,垂足为G ,F ,CG 交AD 于M 点,过D 点作DH⊥CG ,垂足为H ,∵CD ∥AB ,CD =AB ,∴△CDH ≌△ABO (AAS ),∴DH =AO =1,CH =OB =2,设C (m ,n ),D (m -1,n -2),则mn =(m -1)(n -2)=k ,解得n =2-2m ,∴BC =m 2+(n -2)2=5m 2,AB =5,因为BC =2AB ,解得:m =-2,n =6,所以k =mn =-127.(2014·某某)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB⊥l,垂足为B ,连接PA.设PA =x ,PB =y ,则(x -y)的最大值是__2__.解析:如图,作直径AC ,连接CP ,∴∠CPA =90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP =∠APB ,∴△APC ∽△PBA ,∴AP AC =BP AP ,∵PA =x ,PB =y ,半径为4∴x8=y x ,∴y =18x 2,∴x -y =x -18x 2=-18x 2+x =-18(x -4)2+2,当x =4时,x -y 有最大值是28.(2014·某某)如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A ,B 之间(C 不与A ,B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为__a +4__.(用含a 的式子表示)三、解答题(共46分)9.(10分)(2014·某某)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:销售方式 批发 零售 加工销售 利润(百元/吨)12223015吨. (1)求y 与x 之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.解:(1)依题意可知零售量为(25-x )吨,则y =12x +22(25-x )+30×15,∴y =-10x +1000(2)依题意有:⎩⎪⎨⎪⎧x≥0,25-x≥0,25-x≤4x ,解得:5≤x≤25.∵k =-10<0,∴y 随x 的增大而减小.∴当x =5时,y 有最大值,且y 最大=950(百元).∴最大利润为950百元10.(12分)(2014·某某)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y 关于x 的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量; (3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y 关于x 的函数关系式y =kx +b ,∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100,∴y 关于x 的函数关系式是y =6x -100(2)由图可知,当y =620时,x >50,∴6x -100=620,解得x =120.答:该企业2013年10月份的用水量为120吨(3)由题意得6x -100+x 20(x -80)=600,化简得x 2+40x -14000=0,解得:x 1=100,x 2=-140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨11.(12分)(2013·某某)某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4.(1)求a 的值;(2)点C(-1,m)是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD ,BC ,BD ,求△BCD 的面积.解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14 (2)过点C 作CE⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4,令x =-1,∴m =14×(-1)2-4=-154,∴C (-1,-154),∵点C 关于原点对称点为点D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB·DF +12OB·CE =12×4×154+12×4×154=15,∴△BCD 的面积为15平方米12.(12分)(2014·某某)大学生小X 利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x(天) 1 2 3 … 50 p(件)118116114…20销售单价q(元/件)与x 满足:当1≤x<25时,q =x +60;当25≤x≤50时,q =40+1125x.(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系; (2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式; (3)这50天中,该超市第几天获得利润最大?最大利润为多少? 解:(1)p =120-2x (2)y =p·(q -40)=⎩⎪⎨⎪⎧(120-2x )·(60+x -40)(1≤x <25)(40+1125x -40)·(120-2x )(25≤x≤50)= ⎩⎪⎨⎪⎧-2x 2+80x +2400(1≤x <25)135000x-2250(25≤x≤50) (3)当1≤x <25时,y =-2(x -20)2+3200,∴x =20时,y 的最大值为3200元;当25≤x≤50时,y =135000x -2250,∴x =25时,y 的最大值为3150元,∵3150<3200,∴该超市第20天获得最大利润为3200元2015年某某名师预测1.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y(元)关于x 的函数关系式为y =__a (1+x )2__.2.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平面交于A ,B 两点,桥拱最高点C 到直线AB 的距离为9 m ,AB =36 m ,D ,E 为拱桥底部的两点,且DE∥AB,点E 到直线AB 的距离为7 m ,则DE 的长为__48__m .。
2015年河北中考数学真题卷含答案解析

2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( ) A.1的相反数是-1 B.1的倒数是-1 C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( ) A.(12)-1=-12B.6×107=6 000 000 C.(2a)2=2a 2D.a 3·a 2=a 55.图中的三视图所对应的几何体是( )点O的是( ) 6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )11.利用加减消元法解方程组{2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2 12.若关于x 的方程x 2+2x+a=0不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a 为常数)的交点在第四象限,则a 可能在( )A.1<a<2B.-2<a<0C.-3≤a ≤-2D.-10<a<-415.如图,点A,B 为定点,定直线l ∥AB,P 是l 上一动点,点M,N 分别为PA,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长; ③△PMN 的面积;④直线MN,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= . 18.若a=2b ≠0,则a 2-b 2a 2-ab 的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2= °.20.如图,∠BOC=9°,点A 在OB 上,且OA=1.