平行四边形复习一对一讲义
平行四边形性质的复习课件

题目
在平行四边形ABCD中,若∠A 和∠B的度数之和为180°,则 ∠C的度数为 ()。
答案与解析
答案为“180°”。因为平行四 边形的对角相等,即∠A + ∠B = 180°,所以∠A + ∠C = 180°
,从而得出∠C = 180°。
解答题
题目
已知平行四边形ABCD中,AE是BC边上的高,若AE = 3cm, AB = 4cm, AC = 5cm, 求 BC的长度。
对角线相等且互相垂直平分
正方形的对角线不仅长度相等,而且 互相垂直平分,这是正方形的一个重 要性质。
是特殊的矩形和菱形
正方形既是特殊的矩形也是特殊的菱 形,因为它同时具备两者的所有性质 。
CHAPTER 04
平行四边形在实际生活中的 应用
建筑学中的应用
平行四边形在建筑设计中被广泛应用,如斜拉桥的钢索结构、吊车的悬挂系统等。
感谢您的观看
详细描述
在平行四边形中,相对的两边长度相等。这意味着如果你测量平行四边形的任意 两边,它们的长度将是相同的。
对角线互相平分
总结词
平行四边形的对角线互相平分。
详细描述
在平行四边形中,对角线会相交于一点,并且被这条对角线平分的两个角是相等的。此外,对角线还将平行四边 形分成两个相等的三角形。
CHAPTER 02
平行四边形的对边相等性质在 服装设计和图案设计中也有应 用,如对称和平衡等。
日常生活中的应用
平行四边形在日常生活中也随处可见 ,如门窗的设计、桌椅的摆放等。
平行四边形的对边相等性质在体育比 赛中也有应用,如跳水、体操等项目 的评分标准等。
平行四边形的对角线性质在包装和运 输中也有应用,如纸箱的折叠和固定 等。
八年级数学 平行四边形专题复习精品讲义(A级)

形 ABCD 的周长为 40.则平行四边形 ABCD 的面积为( )
A.24
B.36
C.40
D.48
【例 7】 在面积为 15 的平行四边形 ABCD 中,过点 A 作 AE 垂直于直线 BC 于点 E ,作 AF 垂直于直线 CD 于点 F ,若 AB 5 ,BC 6 ,则 CE CF 的值为( )
例题解析
【例 9】 平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______; 平行四边形的对角线______.
【例 10】 如 图 , 在 平 行 四 边 形 ABCD 中 , EF ∥ BC ,GH ∥ AB,EF 与 GH 相 交 于 点 O , 图 中 共 有 个平行四边形.
初中数学同步课程
《平行四边形的性质》.教师版.(A 级)
1 / 10
2. 平行四边形的周长: C 2(a b)
3. 平行四边形的面积: S 1 BC AE 1 CD AF
2
2
例题解析
【例 1】 两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形 ABCD 记作 __________.
【例 13】
平行四边形 ABCD 中,对角线 AC 和 BD 交于 O,若 AC=8,BD=6,则边 AB
长的取值范围是
.
【例 14】 如图,□ ABCD 中,ABO 和 BOC 的周长分别为 10 和 14,且平行四边形的周长为 22,则对
角线的长度之和为
, AB 和 BC 的长分别为ቤተ መጻሕፍቲ ባይዱ
.
【例 15】 如图,在平行四边形 ABCD 中,不一定成立的是( )
()
平行四边形章节复习课件

A8
B 10
C 12
D 14
2、 如图,▱ABCD的周长为20 cm,AE平分
∠BAD,若CE=2 cm,则AB的长度是( D )
A 10 cm B 8 cm C 6 cm D 4 cm
3、在△ABC中,AB=AC=6cm,D是BC上 一点,且DE∥AC,交AB于E,DF∥AB,交AC
等于( D )
D
C
∟
A EB
A 60° B 90° C 120° D 150°
综合应用
如图, ▱ABCD的对角AC,BD 交于点O,过点B作BP//AC,过点C作 CP//BD,BP与CP相交于点P,试判断四边形 BPCO的形状,并说明理.
A
D
O
B
C
P
追问1:若连接OP得四边形ABPO,它是 什么四边形?
谢谢
A
D
O
B
C
P
追问2:若将▱ABCD改为矩形ABCD,其他 条件不变,得到的四边形BPCO是什么四边 形?
A
D
O
B
C
P
追问3:若得到的四边形BPCO是矩形,应 将▱ABCD改为什么四边形?
