初二数学三角形练习题
初二数学上册三角形大题专练(含答案)

1、一个正多边形的一个外角等于它的一个内角的1/3,这个正多边形是几边形?解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.2、如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B =50°,求∠A和∠D.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等)3、如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC-∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°-25°-72°=83°.即:∠C的度数为83°.4、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.解:证明:∵ DG⊥BC,AC⊥BC(已知),∴ ∠DGB=∠ACB=90°(垂直定义),∴ DG∥AC(同位角相等,两直线平行).∴ ∠2=∠ACD(两直线平行,内错角相等).∵ ∠1=∠2(已知),∴ ∠1=∠ACD(等量代换),∴ EF∥CD(同位角相等,两直线平行).∴ ∠AEF=∠ADC(两直线平行,同位角相等).∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直定义),∴∠ADC=90°(等量代换)∴ CD⊥AB(垂直定义).5、如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD 与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=50°,则∠P= 65°;。
初二数学三角形试题答案及解析

初二数学三角形试题答案及解析1.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行()A.8米B.10米C.12米D.14米【答案】B.【解析】如图:设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=10(m),故小鸟至少飞行10m.故选B.【考点】勾股定理的应用.2.已知:如图:架在消防车上的云梯AB的坡比为,云梯AB的长为m,云梯底部离地面1.5m(即BC=1.5m).求云梯顶端离地面的距离AE.【答案】5.5m.【解析】根据坡度的意义和勾股定理求出AD的长即可求得云梯顶端离地面的距离AE.如图,∵架在消防车上的云梯AB的坡比为,即AD:DB=,∴设DB=x,则AD=.∵AB=,∴由勾股定理,得,解得(舍去负值).∴AD=(m).∵DE=BC=1.5m,∴AE=5.5m.【考点】1.解直角三角形的应用-坡度问题;2.勾股定理.3.对“等角对等边”这句话的理解,正确的是 ( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的【答案】C.【解析】“等角对等边”是等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等的简写形式,意思是:在一个三角形中,如果有两个角相等,那么它们所对的边也相等.故C正确;A、B可以举反例说明,如图:DE∥BC,∠ADE=∠B,但AE≠AC.故A、B都错误;故D也错误.故选C.考点: 等腰三角形的判定.4.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x 轴负半轴于点C,则点C的坐标为()A.(-1,0)B.(2-,0)C.(1,0)D.(3,0)【答案】D.【解析】∵A(3,0)、B(0,2),∴OA=3,OB=2,∴在直角△AOB中,由勾股定理得 AB=.又∵以点A为圆心,AB为半径的弧交x轴负半轴于点C,∴AC=AB,∴OC=AC-OA=.又∵点C在x轴的负半轴上,∴C(,0).故选D.考点: 1.勾股定理;2.坐标与图形性质.5.如图,△ABC中,AB=AC,BD是角平分线,BE=BD,∠A=72°,则∠DEC=" _______."【答案】103.5°【解析】因为AB=AC,∠A=72°,所以∠ABC=∠C=54°.因为BD是角平分线,所以∠DBC=∠ABC= 27°.又BE=BD,所以∠BDE=∠BED=76.5°,所以∠DEC=180°76.5°=103.5°.6.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?【答案】旗杆在离底部6 m处断裂【解析】旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为 m,则折断部分的长为m,根据勾股定理,得,解得: m,即旗杆在离底部6 m处断裂.7.如图,△ABD、△CBD都是等边三角形,DE、BF分别是△ABD的两条高,DE、BF交于点G.