按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下: -3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B 产品单价变化统计表第一次 第二次 第三次 A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:x A =5.9;s A 2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m>0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sinα的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.4.DA.(12)-1=2,本选项错误; B.6×107=60 000 000,本选项错误; C.(2a)2=4a 2,本选项错误;D.a 3·a 2=a 3+2=a 5,本选项正确,故选D. 5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF 的顶点F 不在圆O 上,∴圆O 不是△ACF 的外接圆,∴点O 不是△ACF 的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C. 8.C 延长AC 交直线EF 于点G,∵AB ∥EF,∴∠BAC=∠CGD=50°,∵∠ACD 是△CDG 的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=k x (k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D 正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2二、填空题17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b ≠0,∴原式=(a+b)(a -b)a(a -b)=a+b a =2b+b 2b =32. 19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°.20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……,则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9. 三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分)=x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分)=6.(10分)22.解析 (1)CD.(1分)平行.(2分)(2)证明:连结BD.(3分)在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB.(7分)∴四边形ABCD是平行四边形.(8分)(3)平行四边形的对边相等.(10分)23.解析(1)y=4x大+210.(3分)(2)①当x大=6时,y=4×6+210=234.∴y=3x小+234;(7分)②依题意,得3x小+234≤260,解得x小≤82,(9分)3∵x小为自然数,∴x小最大为8,即最多能放入8个小球.(10分)评析一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答.24.解析(1)如图所示.(2分)25.(4分)(2)x B=1(3.5+4+3)=3.5,s B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)2 =16.(7分)∵16<43150,∴B 产品的单价波动小.(8分)(3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0,∴第四次单价大于3.又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+m%)+3.52×2-1=254,(10分)∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分)对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1,∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x ≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分)26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt △OAB 中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP ≥OP,当OP 过点A,即α=60°时等号成立.∴AP ≥OP-OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分)PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH ⊥AD 于点H,过点R 作RE ⊥KQ 于点E.在Rt △OPH 中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.(7分)由AD ∥BC 知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.∴S 扇形RKQ =60π(12)2360=π24.在Rt △RKE 中,RE=RK ·sin 60°=√34, ∴S △RKP =12PK ·RE=√316.∴S 阴影=π24+√316.(8分)拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON ∽△BMN,∴AN BN =AO BM ,即1-BN BN =1x, ∴BN=x x+1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F.图2BQ=AF=√OQ 2-QF 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x ≤2√2-1.(11分)[注:如果考生答“x ≤2√2-1或x<2√2-1”均不扣分]探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG ⊥OO'于点G.图3Rt △OSK 中,OS=√OK 2-SK 2=√(5)2-(3)2=2. Rt △OSO'中,SO'=OS ·tan 60°=2√3,KO'=2√3-32.Rt △KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt △OGK 中,sin α=KG =√3-3452=4√3-3.②半圆K 与AD 切于点T,如图4,图4同理可得sin α=KG OK =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。
2015年中考数学总复习解题指导课件含2概率共118张PPT73

图
第29讲┃数据的收集与整理
经典示例
例 3 [2014·莱芜] 在某市开展的“读中华经典,做书香少
年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学
生进行随机抽样调查.如图 29-2 是根据调查结果绘制成的统计图
(不完整),请你根据图中提供的信息解答下列问题:
第29讲┃数据的收集与整理
【教你读题】 1.初步读题 知道本题是统计类的问题,培养解题时的模型意识. 2.再读题 ①明确调查对象:某市初二学生日人均阅读时间; ②明确调查方式:抽样调查; ③从统计图中读信息时通常需要关注统计图的名称、文 字标注(轴标注和项目标注)、有关数据等; ④明确问题(增强解题时的目标意识).
第29讲┃数据的收集与整理
7.[2014·岳阳] 为了响应岳阳市政府“低碳交通,绿色出行” 的号召,某中学数学兴趣小组在全校 2000 名学生中就上学方式随机抽
取了 400 名学生进行抽样调查,经统计整理绘制出图(a)、图(b)两幅
不完整的统计图: A:步行; B:骑自行车; C:乘公共交通工具; D:乘私家车; E:其他.