A
D
O
B
C
P
追问4:能否得到正方形BPCO呢?此时四 边形ABCD又是什么四边形?
A
D
O
B
C
P
本节课你收获了什么?
正方形
对边平行 四个角 且四边相等 都是直角
互相垂直平分且相等,每 中心对称图形 一条对角线平分一组对角 轴对称图形
几种特殊四边形的常用判定方法:
平行 四边形
矩形
菱形
平行四边形复习讲义.doc

平行四边形一、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
二、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
三、平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行旦相等的四边形是平行四边形。
题型一、平行四边形的角例题1、在平行四边形ABCD中,NB=60° ,那么下列各式中,不能成立的是()A. ND二60°B. ZA=120°C. ZC+ZD=180°D. ZC+ZA=180°【变式一】若一平行四边形的一个角比它相邻的角大27° ,则这个平行四边形最大的内角是 O【变式二】在口ABCD 中,若ZA-ZB-700 , ZA= , ND= 。
题型二、平行四边形的边及对角线例题1、如图,在EIBCD中,AD=3cm, AB=2cm,则口ABCD 的周长为(【变式一】己知平行四边形ABCD的周长为36cm,过D作AB, BC边上的高DE、DF,求平行四边形ABCD的面积.例题2、oABCD的周长是40cm,对角线AC与BD相交于点0, AA0D的周长比AD0C的周长大4cm,则 CD= cm, BC= cm。
【变式】平行四边形的边氏为5,则它的对角线氏可能是()A. 4 和 6B. 2 和 12C. 4 和 8D. 2 和 3例题3、如图,oABCD的对角线相交于点0,过点0任引直线交AD于E,交BC于点F,则 0E ________ 0F (填">” “二”或“V"),说明理由。
[题型拓展】角分线+平行线构造等腰三角形例题4、如图,在口ABCD中,BE平分ZABC,求:(1) uABCD的周长;(2)线段DE的长。
与边AD相交于点E, AB=6cm, BC=10cmo题型三、平行四边形的性质与判定例题1、如图,已知,口ABCD中,AE=CF, M、N分别是DE、BF的中点,求证:四边形MFNE 是平行四边形.例题2、如图所示,MECF的对角线相交于点0, DB经过点0,分别与AE, CF交于B, D.求证:四边形ABCD是平行四边形.【变式】如图,在四边形ABCD中,AB二CD, BF二DE, AE_LBD, CF±BD,垂足分别为E, F.(1)求证:AABE^ACDF;(2)若AC与BD交于点0,求证:A0二CO.[课堂练习]1.己知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有( )A. 1个B. 2个C. 3个D. 4个U 2. ABCD 中,AC 、 BD 相交于点0,则图中共有全等三角形( )A. 1对B. 2对C. 3对D. 4对3、(1)在平行四边形ABCD中,已知NA二40° ,求其它各角的度数;变式:变ZA=40°为匕A+/C=100°(2)在平行四边形ABCD中,已知AB=8,周长为24,求其余三边的长.4.妇图:C7ABCD的对角线AC、BD相交于点0,直线EF过点。
特殊的平行四边形期末全章复习讲义

《特殊平行四边形》全章复习与巩固(一)【知识网络】【典型例题】类型一、平行四边形例1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.类型二、菱形例2、如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.类型三、矩形例3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.例4、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.举一反三:【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若cm.AB = 3cm,BC = 5cm,则重叠部分△DEF的面积是__________2类型四、正方形例5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .类型五、综合应用例6、如图所示,E 、F 、G 、H 分别是四边形ABCD 各边中点,连接EF 、FG 、GH 、HE ,则四边形EFGH 为________形.(1)当四边形满足________条件时,四边形EFGH 是菱形. (2)当四边形满足________条件时,四边形EFGH 是矩形. (3)当四边形满足________条件时,四边形EFGH 是正方形.举一反三:【变式】已知,在四边形ABCD 中,,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.90A B C ∠=∠=∠=︒《特殊平行四边形》全章复习与巩固【巩固练习】一.选择题 1. 如图,□ABCD 中,AB=3cm ,AD=4cm ,DE 平分∠ADC 交BC 边于点E ,则BE 的长等于( ). A.2cm B.1cm C.1.5cm D.3cm2.矩形、菱形、正方形都具有的性质是( ).A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直3.如图所示,将一张矩形纸ABCD 沿着GF 折叠(F 在BC 边上,不与B ,C 重合),使得C 点落在矩形ABCD 的内部点E 处,FH 平分∠BFE ,则∠GFH 的度数α满足( ).A .90°<α<180°B .α=90°C .0°<α<90°D .α随着折痕位置的变化而变化4.(2015•武进区一模)如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .32B .75D 5.