江苏省高考(数列部分)
2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题。
每小题5分。
共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2。
4}。
B={2。
4。
6}.则A∪B={1.2。
4。
6}.考点: 并集及其运算.专题:集合.分析:由题意。
A.B两个集合的元素已经给出。
故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1。
2.4}。
B={2.4。
6}.∴A∪B={1.2.4.6}故答案为{1.2.4。
6}点评:本题考查并集运算。
属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本。
则应从高二年级抽取 15名学生.考点:分层抽样方法.专题: 概率与统计.分析:根据三个年级的人数比。
做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例。
得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例。
这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点: 复数代数形式的乘除运算;复数相等的充要条件.专题: 数系的扩充和复数.分析:由题意。
可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值。
从而得到所求的答案解答:解:由题.a。
b∈R.a+bi=所以a=5.b=3。
故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算。
2008年江苏省高考数学试卷及部分答案

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F )1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。
江苏省苏州市(新版)2024高考数学苏教版考试(提分卷)完整试卷

江苏省苏州市(新版)2024高考数学苏教版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,,,则()A.B.C.D.第(2)题函数的零点个数为()A.0B.1C.2D.3第(3)题某圆锥的侧面积为,其侧面展开图为一个半圆,则该圆锥的底面半径长为()A.2B.4C.D.第(4)题()A.B.C.D.第(5)题已知函数,则下列结论中正确的是()A.函数的最小正周期B .函数的图象关于点中心对称C .函数的图象关于直线对称D .函数在区间上单调递增第(6)题若复数,且z和在复平面内所对应的点分别为P,Q,O为坐标原点,则()A.B.C.D.第(7)题法布里-贝罗研究多光束干涉在薄膜理论中的应用时,用光波依次透过层薄膜,记光波的初始功率为,记为光波经过第层薄膜后的功率,假设在经过第层薄膜时光波的透过率,其中,2,3…,为使得,则的最大值为()A.31B.32C.63D.64第(8)题已知圆,则下列说法错误的是()A.点在圆外B.直线平分圆C .圆的周长为D.直线与圆相离二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列选项中正确的有()A.若两个具有线性相关关系的变量的相关性越强,则线性相关系数的绝对值越接近于1B.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高C.已知随机变量服从正态分布,则D.若数据的方差为8,则数据的方差为2第(2)题已知定义在上的函数,对任意有,其中;当时,,则()A.为上的单调递增函数B.为奇函数C.若函数为正比例函数,则函数在处取极小值D.若函数为正比例函数,则函数只有一个非负零点第(3)题已知数列满足,,记数列的前项中奇数项的和为,偶数项的和为,则下列结论正确的有()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在一次期末考试中某学校高三全部学生的数学成绩服从正态分布,若,且,则___________.第(2)题记为递增的等比数列的前n项和,若,,则______.第(3)题如图所示,把一个物体放在倾斜角为的斜面上,物体处于平衡状态,且受到三个力的作用,即重力,垂直斜面向上的弹力,沿着斜面向上的摩擦力.已知:,则的大小为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知集合(1)求;(2)求;(3)若,求a的取值范围.第(2)题已知函数.(1)讨论的单调性;(2)若存在两个极值点,,证明:.第(3)题抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过作的垂线交准线于点,交抛物线于两点.(Ⅰ)求证:直线与抛物线相切;(Ⅱ)若点满足,求此时点的坐标.第(4)题已知,对.(1)求的最小值;(2)求的取值范围.第(5)题已知函数.(1)若不等式恒成立,求实数的取值范围.(2)若,设函数在上的最大值为,求的最小值.。
2015年江苏省高考数学试卷及答案Word版(K12教育文档)

(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改)的全部内容。
2015年江苏省高考数学试卷一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______。
2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______。
4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________。