(1)求∠BGD的度数(2)连接CG①求证:BG+DG=CG②求的值【答案】(1)1200 (2)①见解析②【解析】(1)由△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°;(2)①∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG= CG,故可得出BG+DG=CG; 结合前面求得结论,设出未知数,根据勾股定理和等腰三角形的性质即可求出比例性质.试题解析:解:(1)因为△ABD是等边三角形,E是AB中点所以∠ADE=∠BDE=300 所以∠CDG=900 ,同理∠CBG=900,∠BGD=1200 ,(2)①CD=CB,CG=CG,由勾股定理可得BG=DG,易证△CBG与△CDG全等,得∠DCG=∠BCG=300所以在Rt△CGB和Rt△CGD中可得BG="DG=1/2CG" .所以BG+DG=CG(6分)②设BG=x,由(2)得CG=2x,在Rt△CGB中,BC2=CG2-BG2=4x2-x2=3x2,又因AB=BC所以AB2=BC2=3x2,所以=.【考点】1.等边三角形的判定与性质2.全等三角形的判定与性质;3.菱形的性质;4.勾股定理.8. 在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD +PE +PF 等于( )A .B .2C .4D .无法确定【答案】A.【解析】此题考查了等边三角形的性质.易利用三角形的面积求解.如图,连接AP 、BP 、CP ,则、、;设等边三角形的高为h ,由勾股定理可得:,.而,根据等边三角形三边相等,可得:,即:由此等量关系可得到三角形的三边距离之和.故选A.【考点】等边三角形的性质.9. )△ABC 中,AB=AC=2,BC 边上有100个不同的点p 1,p 2,…p 100;记,求的值.【答案】400.【解析】作AD ⊥BC 于D ,则BC="2BD=2CD," 根据勾股定理可得结论. 试题解析:作AD ⊥BC 于D ,则BC=2BD=2CD .根据勾股定理,得:AP i 2=AD 2+DP i 2=AD 2+(BD-BP i )2=AD 2+BD 2-2BD•BP i +BP i 2, 又P i B•P i C=P i B•(BC-P i B )=2BD•BP i -BP i 2,∴M i =AD 2+BD 2=AB 2=4,∴M 1+M 2+…+M 10+M 100=4×100=400.【考点】①勾股定理;②规律型.10. 如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC 交AC 于点D ,则图中的等腰三角形共有( )个.【答案】3【解析】根据等腰三角形两底角相等求出∠ABC 的度数,再根据角平分线的定义求出∠ABD 的度数,然后得到∠A=∠ABD,再根据等角对等边的性质解答即可.因为AB=AC,∠A=36°,所以∠ABC=∠C=720.因为BD平分∠ABC,所以∠ABD=∠CBD=360.由∠A=∠ABD,得AD=BD.∠C=720,∠CBD=360,得∠CDB=720.所以CB=DB.所以图中的等腰三角形共有3个,即△ABC、△ADB、△CBD.故填3.【考点】等腰三角形的判定与性质.11.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE求证:AH=2BD【答案】详见解析【解析】由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC知∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH="2BD"试题解析:∵AD是高,BE是高∴∠EBC+∠C=∠CAD+∠C=90°∴∠EBC=∠CAD 2分又∵AE=BE∠AEH=∠BEC∴△AEH△BEC(ASA) 2分∴AH =BC∵AB=AC,AD是高∴BC=2BD∴AH =2BD 2分【考点】1 等腰三角形的性质;2 全等三角形的判定与性质12.在△ABC中,∠A是锐角,那么△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】D【解析】举个例子,∠A=30°,∠B=70°,∠C=80°,为锐角三角形,∠A=30°,∠B=90°,∠C=60°, 为直角三角形,∠A=30°,∠B=120°,∠C=30°,为钝角三角形,故不确定.由题,在三角形中有一个角是锐角,无法判断另外两个角的情况,有可能另外两个角都是锐角,也有可能是一个锐角一个直角, 或者一个锐角一个钝角.【考点】三角形的分类.13.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A.9分米B.15分米C.5分米D.8分米【答案】D【解析】先利用勾股定理计算出墙高,当梯子的顶端沿墙下滑4分米后,也形成一直角三角形,解此三角形可计算梯的底部距墙底端的距离,则可计算梯子的底部平滑的距离.解:墙高为:=24分米当梯子的顶端沿墙下滑4分米时:则梯子的顶部距离墙底端:24﹣4=20分米梯子的底部距离墙底端:=15分米,则梯的底部将平滑:15﹣7=8分米.故选D.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.14.由于台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前(不包括树根)长度是________.【答案】16【解析】先根据勾股定理求得斜边的长,再根据树的长度的特征求解即可.由题意得斜边的长所以这棵树在折断前(不包括树根)长度.【考点】勾股定理的应用点评:勾股定理的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.如图,两个三角形全等,根据图中所给条件,可得∠α=______ __。