正方形具备而菱形不具备的性质是( )A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.如图是一张矩形纸片ABCD ,AD=10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE=6cm ,则CD=( ).A .4cm B.6cm C.8cm D.10cm7. 矩形对角线相交成钝角120°,短边长为2.8cm ,则对角线的长为( ).A .2.8cmB .1.4cmC .5.6cmD .11.2cm8. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且OE =a ,则菱形ABCD 的周长为( ).A .B .C .D .二.填空题9.如图,若口ABCD 与口EBCF 关于B ,C 所在直线对称,∠ABE =90°,则∠F =______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为______.12.如图,矩形ABCD 的两条对角线交于点O ,过点O 作AC 的垂线EF ,分别交AD ,BC 于点E ,F ,连接CE ,已知△CDE 的周长为24 cm ,则矩形ABCD 的周长是 cm.16a 12a 8a 4a13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.16.(2015春•昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.三.解答题17.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.18.(2015春•无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE ∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.《特殊平行四边形》全章复习与巩固(二)【典型例题】类型一、平行四边形例1、已知,△ABC中,∠BAC=45°,以AB为腰以点B为直角顶点在△ABC外部作等腰直角三角形ABD,以AC为斜边在△ABC外部作等腰直角三角形ACE,连结BE、DC,两条线段相交于点F,试猜想∠EFC的度数并说明理由.类型二、菱形例2、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.例3、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.类型三、矩形例4、(2015春•青山区期中)如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC=,AF=.举一反三:【变式】如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.例5、在Rt△ABC中,∠ACB=90°,BC=4.过点A作AE⊥AB且AB=AE,过点E分别作EF⊥AC,ED⊥BC,分别交AC和BC的延长线与点F,D.若FC=5,求四边形ABDE的周长.举一反三:【变式】(2015•杭州模拟)如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.类型四、正方形例6、(2016•南京二模)如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.举一反三:【变式】如图(1),正方形ABCD和正方形CEFG有一公共顶点C,且B、C、E在一直线上,连接BG、DE.(1)请你猜测BG、DE的位置关系和数量关系?并说明理由.(2)若正方形CEFG绕C点向顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.《特殊平行四边形》全章复习与巩固【巩固练习】一.选择题1. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形面积的( ).A. B. C. D.2. 顺次连结任意四边形四边中点所得的四边形一定是( ).A.平行四边形B.矩形C.菱形D.正方形3.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ).A .10cm 2B .20cm 2C .40cm 2D .80cm 24. 如图,在矩形ABCD 中,点P 是BC 边上的动点,点R 是CD 边上的定点。
平行四边形复习课件2022——2023学年人教版八年级下册数学

3.(2021•云南20题8分)如图,四边形ABCD是矩形,E,F分别 是线段AD,BC上的点,O是EF与BD的交点.若将△BED沿 直线BD折叠,则点E与点F重合. (1)求证:四边形BEDF是菱形;
(2)若ED=2AE,AB•AD=3 3 ,
求EF•BD的值.
(1)证明:由折叠的性质可知△BED ≌△BFD, ∴BE=BF, DE=DF, ∠EBD=∠FBD. ∵四边形ABCD是矩形, ∴AD∥BC,∴∠EDB=∠FBD, ∴∠EBD=∠EDB,∴BE=DE. ∵BE=BF,DE=DF, ∴BE=BF=DE=DF, ∴四边形BEDF是菱形.
(2)任意平行四边形的中点四边形是什么形状?为什么?
(3)任意矩形、菱形和正方形的中点四边形是什么形状?为 什么?
走进中考
1.(2019•云南20题8分)如图,四边形ABCD中,对角线AC,BD相交于点O, AO=OC,BO=OD,且∠AOB=2∠OAD. (1)求证:四边形ABCD是矩形; (2)若∠AOB∶∠ODC=4∶3,求
两条平行线中,一条直线
D H C b 上任意一点到另一条直线的距
离叫做两条平行线之间的距离.
a 平行线之间的距离处处相等。
2.三角形的中位线定理:
A
D
E
B
C
三角形的中位线平行于三角形的第三边,并且等于 第三边的一半.