6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______.7.不等式224x x-<的解集为________。
8。
已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______。
9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。
10。
在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。
2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。
根据导数的定义,f'(x) = 6x^2 6x + 1。
将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。
因此,f'(1)的值为1,选项B正确。
2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。
直线的斜率为k,圆的斜率可以通过求导得到。
对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。
在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。
由于直线和圆在切点处斜率相同,所以k = 1/2。
因此,选项A正确。
3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。
将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。
将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。
因此,选项C正确。
4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。
江苏省苏州市(新版)2024高考数学苏教版考试(综合卷)完整试卷
江苏省苏州市(新版)2024高考数学苏教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则().A.B.C.2D.1第(2)题已知等差数列中,,,则等于()A.15B.30C.31D.64第(3)题已知为虚数单位,复数满足,则()A.B.C.D.第(4)题已知向量,,,若,则()A.B.C.D.第(5)题有一笔资金,如果存银行,那么收益预计为2万.该笔资金也可以做房产投资或商业投资,投资和市场密切相关,根据调研,发现市场的向上、平稳、下跌的概率分别为0.2、0.7、0.1.据此判断房产投资的收益和商业投资的收益的分布分别为,,则从数学的角度来看,该笔资金如何处理较好()A.存银行B.房产投资C.商业投资D.房产投资和商业投资均可第(6)题已知全集为U,集合M,N满足,则下列运算结果一定为U的是()A.B.C.D.第(7)题已知等差数列中,,前5项的和满足,则公差取值范围为()A.B.C.D.第(8)题在锐角中,角A,B,C所对的边分别为a,b,c.已知,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题关于直线与圆,下列说法正确的是()A.若直线l与圆C相切,则为定值B.若,则直线l被圆C截得的弦长为定值C.若,则直线l与圆C相离D.是直线l与圆C有公共点的充分不必要条件第(2)题已知函数,则下列结论正确的是()A.是周期函数B.是奇函数C.的图象关于直线对称D.在处取得最大值第(3)题已知a,b,c满足c<a<b,且ac<0,那么下列各式中一定成立的是()A.ac(a-c)>0B.c(b-a)<0C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的前项和为(),且满足,若对恒成立,则首项的取值范围是__________.第(2)题已知函数,函数有三个零点,则实数的取值范围为__________.第(3)题已知实数,函数在上单调递增,则实数的取值范围是_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题今年5月11日,国新办举行新闻发布会,介绍第七次全国人口普查主要数据结果,会上通报,全国人口共141178万人,与2010年的133972万人相比,增加了7206万人,增长5.38%,年平均增长率为0.53%.如图是我国历次人口普查全国人口(单位:亿人)及年均增长率.(1)由图中数据,计算从2000年到2010年十年间全国人口的年平均增长率(精确到0.01%);并根据历次人口普查数据指出全国人口数量的变化趋势;(2)假设从2020年起,每十年的年平均增长率是一个等差数列,公差为,试根据图中数据计算从2040年到2050年这十年间全国人口的增加量.(精确到万人)第(2)题已知椭圆的标准方程为,椭圆上的点到其两焦点的距离之和为.(1)求椭圆的标准方程;(2)若椭圆的上顶点,、为椭圆上不同于点的两点,且满足直线、的斜率之积为,证明:直线恒过定点,并求定点的坐标.第(3)题坐位体前屈是中小学体质健康测试项目,主要测试学生躯干、腰、髋等部位关节韧带和肌肉的伸展性、弹性及身体柔韧性,在对某高中1500名高三年级学生的坐位体前屈成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高三年级学生中男生有900人,且抽取的样本中男生的平均数和方差分别为13.2cm和13.36,女生的平均数和方差分别为15.2cm 和17.56.(1)求抽取的总样本的平均数;(2)试估计高三年级全体学生的坐位体前屈成绩的方差.参考公式:总体分为2层,分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:,,,,,.记总样本的平均数为,样本方差为,第(4)题已知函数,.(1)求函数y=f(x)图象的对称轴方程;(2)求函数h(x)=f(x)+g(x)的最小正周期和值域.第(5)题等差数列的首项,且满足,数列满足.(1)求数列的通项公式;(2)设数列的前项和是,求.。