初二数学《等腰三角形证明》专题练习

初二数学《等腰三角形》练习题1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数。
5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明。
6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数。
8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC。
9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF。
10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE。
《等边三角形》练习题1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF 为等边三角形的理由。
2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形。
3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q是CM中点.求证:△BPQ是正三角形。
初二全等三角形习题精选含答案

初二数学第一讲全等三角形1、如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:A、ΔABD和ΔCDB的面积相等B、ΔABD和ΔCDB的周长相等C、∠A+∠ABD =∠C+∠CBDD、AD//BC,且AD = BC2.下列命题正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相同的两个三角形C.两个周长相等的三角形是全等三角形D.全等三角形的周长、面积分别相等3.如图,△ACE≌△DBF,若∠E =∠F,AD = 8,BC = 2,则AB等于( ) A.6B.5C.3D.不能确定4.如图,ΔABC≌ΔADE,∠B = 70º,∠C = 26º,∠DAC = 30º,则∠EAC = ( ) A.27ºB.54ºC.30ºD.55º5.如图2,已知ΔABE≌ΔACD、∠ADE =∠AED,∠B =∠C,指出其他对应边和对应角分析:对应边和对应角只能从两个三角形中找,所以需将ΔABE和ΔACD从复杂的图形中分离出来6.已知:如图3,ΔABC≌ΔADE,试找出对应边、对应角分析:连结AO,此图中,将ΔABC沿AO翻折180º即可得到ΔADE,对应元素易找.说明:利用“运动法”来找翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素7.如图4,ΔADE≌ΔCBF,AD = BC;求证:AE//CF分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等说明:解此题的关键是找准对应角,可以用平移法.8.如图5,已知ΔACF≌ΔDBE,∠E =∠F,AD = 9cm,BC = 5cm;求AB的长.分析:AB不是全等三角形的对应边,但它通过对应边转化为AB = CD,而使AB+CD = AD−BC,可利用已知的AD与BC求得.说明:解决本题的关键是利用三角形全等的性质,得到对应边相等.。
初二上数学《全等三角形》测试题及答案

初二上数学《全等三角形》测试题及答案一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.已知:如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对 4.将一张长方形纸片按如图4所示的方式折叠,BC BD , 为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.依照下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2 B .1:3 C .2:3 D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰59.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多能够构成正确的结论的个数是( ) A .1个 B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则AD CB图1EF A D OC B图2AD ECB图3FGAEC 图4B A ′E ′D∠α的度数为()A.80°B.100°C.60°D.45°.二、填空题11.如图9,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______________________________。