3.直角三角形斜边上的中线:
A
O
B
C
直角三角形斜边上的中线等于斜边的一半.
五、中点四边形(拓展)
∠ADO的度数.
(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又 ∵∠AOB = 2∠OAD , ∠AOB = ∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC = AO + OC = 2AO , BD = BO + OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
平行四边形总复习讲义
平行四边形【知识梳理】平行四边形是由三角形绕其一边的中点旋转180°而成的中心对称图形。
(1)定义:两组对边分别平行的四边形是平行四边形。平行四边形是中心对称图形,对角线的交点是它的对称中心。记作:□ABCD,读作平行四边形ABCD。如图:(2)平行四边形的性质:(证明)①平行四边形的对边;②平行四边形的对边;③平行四边形的对角;④平行四边形的对角
题型一、填空题:【例题精讲】
1、如图1,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于.
2、如图2,过平行四边形ABCD的顶点A分别引高AE、AF,如果AE=3.5,AF=2.8,∠EAF=30°,则AB=,AD=.
3、如图3,平行四边形ABCD的周长是36,且AB:BC=5:4,对角线AC、BD相交于点O,且BD⊥AD,则BD=,AC=.
4、已知平行四边形的面积为4,O为两条对角线的交点,那么△AOB的面积为. 5、在平面直角坐标系内,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D坐标为.
6、如图6,在周长为20cm的平行四边形ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为.7、如图7,平行四边形ABCD中,∠A=70°,将平行四边形ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠BNE=.
8、如图8,□ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=.
9、如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.【课堂练习】1、如图,?ABCD的对角线AC、BD相交于点O,下列结论正确的是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册章末复习---平行四边形 一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。 三、本章知识结构图
. 1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。
2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。 3.特殊的梯形包括 梯形和 梯形。 4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。 四、复习过程 (一)知识要点1:平行四边形的性质与判定
1.平行四边形的性质: (1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。 2、平行四边形的判定:
\ (1)判定1:两组对边分别 的四边形是平行四边形。(定义)
(2)判定2:两组对边分别 的四边形是平行四边形。 (3)判定3:一组对边 且 的四边形是平行四边形。 (4)判定4:两组对角分别 的四边形是平行四边形。 (5)判定5:对角线互相 的四边形是平行四边形。 【基础练习】 1.已知□ABCD中,∠B=70°,则∠A=____,∠C=____,∠D=____. 2.已知O是ABCD的对角线的交点,AC=38 mm,BD=24 mm,AD=14 mm,那么△BOC的周长等于__ __. 。 3.如图1,ABCD中,对角线AC和BD交于点O,若AC=8,BD=6,则边AB长的取值范围是( ).
<AB<7 <AB<14 <AB<8 <AB<4 4.不能判定四边形ABCD为平行四边形的题设是( )
=CD,AD=BC =CD,AD∥BC ∥CD,AD∥BC 5.在ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,ABCD的周长为40,则ABCD的面积是 ( ) A、36 B、48 C、 40 D、24
【典型例题】 · 例1、若平行四边形ABCD的周长是20cm,△AOD的周长比△ABO的周长大6cm.求AB,AD的长.
FEDCB
A
O A B ' D O A D DCA
BE
F
M
N
B E 。 C A D
】 例2、 如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G。(1)求证:AF=GB; (2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
!
【课堂练习】: 1、如图,在△ABC中,AB=AC,点D在BC上,DE∥AC,DF∥AB, (1)求证:FD=FC (2)若AC=6cm,试求四边形AEDF的周长。
、
2、已知:E、F是平行四边形ABCD对角线AC上的两点,且AE=CF,(1)试判断BE、CF的关系;(2)若E、F是平行四边形ABCD对角线AC延长线上的两点,上述结论还成立吗说明理由
< 3、如图,四边形ABCD为平行四边形,M,N分别从D到从B到C运动,速度相同,E,F分别从A到B,从C到D运动,速度相同,它们之间用绳子连紧。(1)没有出发时,这两条绳子有何关系 (2)若同时出发,这两条绳子还有(1)中的结论吗为什么
… (二)知识要点2:特殊平行四边形的性质与判定 1.矩形: (1)性质:具有平行四边形的所有性质。另外具有:
FEDCBA A B C D
¥
四个角都是 ,对角线互相平分而且 ,也是 图形。 (2)判定:
` 从角出发:有 个角是直角的平行四边形或有 个角是直角的四边形。
从对角线出发:对角线 的平行四边形或对角线 且互相 的四边形。 2.菱形:
(1)性质:具有平行四边形的所有性质。另外具有: 四条边都 ,对角线互相 且 每一组对角,也是 图形。 (2)判定: 从边出发:一组 边相等的平行四边形或有 条边相等的四边形。 从对角线出发:对角线互相 的平行四边形或对角线互相 且 的四边形。 ; 3.正方形:
(1)性质:具有平行四边形、矩形、菱形的所有性质 (2)判定方法步骤: 矩形 四边形 平行四边形 正方形 菱形 【基础练习】 1、如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=120,AC=12cm,则AB的长__ __ } 2、菱形的周长为100 cm,一条对角线长为14 cm,它的面积是_____.