2016年江苏省高考数学试题含答案(Word版)
2016年江苏省高考数学试题含答案(Word版)2016年江苏卷数学Ⅰ非选择题注意事项:1.本试卷共20道填空题,满分160分,考试时间120分钟。
考试结束后,请将试卷和答题卡一并交回。
2.请务必在试卷和答题卡上填写自己的姓名和准考证号,核对监考员粘贴的条形码信息。
3.作答必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,其他位置作答无效。
4.如需作图,须用2B铅笔绘制,线条、符号等需加黑、加粗。
一、填空题:1.已知集合A={-1,2,3,6},B={x|-2<x<3},则AB=________。
2.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是________。
3.在平面直角坐标系xOy中,双曲线(x^2)/(9)-(y^2)/(4)=1的焦距是________。
4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________。
5.函数y=3-2x-x^2的定义域是________。
6.如图是一个算法的流程图,则输出的a的值是________。
7.将一颗质地均匀的骰子先后抛掷2次,则出现向上的点数之和小于10的概率是________。
8.已知{an}是等差数列,Sn是其前n项和。
若a1+a2/2=-3,S5=10,则a9的值是________。
9.定义在区间[0,3π]上的函数y=sin^2x的图象与y=cosx的图象的交点个数是________。
10.如图,F是椭圆(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的右焦点,在平面直角坐标系xOy中,直线y=-x/2与椭圆交于B,FB的斜率是________。
参考公式:样本数据x1,x2,…,xn的方差s^2=(∑(xi-x)^2)/n,其中x=(∑xi)/n。
棱柱的体积公式:V=Sh,其中S是棱柱的底面积,h为高。
棱锥的体积公式:V=(1/3)Sh,其中S是棱锥的底面积,h为高。
2020江苏高考理科数学二轮专题强化:专题三第2讲 数列的求解与综合创新 Word版含解析
1.已知数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,则a 8=________. [解析] 数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,令m =1,则S n +1=S n +S 1=S n +5,即S n +1-S n =5,所以a n +1=5,所以a 8=5.[答案] 52.(2019·江苏省名校高三入学摸底卷)已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 1,a 3,a 4成等比数列,则S 3S 7-S 4的值为________.[解析] 法一:设等差数列{a n }的公差为d ,因为a 1,a 3,a 4成等比数列,所以a 23=a 1a 4,所以(a 1+2d )2=a 1(a 1+3d ),因为d ≠0,所以a 1=-4d ,所以S 3S 7-S 4=3a 1+3×22d7a 1+7×62d -⎝⎛⎭⎫4a 1+4×32d =3a 1+3d 3a 1+15d =-9d 3d=-3.法二:设等差数列{a n }的公差为d ,因为a 1,a 3,a 4成等比数列,所以a 23=a 1a 4,所以(a 1+2d )2=a 1(a 1+3d ),因为d ≠0,所以a 1=-4d ,所以S 3S 7-S 4=3a 23a 6=a 1+d a 1+5d =-3d d =-3.[答案] -33.(2019·泰州市高三模拟)设f (x )是R 上的奇函数,当x >0时,f (x )=2x +ln x4,记a n =f (n-5),则数列{a n }的前8项和为________.[解析] 数列{a n }的前8项和为a 1+a 2+…+a 8=f (-4)+f (-3)+…+f (3)=f (-4)+[f (-3)+f (3)]+[f (-2)+f (2)]+[f (-1)+f (1)]+f (0)=f (-4)=-f (4)=-(24+ln 1)=-16.[答案] -164.(2019·日照模拟改编)已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =________.[解析] 由S n =n 2-6n 可得,当n ≥2时,a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7. 当n =1时,S 1=-5=a 1,也满足上式, 所以a n =2n -7,n ∈N *.所以n ≤3时,a n <0;n ≥4时,a n >0,所以T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n ≥4.[答案] ⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n ≥45.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为________.[解析] 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.[答案] 56.(2019·南京高三模拟)若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为________.[解析] 设等比数列{a n }的公比为q (q >0且q ≠1),则由a 3-a 1=2,得a 1=2q 2-1.因为a 3-a 1=2>0,所以q >1,所以a 5=a 1q 4=2q 4q 2-1.