初二数学解直角三角形试题答案及解析

初二数学解直角三角形试题答案及解析1.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.【答案】5【解析】过点C作CF⊥AD于点F,由背水坡CD的坡度i=1:2.4可设CF=x,DF=2.4x,再由CD长为13米根据勾股定理即可列方程求得结果.解:过点C作CF⊥AD于点F∵CD长为13米∴,解得∴米.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2.已知:在锐角△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是.【答案】【解析】首先作△ABC的高AD,解直角△ACD与直角△ABD,得到BC的长,再利用余弦定理求解.解:作△ABC的高AD,BE为AC边的中线∵在直角△ACD中,AC=a,cosC=,∴CD=,AD=.∵在直角△ABD中,∠ABD=45°,∴BD=AD=,∴BC=BD+CD=.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC【考点】解直角三角形点评:解直角三角形是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.如图,小明站在离树20m的处测得树顶的仰角为,已知小明的眼睛(点)离地面约1.6m,求树的高度.(精确到0.1m)【答案】16.1m【解析】利用36°的正切值可得HB的长度,加上1.6即为树的高度.在Rt△ABH中,∠HAB=36°,AB=20,∴tan∠HAB=,∴HB=AB•tan∠HAB=20×tan36°≈14.53,∴HD=HB+AC=14.53+1.6≈16.1答:树的高度约为16.1m.【考点】解直角三角形的应用点评:解直角三角形的应用的判定和性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.B.C.D.【答案】A【解析】直角三角形的边必须满足勾股定理,本题中根据题意分析可知,在本题中A因为构不成三角形,所以不符合题意;B中,C中D中,故不符合题意的是A【考点】勾股定理点评:本题属于对勾股定理的基本知识的理解和运用以及分析5.观察右面几组勾股数,并寻找规律:① 3, 4, 5 ;② 5,12,13 ;③ 7,24,25 ;④ 9,40,41 ;请你写出有以上规律的第⑤组勾股数: .【答案】11,60,61【解析】分析以上4组数据可知第一个数为3,5,7,9……为奇数递增。
完整版初二数学三角形测试题
八年级数学第十一章《三角形》测试卷姓名一、选择题(每题 3 分,共 30分)1、以下三条线段,能组成三角形的是()A 、3,3, 3B、3, 3,6C、3, 2, 5D、3, 2,62、若是一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是()A 、锐角三角形B 、钝角三角形C、直角三角形D、都有可能A3、以以以下列图, AD 是△ ABC 的高,延伸 BC 至 E,使 CE=BC ,△ ABC 的面积为 S1,△ ACE 的面积为 S2,那么()B D C EA 、S1>S2B、S1=S2C、 S1< S2 D 、不能够确定(第3题)4、以以下列图形中有牢固性的是()A 、正方形B 、长方形C、直角三角形D、平行四边形B5、如图,正方形网格中,每个小方格都是边长为 1 的正方形, A、 B 两点在小方格AC 也在小方格的极点上,且以A、 B、C 为极点的三角的极点上,地址如图形所示,形面积为 1 个平方单位,则点 C 的个数为()A、3个B、4 个C、5 个D、6 个第5题图6、已知△ ABC 中,∠ A、∠ B、∠ C 三个角的比比方下,其中能说明△ABC 是直角三角形的是()A 、2:3: 4B、1:2:3C、 4:3: 5D、1:2:2AD7、点 P 是△ ABC 内一点,连结 BP 并延伸交 AC 于 D,连结 PC,P2则图中∠ 1、∠ 2、∠ A 的大小关系是()B1C 第7题A 、∠ A>∠ 2>∠ 1B 、∠ A>∠ 2>∠ 1C、∠ 2>∠ 1>∠ AD、∠ 1>∠ 2>∠ A8、在△ ABC 中,∠ A= 80°, BD 、CE 分别均分∠ ABC、∠ ACB,BD、 CE 订交于点 O,则∠ BOC 等于()A 、140°B、100 °C、 50°D、 130 °A C9、以下正多边形的地砖中,不能够铺满地面的正多边形是()A 、正三角形B 、正四边形C、正五边形D、正六边形B D10、在△ ABC 中,∠ABC= 90°,∠ A= 50°, BD ∥AC,则∠ CBD 等于()第10题A 、 40°B 、 50° C、45° D、 60°二、填空题(每题 3 分,共 30 分)11、若∠ A:∠ B:∠ C=1: 3: 5,这个三角形为三角形.12、 P 为△ ABC 中 BC 边的延伸线上一点,∠A=50°,∠ B=70°,则∠ ACP= _____。
人教版八年级上数学11.2.1 三角形的内角和 练习(含答案)