数的加权平均数,其中f1,f2,…,fk叫做各数据的权
第30讲┃数据分析
中位 数
将一组数据按照大小顺序排列后位于正中间的一个数据(当数据的个 数是奇数时)或正中间两个数据的平均数(当数据的个数是偶数时)叫 做这组数据的中位数
众数 一组数据中出现次数___最__多_______的数据叫做这组数据的众数
第29讲┃数据的收集与整理
核心练习
3.为了了解某校九年级 400 名学生的身高情况,从中抽取了 50
名学生的身高进行统计分析,在这个问题中,样本是指( D )
河北省中考数学总复习 第二编 专题突破篇 专题12 统计与概率的应用(精讲)试题

专题十二统计与概率的应用年份 题型考点 题号 分值 难易度 2017选择题、解答题分析统计图和统计表、概率的计算 14、21 2+9=11 中等题2016解答题 概率的计算、平均数的意义 23、24(3) 9+3=12 中等题2015选择题、解答题 分析统计图、方差、平均数、中位数的意义13、24 2+11=13 中等题命题规律纵观河北中考,统计与概率均在解答题中出现,由早些年的一个在选择填空,一个在解答题,发展到现在两者在一道解答题中出现.命题方式有突破,在2016年又有新的尝试,概率单独作为一个解答题,再把统计与一次函数相结合,命题方式新颖,复习时还应抓牢基础.预测2018年中考,统计与概率还会以中等题出现.解题策略重点练习两者混搭题目以及练习统计或概率与其他知识混搭题目. 解题中要侧重对图表的理解和认真分析,从获取的信息中找到解决问题的关键.此题属基础题不存在难点,注意计算过程的规范性和准确性.,重难点突破)统计知识的应用【例1】(2016廊坊二模)某中学八年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人; (2)补全条形统计图; (3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校八年级的总人数是480人,根据此统计数据,请你估算该校八年级跳绳成绩为“优秀”的人数. 【解析】(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出参加这次跳绳测试的人数;(2)利用(1)中所求,结合条形统计图得出“优秀”的人数,进而求出答案;(3)利用“中等”的人数,计算出“中等”部分所占百分比;进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体,进而利用“优秀”所占比例求出即可.【答案】解:(1)50;(2)优秀的人数为:50-3-7-10-20=10,补图如图所示; (3)72°;(4)估计该校八年级跳绳成绩为“优秀”的人数为:480×1050=96(人).1.(江西中考)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3 600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长? (3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?解:(1)乙组关心“情感品质”的家长有:100-(18+20+23+17+5+7+4)=6(人), 补全条形统计图如图;(2)4+6100×3 600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中可以看出,家长对“情感品质”关心不够,可适当关注与指导.【方法指导】熟练运用统计的初步知识,掌握三种统计图和统计表的知识,根据题意解决实际问题. 概率知识的应用【例2】现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率; (2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.【解析】(1)列举出所有情况,看向上一面出现的数字与卡片上的数字之积为6的情况数占总情况数的多少即可;(2)对于概率问题中的公平性问题,解题的关键是计算出各种情况的概率,然后比较即可.【答案】解:(1)画树状图如图所示:由图可知,一共有18种等可能的情况,其中数字之积为6的情况有3种,所以P(数字之积为6)=318=16;(2)小王赢的可能性更大.理由:由图可知,所有等可能的结果有18种 ,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率为718,小王赢的概率为1118,因为718<1118,故小王赢的可能性更大.2.(重庆中考)点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是__15__.3.(丽水中考)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同.现从箱子里随机摸出2个球,恰好为1个黑球和1个红球的概率是__23__.4.(威海中考)一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同. (1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.解:(1)P (奇)=36=12;(2)列表得:1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)由表可知,共有36种等可能结果,其中摸到小球的标号数字同为奇数或同为偶数的结果有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲赢)=1836=12,P(乙赢)=1836=12,∴这个游戏对甲、乙两人是公平的.【方法指导】熟练掌握概率的两种解题方法,结合题意选择正确方法,注意答题最后总结性的语言.统计与概率知识的综合应用【例3】(潜江中考)某校男子足球队的年龄分布如图所示:(1)求这些队员的平均年龄;(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.【解析】(1)根据加权平均数的计算公式进行计算即可;(2)用首发队员出场的人数除以足球队的总人数即可求解.【答案】解:(1)该学校男子足球队队员的人数为2+6+8+3+2+1=22(人).该校男子足球队员的平均年龄为(13×2+14×6+15×8+16×3+17×2+18×1)÷22=330÷22=15(岁). 