令q 2-1=t >0,所以a 5=2⎝⎛⎭⎫t +1t +2≥8,当且仅当t =1,即q =2时,等号成立,故a 5的最小值为8.[答案] 87.(2019·江苏名校高三入学摸底)定义实数a ,b 之间的运算⊕如下:a ⊕b =⎩⎪⎨⎪⎧a (a ≥b )b (a <b ),已知数列{a n }满足:a 1=a 2=1,a n +2=2(a n +1⊕2)a n (n ∈N *),若a 2 017=1,记数列{a n }的前n项和为S n ,则S 2 017的值为________.[解析] 因为a 1=1,a 2=1,所以a 3=4,a 4=8,a 5=4, a 6=1,a 7=1,a 8=4,…即此时{a n }是周期数列,且周期为5, 所以a 2 017=a 2=1,a 1+a 2+a 3+a 4+a 5=18, 故S 2 017=403×18+a 1+a 2=7 256. [答案] 7 2568.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________.[解析] 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .所以S n =2-2n +11-2=2n +1-2.[答案] 2n +1-29.(2019·徐州调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.[解析] 设等差数列{a n }的公差为d ,因为a 3+a 7=36, 所以a 4+a 6=36,与a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12. [答案] -1210.(2019·昆明调研)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1a 2,a 3a 4,a 5,a 6a 7,a 8,a 9,a 10……记数阵中的第1列数a 1,a 2,a 4,…构成的数列为{b n },S n 为数列{b n }的前n 项和.若S n=2b n -1,则a 56=________.[解析] 当n ≥2时,因为S n =2b n -1,所以S n -1=2b n -1-1,所以b n =2b n -2b n -1,所以b n =2b n -1(n ≥2且n ∈N *),因为b 1=2b 1-1,所以b 1=1,所以数列{b n }是首项为1,公比为2的等比数列,所以b n =2n -1.设a 1,a 2,a 4,a 7,a 11,…的下标1,2,4,7,11,…构成数列{c n },则c 2-c 1=1,c 3-c 2=2,c 4-c 3=3,c 5-c 4=4,…,c n -c n -1=n -1,累加得,c n -c 1=1+2+3+4+…+(n -1),所以c n =n (n -1)2+1,由c n =n (n -1)2+1=56,得n =11,所以a 56=b 11=210=1 024.[答案] 1 02411.(2019·江苏名校高三入学摸底)构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a ,1),第三组是(1,a (1+2a ),2a ,a (2a +1),1),…,在每一组的相邻两个数之间插入这两个数的和的a 倍得到下一组,其中a ∈⎝⎛⎭⎫0,14.设第n 组中有a n 个数,且这a n 个数的和为S n (n ∈N *).(1)求a n 和S n ;(2)求证:a 1-1S 1+a 2-1S 2+…+a n -1S n ≥n2.[解] (1)由题意可得a 1=2,a n +1=a n +(a n -1)=2a n -1,所以a n +1-1=2(a n -1),又a 1-1=1,则a n -1=2n -1,所以a n =2n -1+1.又S 1=2,且S n +1=S n +2a (S n -1)=(2a +1)S n -2a ,则S n +1-1=(2a +1)(S n -1),又S 1-1=1,所以S n -1=(2a +1)n -1,所以S n =(2a +1)n -1+1. (2)证明:令b n =a n -1S n ,则b n =2n -1(2a +1)n -1+1. 下面用分析法证明数列{b n }为单调递增数列.要证b n <b n +1,即证2n -1(2a +1)n -1+1<2n(2a +1)n +1,又a ∈⎝⎛⎭⎫0,14,故即证2(2a +1)n -1+2>(2a +1)n +1,只需证2(2a +1)n -1≥(2a +1)n ,即证2≥2a +1,显然成立,则数列{b n }为单调递增数列.所以a 1-1S 1+a 2-1S 2+…+a n -1S n ≥n⎝⎛⎭⎫a 1-1S 1=n2.12.(2019·江苏名校高三入学摸底)已知各项均为正数的数列{a n }满足:a 1=a ,a 2=b ,a n+1=a n a n +2+m (n ∈N *),其中m ,a ,b 均为实常数. (1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0,所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q .又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去), 所以ba=2.②当a =2时,数列{a n }是首项为2、公比为2的等比数列,所以a n =2n ,所以b n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -1,n 为偶数,即数列{b n }的奇数项依次构成首项为2、公比为4的等比数列,偶数项依次构成首项为3、公差为4的等差数列.当n 为偶数时,S n =2(1-4n2)1-4+n2(3+2n -1)2=2n +13+n 2+n 2-23;当n 为奇数时,S n =2(2n +1-1)3+(n +1)(n +1+1)2-(2n +1)=2n +23+n 2-n 2-23.