11.2.1三角形的内角和基础知识 一、选择题1.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 答案:C2.(2012 广东省梅州市) 如图,在折纸活动中,小明制作了一张ABC △纸片,点D 、E 分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与A '重合,若A o∠=75,则∠1+∠2=( )(A )150o (B )210o (C )105o(D )75o答案:A3. (2012 山东省滨州市) 一个三角形的三个内角的度数之比为372∶∶,则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )锐角三角形 (D )钝角三角形 答案:D4. (2012 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°答案:A5. (2012 福建省漳州市) 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()(A)45o(B)60o(C)75o(D)90o答案:C6. (2012 四川省绵阳市) 如图,将等腰直角三角形沿虚线裁去顶角后,∠1 +∠2 =().A.225︒ B.235︒ C.270︒ D.与虚线的位置有关答案:C7. (2012 广西来宾市) 如图,在△ABC中,已知∠A=80°,∠B=60°,DE∥BC,那么∠CED的大小是()A.40°B.60°C.120°D.140°答案:D8. (2012 山东省聊城市) 将一副三角板按如图所示摆放,图中∠α的度数是()(A)75°(B)90°(C)105°(D)120°答案:C9.如图,ABCDE是封闭折线,则∠A+∠B+∠C+∠D+∠E为()度.A.180 B.270 C.360 D.54012答案:A10.直角三角形两锐角的平分线所夹的钝角等于( ) A .100° B .120° C .135° D .150° 答案:C11.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( ) A .40°B .30°C .20°D .10°答案:D12.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A-∠B=∠C B .∠A=3∠C ,∠B=2∠C C .∠A=∠B=2∠CD .∠A=∠B=21∠C 答案:C13.如图,在三角形ABC 中,已知∠ABC=70º,∠ACB=60º,BE ⊥AC 于E,CF ⊥AB 于F,H 是BE 和CF 的交点,则∠EHF=( )A. 100ºB. 110ºC. 120ºD.130º答案:D14.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图 中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定答案:C 二、填空题1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________. 答案:40°2.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形. 答案:直角;钝角3.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 答案:84°4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为________.21DA答案:80°5.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 . 答案:30º6. (2012 内蒙古呼和浩特市) 如图,在ABC △中,47B o∠,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠=____________.答案:66.5°7. (2012 江苏省徐州市) 将一副直角三角板如图放置.若AE ∥BC ,则∠AFD = °.答案:75°8.如图,AB∥CD,∠A=32°,∠AEB=100°,则∠C 的度数是 度.答案:48º9.△ABC 中,∠A=∠B+∠C,则∠A= 度.答案:90答案:直角三角形11.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为度.答案:120FEC A(第15题)答案:60º12.如图,AD、AE分别是△ABC的高和角平分线,∠B=58°,∠C=36°,∠EAD= .答案:11º13.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=150°, 则∠EDF=________度.AFEBC答案:60°14.如图,∠A+∠B+∠C+∠D+∠E+∠F= .答案:360°三、解答题1.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数. 设∠A=x °,则∠B=(x+5)°, ∠C=(x+25)°可列方程 X+x+5+x+25=180 解得:x=50°所以∠A=50°,∠B=55°, ∠C=75°2.