故这些队员的平均年龄是15岁;(2)∵该校男子足球队一共有22名队员,将会有11名队员作为首发队员出场,∴不考虑其他因素,其中某位队员首发出场的概率为1122=12.5.(内江中考)学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球,B.乒乓球,C.跳绳,D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图①,图②),请回答下列问题:图① 图②(1)这次被调查的学生共有________人; (2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)解:(1)200;(2)C 项目对应人数为:200-20-80-40=60(人);补图如图所示;(3)列表如下:甲乙丙丁甲(乙,甲) (丙,甲) (丁,甲)乙(甲,乙) (丙,乙) (丁,乙)丙(甲,丙) (乙,丙) (丁,丙)丁(甲,丁) (乙,丁) (丙,丁)∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==错误!.12【方法指导】两者的综合应用实质是分开的,掌握好各自的知识点和解题关键点,是一种好策略.。
第二节 概率——冀教版中考第一轮复习

第二节 概率,本节知识导图),河北中考命题规律)考什么怎么考考点年份 题号 题型 考查方式 考频命题趋势 概率 的计算2019 22(3) 解答题 用列表法求概率 5年5考主要考查一步概率计算,近两年连续与统计结合,预计2020年仍会继续考查201821 解答题 与统计结合考查简单事件概率(一步概率)2017 21 解答题 与统计结合考查简单事件概率(一步概率)2016 23 解答题 掷骰子游戏计算概率,涉及一步概率和两步概率 201513选择题掷骰子游戏确定最上面的点数情况(一步概率),河北中考考题试做)概率的计算1.(2019·河北中考)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如表)求乙组两次都拿到8元球的概率.又拿先拿解:(1)∵P (一次拿到8元球)=12=24,∴8元球的个数为2.∴众数是8;(2)①相同.理由:∵所剩的3个球价格是8,8,9, ∴中位数是8.又∵原来4个球价格是7,8,8,9,∴中位数是8.∴所剩的3个球价格的中位数与原来4个球价格的中位数相同; ②列表如下:又拿先拿 8 8 98 (8,8) (8,8) (8,9) 8 (8,8) (8,8) (8,9) 9 (9,8) (9,8) (9,9)由表可知,共有9种等可能的结果,其中乙组两次都拿到8元球的有4种,∴P (乙组两次都拿到8元球)=49.2.(2016·河北中考)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4. 如图2,正方形ABCD 顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B ……设游戏者从圈A 起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A 的概率P 1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A 的概率P 2,并指出她与嘉嘉落回到圈A 的可能性一样吗?解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A ,∴P 1=14;(2)列表如下:第1次第2次 1 2 3 41 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4)2),(3,1),(4,4)时,才可落回到圈A ,共有4种结果,∴P 2=416=14.又∵P 1=14,∴淇淇与嘉嘉落回到圈A 的可能性一样.3.(2015·河北中考)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是(B )A .12B .13C .15D .16,中考考点清单)事件的分类1.确定事件与随机事件概念 概率 确定事件必然事件:必然会发生的事件 1 不可能事件:不可能发生的事件随机事件可能发生也可能不发生的事件0~1之间概率及计算2.概率:用一个数刻画随机事件A 发生的可能性大小,这个数叫做事件A 的概率.3.随机事件概率的计算方法(1)一步完成:直接列举法,运用概率公式计算; (2)两步完成:①列表法,②画树状图法; (3)两步以上:画树状图法.【方法点拨】求概率的几种类型(1)数字类求概率的问题,可以用概率公式求解,即P (A )=mn,其中n 为所有事件发生的总次数,m 为事件A 发生的总次数.(2)摸球类概率的求法是用枚举法.枚举所有等可能出现的结果时,要做到不重不漏,在计算概率时,关键是确定所有等可能的结果数和某个事件可能出现的结果数,再用某个事件的可能出现的结果数除以所有可能出现的结果数. (3)几何图形中阴影部分的事件的概率求法是求出阴影部分面积占总面积的比值.(4)在重复试验计算概率的题中,第一次取出后放回,然后第二次再取出计算概率,做这类题时要注意两次取得的结果总数是一致的,如果不放回,那么第二次取出的结果会比第一次少一种取法.(5)与代数、几何知识相结合的概率问题,其本质还是求概率,只不过是需要应用代数和几何的方法确定某些限制条件的事件数.一般的方法是利用列表或树状图求出所有等可能的情形,再求出满足所涉及知识的情形,进一步求概率.频率与概率之间的关系4.频率:做n 次重复实验,如果事件A 发生了m 次,那么数m 叫做事件A 发生的频数,比值mn叫做事件A 发生的频率.5.用频率估计概率:事件A 的频率稳定到它的概率,或者说概率是频率的稳定值.在实际中,我们常用比较稳定时的频率估计事件的概率,而实验次数越多,得到概率较精确估计值的可能性越大.,典题精讲精练)事件的判断【例1】(2019·武汉中考)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是(B )A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球【解析】从袋子中一次摸出3个球共3种可能,即3个黑球,2黑1白,2白1黑,因此A ,D 选项事件均属于随机事件;C 选项事件属于必然事件;B 选项事件属于不可能事件.1.