所以S n =⎩⎨⎧2n +13+n 2+n 2-23,n 为偶数2n +23+n 2-n 2-23,n 为奇数.(2)存在常数λ=a 2+b 2-mab,使得a n +a n +2=λa n +1对任意的n ∈N *都成立.证明如下:因为a 2n +1=a n a n +2+m (n ∈N *), 所以a 2n =a n -1a n +1+m ,n ≥2,n ∈N *, 所以a 2n +1-a 2n =a n a n +2-a n -1a n +1, 即a 2n +1+a n -1a n +1=a n a n +2+a 2n .由于a n >0,此等式两边同时除以a n a n +1,得a n +a n +2a n +1=a n -1+a n +1a n ,所以a n +a n +2a n +1=a n -1+a n +1a n =…=a 1+a 3a 2,即当n ≥2,n ∈N *时,都有a n +a n +2=a 1+a 3a 2a n +1.因为a 1=a ,a 2=b ,a 2n +1=a n a n +2+m ,所以a 3=b 2-ma,所以a 1+a 3a 2=a +b 2-m a b =a 2+b 2-mab,所以当λ=a 2+b 2-m ab时,对任意的n ∈N *都有a n +a n +2=λa n +1成立.13.(2019·泰州市高三模拟)已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.[解] (1)因为a n =23⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n ,S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S n a n +2=1-⎝⎛⎭⎫-13n-2⎝⎛⎭⎫-13n+2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② ②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ ④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1. (3)证明:由(2)得c n =n +1n,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n=c n +1·c n 2+2n .14.(2019·盐城高三模拟)已知数列{a n }满足a 1=m ,a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1a n +r ,n =2k (k ∈N *,r ∈R ),其前n 项和为S n .(1)当m 与r 满足什么关系时,对任意的n ∈N *,数列{a n }都满足a n +2=a n?(2)对任意的实数m ,r ,是否存在实数p 与q ,使得{a 2n +1+p }与{a 2n +q }是同一个等比数列?若存在,请求出p ,q 满足的条件;若不存在,请说明理由;(3)当m =r =1时,若对任意的n ∈N *,都有S n ≥λa n ,求实数λ的最大值.[解] (1)由题意,得a 1=m ,a 2=2a 1=2m ,a 3=a 2+r =2m +r ,由a 3=a 1,得m +r =0.当m +r =0时,因为a n +1=⎩⎪⎨⎪⎧2a n ,n =2k -1a n -m ,n =2k (k ∈N *),所以a 1=a 3=…=m ,a 2=a 4=…=2m , 故对任意的n ∈N *,数列{a n }都满足a n +2=a n . 即当实数m ,r 满足m +r =0时,题意成立. (2)依题意,a 2n +1=a 2n +r =2a 2n -1+r ,则 a 2n +1+r =2(a 2n -1+r ),因为a 1+r =m +r ,所以当m +r ≠0时,{a 2n +1+r }是等比数列,且a 2n +1+r =(a 1+r )2n =(m +r )2n .为使{a 2n +1+p }是等比数列,则p =r .同理,当m +r ≠0时,a 2n +2r =(m +r )2n ,则为使{a 2n +q }是等比数列,则q =2r . 综上所述,①若m +r =0,则不存在实数p ,q ,使得{a 2n +1+p }与{a 2n +q }是等比数列;②若m +r ≠0,则当p ,q 满足q =2p =2r 时,{a 2n +1+p }与{a 2n +q }是同一个等比数列. (3)当m =r =1时,由(2)可得a 2n -1=2n -1,a 2n =2n +1-2, 当n =2k 时,a n =a 2k =2k +1-2,S n =S 2k =(21+22+…+2k )+(22+23+…+2k +1)-3k =3(2k +1-k -2), 所以S na n =3⎝⎛⎭⎫1-k 2k +1-2.令c k =k 2k +1-2,则c k +1-c k =k +12k +2-2-k2k +1-2=(1-k )2k +1-2(2k +2-2)(2k +1-2)<0, 所以S n a n ≥32,λ≤32.当n =2k -1时,a n =a 2k -1=2k -1,S n =S 2k -a 2k =3(2k +1-k -2)-(2k +1-2)=2k +2-3k -4, 所以S n a n =4-3k2k -1,同理可得S na n≥1,λ≤1.综上所述,实数λ的最大值为1.。
2010江苏省高考数学真题(含答案)
62
4、[解析]考查频率分布直方图的知识。 100×(0.001+0.001+0.004)×5=30
6
5、[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由 g(0)=0,得 a=-1。
6、[解析]考查双曲线的定义。 MF e 4 2 , d 为点 M 到右准线 x 1 的距离, d
2、设复数 z 满足 z(2-3i)=6+4i(其中 i 为虚数单位),则 z 的模为______▲_____.