3、若菱形的周长为16 cm,一个内角为60°,则菱形的面积为______cm2。 4、两直角边分别为12和16的直角三角形,斜边上的中线的长是 。 5、下列条件中,能判定四边形是菱形的是( ). A.两组对边分别相等 B.两条对角线互相平分且相等 C.两条对角线相等且互相垂直 D.两条对角线互相垂直平分 6、在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,增加一个条件 可以判定四边形是矩形;增加一个条件 可以判定四边形是菱形。 7、四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是( ). 】 =OC,OB=OD =BO=CO=DO,AC⊥BD
=OC,OB=OD,AC⊥BD =OC=OB=OD 8、如图,E是正方形ABCD内一点,如果△ABE为等边三角形,则∠DCE= °.
【典型例题】 例3:如图,BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,AE⊥BE,AD⊥BD,E,D为垂足.求证:四边形AEBD是矩形.
*
证明 证明 证明 O A D
B /
! B
D C P E
A 例4:正方形ABCD中,点E、F为对角线BD上两点,DE=BF。试解答: (1)四边形AECF是什么四边形 为什么 (2)若EF=4cm,DE=BF=2cm,求四边形AECF的周长。
~
( 例5:如图,点E、F在正方形ABCD的边BC、CD上,BE=CF. AE与BF相等吗为什么 AE与BF是否垂直说明你的理由。
' 【课堂练习】 1、如图,矩形ABCD中(AD>2),以BE为折痕将△ABE向上翻折,点A正好落在DC的A′点,若AE=2,∠ABE=30°,则BC=_________. 2.如图2,菱形ABCD的边长为2,∠ABC=45°,则点D•的坐标为____.
1 题图 2题图
3、如右上图,正方形ABCD中,∠25DAF,AF交对角线BD于点E,那么∠BEC等于 . 4.在△ABC中,AD⊥BC于D,E、F分别是AB、AC的中点,连结DE、DF,当△ABC满足条件_________时,四边形AEDF是菱形(填写一个你认为恰当的条件即可).
` 5、如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,试说明四边形AFCE是菱形.
A
D
[ E
ABC
DOE
F
ACDBEF , 6、如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.试判断CE、BG的关系.
}
^ 练习题: … 1.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )
2.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC 边上的点E,使DE=5,这痕为PQ,则PQ的长为( )
3.在ΔABC中D、K分别是AB、AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD是 四边形,其周长等于 ^ 4.如图,在平行四边形ABCD中,AM⊥BC于M,AN⊥CD于N,∠MAN=45°,且AM+AN=20,则平行四边形ABCD的周长
是
5.如图先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB=4,BC=3,则图①中点B的坐标为_________,点C的坐标为________;图②中,点B的坐标为_________,点C的坐标为________.
G C B
E D A F 6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形. 已知AE=DE=2,求AB的长.
7.如图,ABCD是矩形,把矩形沿直线AC折叠,点B落在E处,连接DE,从E作EH⊥AC交AC于H. (1)判断四边形ACED是什么图形,并加以证明;(2)若AB=8,AD=6,求DE的长; " (3)四边形ACED中,比较AE+EC与AC+EH的大小并说明理由。
8.如图,在Rt△ABC中,∠C=90°,D、E分别是边AC、AB的中点,过点B作BF⊥DE,交线段DE的延长线于为点F,过点C作CG⊥AB,交BF于点G,AC=2BC. 求证:(1)四边形BCDF是正方形;(2)AB=2CG.
9.已知:如图,矩形ABCD,P为矩形外一点,PAPC.求证:PDPB. 10.已知:如图,E、F为△ABC的边AB、BC的中点,在AC上取G、H两点,使AG=GH=HC,连结EG、FH,并延长交于D点。 ( 求证:四边形ABCD是平行四边形。