(2019·沧州二模)下列成语中描述的事件必然发生的是(B ) A .水中捞月 B .瓮中捉鳖 C .守株待兔 D .拔苗助长2.(2019·沧州二模)某超市在“五一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张在该超市买商品获得了三次抽奖机会,则小张(D )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 概率的计算【例2】(2019·青岛中考)小明和小刚一起做游戏,游戏规则如下,将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【解析】画树状图或列表得出所有等可能的结果,从中找到符合条件的结果数,利用概率公式分别计算两人获胜的概率,比较即可得到游戏公平与否.【解答】解:不公平.理由:由题意,列表如下:1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4)由表可知,共有16种等可能的结果,其中两次数字差的绝对值小于2的有10种,∴P (小明获胜)=1016=58,P (小刚获胜)=1-58=38. ∵58≠38,∴这个游戏不公平.3.(2019·石家庄新华一模)某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从一个入口进入该公园的概率是(B )A .12B .14C .16D .116 4.(2019·秦皇岛海港二模)如图是两个圆形转盘A ,B ,同时旋转两个转盘,两个转盘的指针都落在“1”区域的概率是(D )A .12B .14C .16D .18统计与概率结合【例3】(2019·黄冈中考)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类).现将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1 200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”.用树状图或列表法求出恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字母A ,B ,C ,D ,表示)【解析】(1)根据选择“棋类”的学生人数及其所占的百分比,可求出随机抽取调查的学生人数;(2)根据调查的学生人数和选择“书画”的学生人数所占的百分比,求出对应的学生人数,再结合选择“器乐”和“棋类”的学生人数,求出选择“戏曲”的学生人数,补全条形统计图即可;(3)根据调查的学生人数和选择“戏曲”的学生人数,求出所占的百分比,乘该校学生总人数即可;(4)可用列表法列举出所有等可能的结果,确定恰好抽到“器乐”和“戏曲”的结果数,利用概率公式求解即可.【解答】解:(1)30÷15%=200(名). 答:本次随机调查了200名学生;(2)“书画”人数为200×25%=50(名).“戏曲”人数为200-(50+80+30)=40(名). 补全条形统计图如图所示;(3)40200×1 200=240(名).答:估计全校学生选择“戏曲”类的人数为240名; (4 第一类第二类 A B C DA (B ,A ) (C ,A ) (D ,A ) B (A ,B ) (C ,B ) (D ,B ) C (A ,C ) (B ,C ) (D ,C ) D (A ,D ) (B ,D ) (C ,D )∴P (恰好抽到“器乐”和“戏曲”类)=212=16.5.(2019·抚顺中考)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图:学生选修课程统计表课程 人数 所占百分比 声乐 14 b% 舞蹈 8 16% 书法 16 32% 摄影 a 24%合计 m 100%根据以上信息,解答下列问题: (1)m = ,b = ; (2)求出a 的值并补全条形统计图;(3)该校有1 500名学生,请你估计选修“声乐”课程的学生有多少名?(4)七年一班和七年二班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.解:(1)50;28;(2)a =50-14-8-16=12. 补全条形统计图如图所示; (3)1 500×28%=420(名).答:估计选修“声乐”课程的学生有420名;(41,A 2,七年二班的学生分别为B 1,B 2,列表如下:A 1 A 2B 1 B 2 A 1 (A 2,A 1) (B 1,A 1) (B 2,A 1) A 2 (A 1,A 2) (B 1,A 2) (B 2,A 2) B 1 (A 1,B 1) (A 2,B 1) (B 2,B 1) B 2 (A 1,B 2) (A 2,B 2) (B 1,B 2)由表可知,共有∴P (抽取的2人恰好来自同一个班级)=412=13.请完成限时训练A 本P A 60~A 61,选做B 本P B 36本章复习完毕后,请完限时训练A 本“阶段测评(八)”。
2015年河北省中考数学试卷-答案

河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A .【考点】有理数的运算2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A .【考点】相反数、倒数、立方根及无理数的概念3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C .【考点】图形的折叠4.【答案】D 【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D . 【考点】幂的运算5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B .【考点】几何体的三视图6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△ACF 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B .【考点】三角形的外心7.【答案】C2 1.414 2.828=⨯=C .【考点】数轴与无理数的估算8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥AB EF ,∴∥CH EF ,∴ 50∠=∠=︒HCA CAB ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。