3、盒子中有大小相同的 3 只白球,1 只黑球,若从中随机地摸出两只球,两只球颜色不 同的概率是_ ▲__.
4、某棉纺厂为了了解一批棉花的质量,从中随机抽 取了 100根棉花纤维的长度(棉花纤维的长度是棉 花质量的重要指标),所得数据都在区间[5,40]中, 其频率分布直方图如图所示,则其抽样的 100根 中,有_▲___根在棉花纤维的长度小于 20mm。
23、(本小题满分 10分)
5
已知△ABC的三边长都是有理数。 (1)求证 cosA是有理数;(2)求证:对任意正整数 n,cosnA是有理数。
2010年答案 填空题 1、[解析] 考查集合的运算推理。3 B, a+2=3, a=1 2、[解析] 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与 3+2 i 的模相等,z 的 模为 2。
3
(1)设动点 P 满足 PF PB 4 ,求点 P 的轨迹;
(2)设 x1
2, x2
1
2
,求点
2
T
的坐标;
3
(3)设t 9 ,求证:直线 MN必过 x 轴上的一定点(其坐标与 m 无关)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库 - 让每个人平等地提升自我! 1 历年高考试题数列
班级 学号 姓名
1、(98上海)在数列{an}和{bn}中,a1=2,且对任意自然数n,3an+1-an
=0,bn是an与an+1的等差中项,则的各项和为____________
2、(99上海)在等差数列{an}中,满足3a4=7a7,,且a1>0,若Sn取得最大值,则n=__________
3、(00上海) 在等差数列{an}中,若a10=0,则有等式a1+a2+……+an=a1+a2+……+a19-n(n<19,n∈N)成立,类比上述性质,相应地,在等比数列{bn}中,若b9=1,则有等式______ __成立
4、(01春上海)甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为2.88%。乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄。按规定每次计息时,储户须交纳利息的20%作为利息税,若存满五年后两人同时从银行取出存款,则甲与乙所得本息之和的差为__________元。(假定利率五年内保持不变,结果精确到1分)。 5、(02上海)若数列}{na中,211,3nnaaa且(n是正整数),则数列的通项na 百度文库 - 让每个人平等地提升自我! 2 6、(03上海)等差数列}{na中,a5=3, a6=-2,则a4+a5+…+a10= 7、(03上海)若首项为a1,公比为q的等比数列}{na的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值可以是(a1,q)=
8、(03上海)),0,24(),2,0(),2,0(nCnBnA其中n的为正整数.设Sn表示 △ABC外接圆的面积,则nnS
lim= .
9、(04上海春)在数列}{na中,31a,且对任意大于1的正整数n,点),(1nnaa在直线03yx 上,则2)1(limnann_____________.
10、(04上海春)在等差数列}{na中,当sraa)(sr时,}{na必定是常数数列。然而在等比数列}{
na中,对某些正整数r、s)(sr,当sraa时,
非常数数列}{
na的一个例子是____________.
11、(04上海)设等比数列{an}(n∈N)的公比q=-21, 且nlim(a1+a3+a5+…+a2n-1)=38,则a1= .