已知:如图,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .求证:∠P=90°.证明:∵AB∥CD, ∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=21∠BEF,∠PFE=21∠DFE, ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°, ∴∠P=90°.3.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=40°,∠B=72°. (1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)答案:(1)在⊿ABC 中,∠ACB=180º-∠A-∠B=68º, ∵CD 是∠ACB 的角平分线∴∠BCD=21∠ACB=34º ∵CE ⊥AB,∠B=72º ∴∠BCE=18º∴∠DCE=∠BCD-∠BCE=34º-18º=16º.(2)∠DCE=21(∠B-∠A).4.如图,已知在三角形ABC 中,∠C=∠ABC=2∠A,BD 是AC 边上的高,求∠DBC 的度数.解:∵∠C=∠ABC=2∠A, ∴∠C+∠ABC+∠A=5∠A=180°, ∴∠A=36°.则∠C=∠ABC=2∠A=72°. 又BD 是AC 边上的高, 则∠DBC=90°-∠C=18°.5.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数.解:∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°,∵∠X=90°,∴∠XBC+∠XCB=180°-90°=90°,∴∠XBA+∠XCA=(∠ABC+∠ACB)-(∠XBC+∠XCB)=140°-90°=50°.6.如图,△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=45°,∠ACB=55°,则∠BOC 的度数是;(2)若∠A=80°,求∠BOC 的度数;(3)若∠A=α,∠BOC=β,请猜想α与β之间的数量关系,并说明理由.解:(1)∵∠ABC和∠ACB的平分线BD,CE相交于点O,(2)∵∠A=80°,∴∠ABC+∠ACB=180°-80°=100°,又∠ABC和∠ACB的平分线BD,CE相交于点O,DF⊥AE于F,求∠ADF的度数.解:∵∠B=40°,∠C=60°,∴∠BAC=80°.∵AE平分∠BAC交BC于E,∴∠BAE=21∠BAC=40°,∴∠AED=∠B+∠BAE=80°.∵AD⊥BC,∴∠DAE=90°-80°=10°∵DF⊥AE,∴∠ADF=90°-10°=80.能力提升1.如图,已知:∠1= ∠2, ∠3= ∠4, ∠C=32°, ∠D=28°,求∠P 的度数。
初二数学全等三角形经典题型
专题训练:全等三角形专题一全等三角形的性质及应用1.如图,△ABC ≌△EBD ,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?解析:由三角形全等,得到对应角相等,然后再沟通∠1和∠2之间的关系.2.如图,已知△EAB ≌△DCE ,AB 、EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.专题二全等三角形的探究题3.全等三角形又叫合同三角形, 平面内的合同三角形分为真正合同三角形与镜面合同三角形.假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与A 1对应,点B 与B 1对应,点C 与点C 1对应,当沿周界A →B →C →A 及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形,如图1;若运动方向相反,则称它们是镜面合同三角形,如图2.C 1B 1A 1C B AC 1B 1A 1CB A (1)(2)BA E 21FC D O两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中一个翻折180°,下列各组合同三角形中,是镜面合同三角形的是().DC B A 4.如图所示,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE .(1)试说明BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE ?5.如图所示,△ABC 绕着点B 旋转(顺时针)90°到△DBE ,且∠ABC =90°.(1)△ABC 和△DBE 是否全等?指出对应边和对应角;(2)直线AC 、直线DE 有怎样的位置关系?AB C DE【知识要点】1.能够完全重合的两个图形叫全等形,能够完全重合的两个三角形叫全等三角形.2.全等三角形的对应边相等,对应角相等.【温馨提示】1.利用全等三角形的性质解决问题时,一定要找准对应元素.2.全等三角形的对应边相等、对应角相等、周长相等、面积相等,但周长、面积相等的两个三角形不一定是全等三角形.【方法技巧】1.全等三角形是指能够完全重合的两个三角形,准确的找出两个全等三角形的对应元素是解决全等三角形问题的关键.