∴140∠=︒ACD ,故选C .【考点】平行线的性质9.【答案】D【解析】由题意知,R 位于岛P 南偏东30︒即PR 与南北方向的夹角为30︒;R 位于岛Q 南偏西45︒方向,即QR 与南北方向的夹角为45︒,故选D .【考点】方位角10.【答案】C 【解析】设=k y x,当2=x 时,20=y ,∴40=k ,∴双曲线图象过点()1,40,故选C . 【考点】反比例函数的图象11.【答案】D【解析】∵要消去x ,可将52⨯-⨯①②或可将(5)2⨯-+⨯①②;要消去y ,可以35⨯+⨯①②,故选D .【考点】在加减消元法解二元一次方程组12.【答案】B【解析】∵关于x 的方程20++=x x a 不存在实数根,∴2240-<a ,解得1>a ,故选B .【考点】一元二次方程的根的判别式13.【答案】B【解析】将正方体骰子抛掷一次,向上一面的点数有1,2,3,4,5,6,六种可能,其中点数与3相差2的是1和5两种,所以点数与3相差2的概率是2163=,故选B . 【考点】概率的计算14.【答案】D 【解析】直线233=--y x 与直线=y a 的交点坐标为39(,)22--a a ,∵交点在第四象限,∴39022-->a 且0<a ,解得3<-a ,∴a 可能在104-<<-a ,故选D .【考点】一次函数图象的交点坐标与不等式15.【答案】B【解析】点,M N 分别为,PA PB 的中点,点A ,点B 是定点,∴12=MN AB ,即MN 的长不变;随着点P 的移动,PA PB 的长也发生变化,∴△PAB 的周长发生变化;直线l 和MN 之间的距离保持不变,∴△PMN 的面积不变;直线,MN AB 之间的距离也不变;∠APB 的大小随着点P 的运动会变化,故选B .【考点】动点及角形中位线的有关计算16.【答案】A【解析】甲、乙两矩形的面积分别为2和5,要拼成面积相等的正方形,则拼成的两正方形的边长分别为甲沿虚线剪开后是四个全等的等腰直角三角形,,乙沿虚线剪开后得到四个全等的直角三角形和一个边长为1的正方形,其中直角三角形的两直角边分别为1和2A .【考点】矩形的性质及图形的拼接第Ⅱ卷二、填空题17.【答案】1±【解析】∵020151=,∴1=a ,∴1=±a .【考点】零指数幂和绝对值18.【答案】32【解析】∵20=≠a b ,∴()()()2222322+-+++=+==--a b a b a b a b b b a ab a a b a b . 【考点】分式的化简求值19.【答案】24【解析】∵正三角形、正方形、正五边形、正六边形的每个内角分别为60,90,108,120︒︒︒︒,∴112∠=︒,218∠=︒,330∠=︒,∴31 2 30121824∠+∠-∠=︒+︒-︒=︒.【考点】正多边形的内角20.【答案】9【解析】∵9∠=︒BOC ,∴画一条线段后外角129∠=⨯︒A AB ,画两条线段后外角12 3 9∠=⨯︒CA A ,画三条线段后外角3249∠=⨯︒A A B ,……,画n 条线段后外角的度数为()19+⨯︒n ,当()1990+⨯︒=︒n ,9=n ,即得到第9条线段后,就不能画出符合条件的线段了.【考点】三角形的外角及规律探索三、解答题21.【答案】解:(1)设所捂的二次三项式为A ,则2513 =-++x x A x221=-+x x .(2)若1=x ,则()21=-A x)211=-6=.【考点】整式的运算及化简求值22.【答案】(1)CD平行(2)证明:连接BD .在 △ABD 和 △CDB 中,∵ =AB CD , =AD CB , =BD DB ,∴ △≌△ABD CDB ,∴12∠=∠,34∠=∠,∴∥AB CD ,∥AD CB ,∴四边形 ABCD 是平行四边形.(3)平行四边形的对边相等.【考点】平行四边形判定方法的验证23.【答案】解:(1)4210=+大y x .(2)①当6=大x 时, 46210234=⨯+=y ,∴3234=+小y x .②依题意得3234260+≤小x ,解得283≤小x , ∵小x 为自然数, ∴小x 最大为8,即最多能放入8个小球.【考点】一次函数及一元一次不等式的实际应用24.【答案】解:(1)如图所示.(2)()3.5435133.++==B x , ()()()22223.5 3.54 3.53 3.5136-+-+-==Bs . ∵1436150<,∴B 产品的单价波动小. (3)第四次调价后, 对于A 产品,这四次单价的中位数为6 6.52524+=; 对于B 产品,∵0>m ,∴第四次单价大于3. 又∵3.54132521224+⨯-=>, ∴第四次单价小于4.∴()31 3.5252124++⨯-=m %, ∴25=m .25.【答案】解:(1)把 2=x , 1=y 代人()21=--+y x h 得2=h ,∴抛物线l 的解析式为()221=--+y x (或2+43=--y x x ),对称轴2=x ,顶点()2,1B .(2)点C 的横坐标为0,则2+1=-c y h ,当0=h 时,c y 有最大值为1.此时,l 为1=-+y x ,对称轴为y 轴,当0≥x 时,y 随着x 的增大而减小,∴当120>≥x x 时,12<y y .(3)把OA 分1:4两部分的点为()1,0-或()4,0-. 把 1=-x , 0=y 代人()21=--+y x h 得 0=h 或 2=-h . 当2=-h 时,OA 被分为三部分,不合题意,舍去. 同理,把4=-x ,0=y 代人()2 1=--+y x h 得5=-h 或 3()=-舍去h .∴h 的值为0或5-.【考点】二次函数的图象与性质26.【答案】发现 (1)在当OQ 过点B 时,在△Rt OAB 中,=AO AB ,得45∠=∠=︒COQ ABO ,∴604515=︒-︒=︒a .(2)如图1,连接AP ,有+≥OA AP OP ,当OP 过点A ,即60=a 时等号成立,∴0211≥-=-=AP P OA ,当60=a 时,,P A 间的距离最小, PA 的最小值为1.(3)如图1,设半圆K 与PC 交点为R ,连接RK ,过点P 作⊥PH AD 于点H ,过点R 作⊥RE KQ 于点E 。
中考数学(河北专版)总复习考点整合 能力突破课件:滚动小专题(八) (共17张PPT)
(3)最后,又来了第7号学生,也按同样记分规定投了5次.这
时7名学生积分的众数仍是前6名学生积分的众数,求这个
众数,以及第7号学生的积分.