12、(04上海)若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基
本量”的是第 组.(写出所有符合要求的组号) ①S1与S2; ②a2与S3; ③a1与an; ④q与an. 其中n为大于1的整数, Sn为{an}的前n项和.
13、(91上海)在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8=( ) A.45 B.75 C.180 D.300 百度文库 - 让每个人平等地提升自我! 3 14、(94上海)某个命题与自然数有关,如果当n=k(k∈R)时该命题成立,那么可以推得当n=k+1时该命题也成立。现在已知当n=5时,该命题不成立,那么可以推得 ( )
(A)当时该命题不成立; (B)当时该命题成立; (C)当时该命题不成立; (D)当时该命题成立。 15、(01春上海)若数列{an}前8项的值各异,且an+8=an对任意的n∈N+
都
成立,则下列数列中可取遍{an}前8项值的数列为 ( )
A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1} 16、(05上海)用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,┄ain, 1 2 3
记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, i=1,2,3, ┄,n!. 1 3 2
用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3 是12,所以,b1+b2+┄+b6=-12+212-312=-24.那么, 2 3 1
在用1,2,3,4,5形成的数阵中, b1+b2+┄+b120等于 ( ) 3 1 2
3 2 1 A -3600 B 1800 C -1080 D -720
17、(07上海)如果有穷数列123maaaa,,,,(m为正整数)满足条件maa1
,
12maa,…,1aam,即1imiaa(12im,,,),我们称其为“对称数列”.例百度文库 - 让每个人平等地提升自我! 4 如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设nb是7项的“对称数列”,其中1234bbbb,,,是等差数列,且21b,
114b.依次写出nb的每一项; (2)设nc是49项的“对称数列”,其中252649ccc,,,是首项为1,公比为2的等比数列,求nc各项的和S;
(3)设nd是100项的“对称数列”,其中5152100ddd,,,是首项为2,公
差为3的等差数列.求nd前n项的和nS(12100)n,,,.
18、(06上海)设数列{an}的前n项和为Sn,且对任意正整数n,4096nnaS (1)求数列{}
na的通项公式
(2)设数列2{log}na的前n项和为nT,对数列nT,从第几项起509nT? 百度文库 - 让每个人平等地提升自我!
5 19、(05上海)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底, (1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
20、已知数列3021,,,aaa,其中1021,,,aaa是首项为1,公差为1的等差数列;201110,,,aaa是公差为d的等差数列;302120,,,aaa是公差为2d的等
差数列(0d). (1)若40
20a,求d;
(2)试写出30a关于d的关系式,并求30a的取值范围; 百度文库 - 让每个人平等地提升自我!
6 (3)续写已知数列,使得403130,,,aaa是公差为3d的等差数列,……,依
次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
参考答案 1. 2 2. 9 3. b1b2…bn=b1b2…b17-n(n<17,n∈N) 4. 219.01 5. 123n 6. -49 7. (2,2
1) 8. 4π 9. 3 10. a,-a,a,-a,…(a≠0.)r与s同为奇数或偶
数 11. 2 12. ①、④ 13. C 14. C 15. B 16. C 17. 解:(1)设数列nb的公差为d,则1132314ddbb,解得 3d, 数列nb为25811852,,,,,,. (2)4921cccS25492625)(2cccc 122212242
321122262567108861.
(3)51100223(501)149dd,. 由题意得 1250ddd,,,是首项为149,公差为3的等差数列. 百度文库 - 让每个人平等地提升自我! 7 当50n≤时,nndddS21 nnnnn230123)3(2)1(1492. 当51100n≤≤时,nndddS21 ndddS525150
(50)(51)37752(50)32nnn
75002299232nn.
综上所述,22330115022329975005110022nnnnSnnn,≤≤,,≤≤.
18. 解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048. 当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an
∴1nnaa=21 an=2048(21)n-1. (2) ∵log2an=log2[2048(21)n-1]=12-n, ∴Tn=21(-n2+23n).
由Tn<-509,解待n>2460123,而n是正整数,于是,n≥46. ∴从第46项起Tn<-509. 19、[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列, 其中a1=250,d=50,则Sn=250n+502)1(nn=25n2+225n,