在表示两个三角形全等时,对应的顶点要写在对应的位置上.2.全等三角形的对应边相等,对应角相等,利用这两个性质可以说明线段或角相等,以及线段的平行或垂直等.3.一个图形经过平移、翻折、旋转后,位置发生了变化,但形状和大小都没有改变,即经过平移、翻折、旋转前后的图形全等.像这样只改变图形的位置而不改变图形的形状和大小的变换叫全等变换,常见的有平移变换,翻折变换,旋转变换.参考答案:1.解:∠1和∠2∵△ABC≌△EBD,∴∠A=∠E(全等三角形对应角相等),又∵∠A+∠AOF+∠1=180°,∠E+∠EOB+∠E=180°(三角形内角和定理),∠AOF=∠BOE(对顶角相等),∴∠1=∠2(等式的性质).2.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.3.B提示:A与C中的两个三角形可以通过旋转,使它们重合.D中的两个三角形可以用平移、旋转相结合的方式使之重合.而B中的两个三角形可以用翻折的方法使之重合,故B 中的三角形是镜面合同三角形.4.解:(1)因为△BAD≌△ACE,所以BD=AE,AD=CE,又因为AE=AD+DE=CE+DE,所以BD=DE+CE.(2)∠ADB=90°,因为△BAD≌△ACE,所以∠ADB=∠CEB,若BD ∥CE,则∠CED=∠BDE,所以∠ADB=∠BDE,又因为∠ADB+∠BDE=180°,所以∠ADB=90°.5.解:(1)由题知可得:△ABC≌△DBE,AC和DE,AB和DB,BC和BE是对应边;∠A和∠D,∠ACB和∠DEB,∠ABC和∠DBE是对应角;(2)延长AC交DE于F.∵△ABC≌△DBE∴∠A=∠D,又∵∠ACB=∠DCF(对顶角相等),∠A+∠ACB=90°,∴∠D+∠DCF=90°,即∠AFD =90°.∴AC与DE是垂直的位置关系.。
初二数学三角形试题
初二数学三角形试题1.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=______.【答案】6.【解析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.试题解析:∵在Rt△ABC中,∠ACB=90°,CD=3,CD是AB边上的中线,∴AB=2CD=6.【考点】直角三角形斜边上的中线.2.如图,△ABC中,AB=AC,BD是角平分线,BE=BD,∠A=72°,则∠DEC=" _______."【答案】103.5°【解析】因为AB=AC,∠A=72°,所以∠ABC=∠C=54°.因为BD是角平分线,所以∠DBC=∠ABC= 27°.又BE=BD,所以∠BDE=∠BED=76.5°,所以∠DEC=180°76.5°=103.5°.3.如图,正方形CEFH的边长为m,点D在射线CH上移动,以CD为边作正方形CDAB,连接AE、AH、HE,在D点移动的过程中,三角形AHE的面积().A.无法确定B.m2C.m2D.m2【答案】C【解析】如图,可能你会联想到平行线具有“传递面积”的功能(等底等高的三角形面积相等),于是我们连接AC,得:HE∥AC.这样,在D点移动的过程中,△CHE与△AHE都是等底同高的三角形,所以这两个三角形的面积相等.而△CHE的面积可求,即.故答案为C.【考点】三角形同底等高面积相等的运用4.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为 ( )A.25°B.30°C.15°D.30°或15°【答案】A【解析】由题∠1=∠2,∴∠BAC=∠1+∠DAC=∠2+∠DAC=∠DAE,在△BAC和△DAE中,AC=AE,∠BAC =∠DAE,AB=AD,∴△BAC≌△DAE,∴∠B=∠D=25°.直观上看△BAC≌△DAE,由题∠1=∠2,所以∠BAC=∠1+∠DAC=∠2+∠DAC=∠DAE,在△BAC和△DAE中, AC=AE,∠BAC =∠DAE,AB=AD,所以△BAC≌△DAE,所以∠B=∠D=25°.【考点】三角形的全等.5.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为:()的木条.A.5cm B.3 cm C.17cm D.12 cm【答案】D【解析】根据两边之和大于第三边,两边之差小于第三边,可得第三边的长度的取值范围是,在四个选项中,只有符合题意,故选.【考点】三角形三边之间关系定理.6.判断下列几组数据中,可以作为直角三角形的三条边的是( ).A.6,15,17B.7,12,15C.13,15,20D.7,24,25【答案】D.【解析】直角三角形的三条边满足勾股定理的逆定理:两条直角边的平方和等于斜边的平方,要判断三个数是否能是勾股数,只要验证一下,两个较小的数的平方和是否等于最大数的平方,等于就是直角三角形,否则就不是.A,62+152≠172,不符合;B,72+122≠152,不符合;C,132+152≠202,不符合;D,72+242=252,符合.故选D.考点: 勾股定理的逆定理.7.如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;根据以上设计方案,解答下列问题:(1)你认为以上三种设计方案都符合要求吗?