解:∵前6名学生中3出现的次数最多,∴这个众数是3.
∵7名学生积分的众数是3,∴7号命中3次或没有命中. ∴7号学生的积分是3分或0分.
37°≈0.75)
【答案】 解:(1)x=(34+36+38+40)÷4=37(度). (2)垃圾总量:320÷50%=640(千克),
A处垃圾量:(1-50%-37.5%)×640=80(千克).
(3)AC=100米,∠C=37°,∵∠A=90°,
AB ∴tan 37°= , AC
∴AB=AC· tan 37°≈100×0.75=75(米), ∵运送1千克垃圾每米的费用为0.005元,
典题精练2
(2017•武汉 ) 某公司共有 A, B, C 三个部门,根据
每个部门的员工人数和相应每人所创的年利润绘制成
如下的统计表和扇形统计图.
各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的 年利润/万元 10 8 5
A B C
5 b c
108° (1)①在扇形统计图中,C部门所对应的圆心角的度数为_____: ②在统计表中,b=________ ,c=________ ; 9 6
第六单元 统计与概率
滚动小专题(八)
统计综合题
统计在河北省中考中占较大的比重,是必考内容,统
计中最重要的就是数据分析和统计量的运用,一些统计
问题不光要用到相应的统计知识,往往还要用到相关的 代数知识,将这些知识结合起来,综合各种知识进行考 查.以解答题为主.此类问题解决起来需综合运用各种 知识,考查学生的综合能力,但题目难度适中.
2015年河北省中考数学试题及答案(K12教育文档)
(直打版)2015年河北省中考数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年河北省中考数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年河北省中考数学试题及答案(word版可编辑修改)的全部内容。
2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.6 2。
下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )4。
下列运算正确的是( )A 。
21211-=⎪⎭⎫ ⎝⎛- B 。
60000001067=⨯ C 。
()2222a a = D 。
523a a a =⋅5.图2中的三视图所对应的几何体是( )C D图1—2图1—3图1—1B A6。
如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F,下列三角形中,外心不是..点O 的是( )A.△ABE B 。
△ACF C 。
△ABD D 。
△ADE7。
在数轴上标注了四段范围,如图4,则表示8的点落在( )A.段① B 。
段 ② C.段③ D 。
段④8。
如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A.120° B 。
中考数学(河北专版)总复习考点整合 能力突破课件:第2节 事件的概率 (共31张PPT)
【寻考法】考查事件及事件概率的概念,可以直接考查定 义也可以通过具体事例的形式考查.考查学生
对事件的掌握程度,以选择题为主,占2-3分,
较简单.
【探解法】解决此类问题要区分事件的分类及定义,以及 对应事件的概率.区分什么是随机事件和必然
事件.除了必然发生的和不可能发生的事件都
是随机事件.
【点学法】此类问题要正确理解必然事件、不可能事件、
03
中考命题剖析
·题型一
事件和事件的概率的考查
·题型二
用频率估计概率(重点)
题型一 事件和事件的概率的考查 考法一 事件概率的概念 考题1 (2012• 河北 •6 , 2 分 ) 掷一枚质地均匀的硬币 10 次, 下列说法正确的是( B )
A.每2次必有1次正面向上
B.可能有5次正面向上 C.必有5次正面向上 D.不可能有10次正面向上
逐渐增加 到 一 个 常 数 附 近 , 这 个 数 就 是 事 件 的 发 生 的 _________ 概率 . ________
注意
频率是通过多次试验得到的数据,而概率是理论上事件
发生的可能性,试验的次数越多,一个事件发生的频率越接 近概率.因此用频率估计概率的前提是大量重复试验,试验 次数越多,得到较准确的估计值的可能性也越大.此种方法 可以用来求非等可能事件概率.
数不能大于4个,摸出的白球个数不能大于2个. A选项摸出的白球的个数是 3个,超过2个,是不可能事件 .
考法二 用列举法求简单事件的概率 (重点)
河北 · 23 , 9 分 ) 如图 (1) ,一枚质地均匀的正四面体 考题2 (2016· 骰子,它有四个面并分别标有数字1,2,3,4. 如图(2),正方形ABCD顶点处各有一个圈.跳圈游戏的规 则为:游戏者每掷一次骰子,骰子着地一面上的数字是 几,就沿正方形的边顺时针方向连续跳几个边长.
2015年中考数学概率知识点:概率的定位三
2015年中考数学概率知识点:概率的定位三(一)概率的定位
3.会制作扇形统计图,能用统计图直观、有效地描述数据。
第二学段要求学生认识这些图的意义。
但在第三学段要求学生会制作这些图,包括直方图。
那么在这里头绘画图我想怎么理解?用这个怎么定理?包括前面用计算器处理复杂的数据,怎么理解,就是说这个绘画图我觉得第一位,就是我要画一个,我要什么目的,我要反应什么信息,根据这个信息,我来选择画什么样的图,比如说我要反应他的百分之比是多少?比如说这个08年奥运竞赛上,如果你想反应中国第一,美国第二,多少那可能是一个条形图,你要反应一下中国金牌整个金牌,那可能扇形图,所以这个绘制图的话,第一位的是,在绘画图时,根据目的选择合适的图是最重要的。
关于图表制作方面,对于图的处理方面,希望老师清楚,第一,不同的统计图表,可以帮助我们整理和描述数据;第二,初中和小学的差异是什么?小学阶段要让学生会看懂、识别。
初中阶段就要求学生会制作图,如制作扇形图和直方图;第三,为何要画这个图,目的是什么?制作图表的目的不是仅仅会画这个图,而是希望把这些数据中的某些信息凸现出来,所以不仅要会画扇形图和直方图,还要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点跟踪突破18 概率的应用
一、选择题(每小题7分,共35分)
1.(2013·宜昌)2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( A )
A .科比罚球投篮2次,一定全部命中
B .科比罚球投篮2次,不一定全部命中
C .科比罚球投篮1次,命中的可能性较大
D .科比罚球投篮1次,不命中的可能性较小
2.(2014·黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九
(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是( A )
A .23
B .56
C .16
D .12
3.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )
A .110
B .19
C .16
D .15
4.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )
A .38
B .12
C .58
D .34
5.(2014·苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个
转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( D )
A .14
B .13
C .12
D .23
二、填空题(每小题7分,共21分)
6.(2014·长沙)100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,
则抽到不合格产品的概率为__120
__. 7.(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人
同坐3号车的概率为__19
__. 8.(2013·株洲)已知a ,b 可以取-2,-1,1,2中任意一个值(a ≠b),则直线y =ax +b
的图象不经过第四象限的概率是__16
__. 三、解答题(共44分)
9.(10分)(2013·常州)一个不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中随机摸出一个球是白球的概率是多少?
(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.
(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为23
(2)根据题意画出树状图如下:
一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以P (两次摸出的
球都是白球)=26=13
10.(10分)(2013·南京)(1)一个不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.求下列事件的概率:
①搅匀后从中任意摸出1个球,恰好是红球;
②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球.
(2)某次考试有6道选择题,每道题所给出的4个选项中,恰有一项是正确的,如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部选择正确的概率是( B )
A .14
B .(14
)6 C .1-(14)6 D .1-(34
)6 (1)①搅匀后从中任意摸出1个球,所有可能出现的结果有:红、黄、蓝、白,共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A )的结果只有
1种,所以P (A )=14
②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,所有可能出现的结果有:(红,红)、(红,黄)、(红,蓝)、(红,白)、(黄,红)、(黄,黄)、(黄,蓝)、(黄,白)、(蓝,红)、(蓝,黄)、(蓝,蓝)、(蓝,白)、(白,红)、(白,黄)、(白,蓝)、(白,白),共有16种,它们出现的可能性相同.所有的结果中,
满足“两次都是红球”(记为事件B )的结果只有1种,所以P (B )=116
11.(12分)(2013·毕节)甲、乙玩转盘游戏时,把质地相同的两个转盘A ,B 平均分成2份和3份,并在每一份内标有数字.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.
(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.
(1)画树状图得:
∵共有6种等可能的结果,两数之和为偶数的有2种情况.∴甲获胜的
概率为26=13 (2)不公平.理由:∵数字之和为奇数的有4种情况,∴P (乙获胜)=46=23
,∴P (甲)≠P (乙),∴这个游戏规则对甲、乙双方不公平
12.(12分)(2014·安徽)如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1.
(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?
(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.
(1)小明可选择的情况有3种,每种发生的可能性相等,恰好选中绳子AA 1的情况为1
种,所以小明恰好选中绳子AA 1的概率P =13
(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表示如下,每种发生的可能性相等. AC ,A 1B 1 AC ,B 1C 1 AC
其中左、右结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接
成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1.故这三根绳子连接成为一根长绳的概率
P =69=23
2015年河北名师预测
1.在四边形ABCD 中,(1)AB ∥CD ,(2)AD ∥BC ,(3)AB =CD ,(4)AD =BC ,在这四
个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是__23
__.
2.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固
定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个
扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为__37
__.。