(2)要根据图1完成证明,需要证明△≌△,进而得到线段=;(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.【答案】(1)符合要求(2)ABE DAH BE AH(3)见解析【解析】(1)通过证明三角形全等,由全等三角形的对应边相等可以判断以上三种设计方案都符合要求;(2)在图1中,先由正方形的性质得出∠BAE=∠ADH=90°,AB=AD,根据同角的余角相等得出∠ABE=∠DAH,再利用ASA证明△ABE≌△DAH,进而由全等三角形的对应边相等即可得出BE=AH;(3)先过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH、EF为等长的小路.再进行证明:过点H作HN⊥AB交AB的延长线于点P,过点E作EP⊥BC交BC的延长线于点P,利用AAS证明△GHN≌△FEP,即可得出GH=EF.解:(1)以上三种设计方案都符合要求;(2)如图1,∵四边形ABCD是正方形,∴∠BAE=∠ADH=90°,AB=AD,又∵BE⊥AH,∴∠ABE=∠DAH=90°﹣∠BAH.在△ABE与△DAH中,,∴△ABE≌△DAH(ASA),∴BE=AH;(3)如图,过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH为所求小路.理由如下:过点H作HN⊥AG于N,过点E作EP⊥BC交BC的延长线于点P,则∠GNH=∠FPE=90°.∵AB∥CD,HN⊥AB,CB⊥AB,∴NH=BC,同理,EP=DC.∵BC=DC,∴NH=EP.∵GO⊥EF,∴∠MFO+∠FMO=90°,∵∠BGM+∠GMB=90°,∠FMO=∠GMB,∴∠BGM=∠MFO.在△GHN与△FEP中,,∴△GHN≌△FEP(AAS),∴GH=EF.故答案为:ABE,DAH,BE,AH.点评:本题考查了数学知识在实际生活中的应用,其中涉及到正方形的性质,余角的性质,全等三角形的判定与性质,难度不大.体现了数学知识来源于生活,并且为生活服务,能够激发同学们学习数学的热情.8.在△ABC中,D、E、F分别是AB、BC、AC的中点,若△ABC的周长为30cm,则△DFE 的周长为 cm.【答案】15【解析】三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.∵D、E、F分别是AB、BC、AC的中点,△ABC的周长为30cm∴△DFE的周长为15cm.【考点】三角形的中位线定理点评:本题属于基础应用题,只需学生熟练掌握三角形的中位线定理,即可完成.9.(8分)如图:△ABC中,AD是高,CE是中线,G是CE的中点,DG⊥CE,G为垂足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学三角形练习题
在初二数学学习中,三角形是一个重要的几何图形,对于学习和掌
握三角形的性质和计算方法有着重要的意义。
为了帮助同学们更好地
理解和应用三角形的知识,下面将给出一些初二数学三角形练习题,
通过解答这些题目,同学们可以加深对三角形的理解,并提高解题能力。
练习题1:已知三角形ABC,AB = 5cm,BC = 8cm,AC = 7cm,
求三角形的面积。
解析:根据海伦公式,已知三边求面积的公式为:
面积= √[s(s-AB)(s-BC)(s-AC)]
其中,s为半周长,s = (AB + BC + AC) / 2。
代入已知条件,s = (5 + 8 + 7) / 2 = 10。
面积= √[10(10-5)(10-8)(10-7)] = √[10 * 5 * 2 * 3] = √[300] = 10√3 cm²。
练习题2:已知三角形ABC,AB = AC,∠B = 30°,求∠A的度数。
解析:由于AB = AC,所以三角形ABC为等腰三角形。
根据等腰三角形性质,等腰三角形的底角(底边对应的角)等于顶角。
∠A = ∠C = (180° - ∠B) / 2 = (180° - 30°) / 2 = 75°。
练习题3:已知三角形ABC,AB = 8cm,BC = 6cm,∠A = 60°,
求∠C的度数。
解析:根据余弦定理,已知两边和夹角,可以求第三边。
根据余弦定理公式:c² = a² + b² - 2ab * cosC。
代入已知条件,8² = 6² + 6² - 2 * 6 * 6 * cosC。
64 = 36 + 36 - 72 * cosC。
64 = 72 - 72 * cosC。
72 * cosC = 72 - 64。
72 * cosC = 8。
cosC = 8 / 72 = 1 / 9。
C = arccos(1 / 9)。
使用计算器计算得,C ≈ 82.8°。
练习题4:已知三角形ABC中,∠B = 90°,AC = 9cm,BC = 12cm,求三角形的面积。
解析:由已知条件,可以判断三角形ABC为一个直角三角形。
直角三角形的面积等于直角边的乘积的一半。
三角形ABC的面积 = (1/2) * AB * BC = (1/2) * 9 * 12 = 54 cm²。
通过以上练习题的解答,同学们可以加深对三角形的认识,并掌握三角形的性质和计算方法。
希望同学们能够多做练习,加强对三角形的理解与应用,提高数学解题能力。
祝大家学有所成!。