人工神经计算公式
人工神经网络建模(Artificial Neuron Nets)

• 一、引例
• 1981年生物学家格若根(W. Grogan)和维什(W.Wirth)发现了两 类蚊子(或飞蠓midges).他们测量了这两类蚊子每个个体的翼长和触角 长,数据如下: • • • • • • • • • 翼长 1.78 1.96 1.86 1.72 2.00 2.00 1.96 1.74 触角长 类别 1.14 Apf 1.18 Apf 1.20 Apf 1.24 Af 1.26 Apf 1.28 Apf 1.30 Apf 1.36 Af
m
例如,若记
z wi xi
i 1
m
ቤተ መጻሕፍቲ ባይዱ
• 取激发函数为符号函数
1, x 0, sgn( x) 0, x 0.
则
1, y f ( z) 0,
• S型激发函数:
w x w x
i 1 i i 1 m i
m
i
, ,
i
1 f ( x) , x 1 e
• 规 定 目 标 为 : 当 t(1)=0.9 时 表 示 属 于 Apf 类 , t(2)=0.1表示属于Af类。 • 设两个权重系数矩阵为:
w1 (1,1) w1 (1,2) w1 (1,3) W1 w1 (2,1) w1 (2,2) w1 (2,3)
( p) l
( p1) l
(i, j) a ( j),
( p) ( p) l l 1
l 1,...,L,
(10)
w (i, j )
表示第-1层第个元对第层第个元输入 的第次迭代时的权重
( p) l
其中
( p) L
《人工神经网络》课件

动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
人工神经网络学习总结笔记

人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。
我认为这是人工神经网络研究的前身。
形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。
离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。
其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。
神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
第5章 神经传感系统

第5章 神经传感系统
图5-5-tanh(x)函数及其导函数
第5章 神经传感系统
• ReLU(x)函数 ReLU(x)也是一种比较常见的神经网络激活函数,其映射 方法如式(5-5)、式(5-6)所示。
第5章 神经传感系统
ReLU(x)函数及其导函数曲线图如图5-6所示,从图中可 以看出 ReLU(x)是部分线性的,并且不会出现过饱和现象,使 用 ReLU(x)得到的随机梯度下降法(SGD)的收敛速度比 sigmoid和tanh(x)的都要快。利用 ReLU(x)函数计算,只需要 一个阈值就可以得到激活值,而不需要像sigmoid和tanh(x)一 样执行复杂的指数运算,原理易于理解,计算更为简单。
第5章 神经传感系统
图5-8 逻辑回归模型与神经网络模型对比
第5章 神经传感系统
对于具有多层或多个输出神经元的神经网络,其每个隐 藏层神经元或输出层神经元的值(激活值),都是由上一层神经 元经过加权求和与非线性变换得到的,网络拓扑图如图5-9所 示。
第5章 神经传感系统
图5-8 逻辑回归模型与神经网络模型对比
第5章 神经传感系统
图5-6 ReLU(x)函数及其导函数
第5章 神经传感系统
5.2.2 人工神经网络信息处理 人脑的每个神经元都可以看作一个处理单元,这些处理
单元互相连接形成了生物神经网络,网络中信号传递的强弱 由神经元之间的连接强度决定,连接的强弱又可以根据外部 的刺激信号作出自适应性的变化。信号可以产生刺激或抑制 的作用,每个神经元会根据接收到的多个信号的综合作用呈 现兴奋或抑制状态。
第5章 神经传感系统
轴突除了分出侧枝外,在其末端还会形成树枝样的神经 末梢,末梢分布于某些组织器官或骨骼肌肉内,形成各种神经 末梢装置(感受器或运动终端),比较典型的神经元结构图如图 5-1所示。
人工智能导论 第8章 人工神经网络及其应用(导论)1-47

x1
y
m 1
x2
y
m 2
x p1
y
m pm
35
8.2.2 BP学习算法
2. 学习算法
当yik
1 1 euik
时
x
d y wikj1
k k1 ij
d
m i
yim (1
yim)(
ym i
y) i
— —输出层连接权调整公式
d y y w d k i
k
i (1
k pk 1
i)
k 1 k1 li l
9
8.1 神经元与神经网络
1. 生物神经元的结构 2. 神经元数学模型 3. 神经网络的结构与工作方式
10
8.1.2 神经元数学模型
2. 人工神经元模型
1943年,麦克洛奇和皮兹提出M -P模型。
u1
(权重/突触)
wi1 (细胞体)
(神经冲动)
…
f ()
yi
un
win
激励函数
i (阈值)
-1
29
8.2 BP神经网络及其学习算法
1. BP神经网络的结构 2. BP学习算法 3. BP算法的实现
30
8.2.2 BP学习算法
▪ 两个问题:
(1)是否存在一个BP神经网络能够逼近给定的样本或者函数。
( 2)如何调整BP神经网络的连接权,使网络的输入与输出与 给定的样本相同。
1986年,鲁梅尔哈特(D. Rumelhart)等提出BP学习算法。
A {aij}NN
U u1 uM T
B {bik }N M
1 N T
V v1
T
vN
Y y1 yN T
人工神经网络简介

人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
人工神经元模型

nh
二、前向神经网络模型
假设每一层的神经元激励函数相同,则对于L+1层 前向传播网络,其网络输出的数学表示关系方程式 一律采用:
Γ l为各层神经元的激励函数, Wl 为l-1层到l层的连接权矩阵, l=1,2,...,L θ l 为l层的阀值矢量 其中:
二、前向神经网络模型
有导师学习的基本思想
y
1k
x
1k
x 2k
y2k
1) oj ( w ( jl x l j )
ni
l 1
j=1,2,...,nh
xn k
i
yn k
o
w(1)
ij
w (2)
ij
Oj为隐含层的激励
i=1,2,...,no
示意图
图3—1—14(a) 含一个隐含层前向传播网络结构示意图 (2) y
1k j 1
y i ( w ij oj i )
i 1
第r+1个隐含层:
Net
( r 1) pj r) wrjl1o(pl jr 1 l 1 nr
r 0,1,2...L 1
输出层
L ( L 1) L y pj L ( Net pj ) L ( wL o ji pi j ) i 1 n L 1
二、前向神经网络模型
BP学习算法的推导:
对于N个样本集,性能指标为
E E p ( t pi y pi )
p 1 p 1 i 1
N
N
no
φ(·)是一个正定的、可微的凸函数 ,常取
1 no E p ( t pj y pj ) 2 2 i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经计算公式
人工神经计算是一种模拟生物大脑功能的计算模型,通过构建神经元和神经网络来模拟人类大脑的学习和推理过程。
人工神经计算公式是用于描述神经元和神经网络内部计算和信号传导的数学表达式。
下面将介绍一些常见的人工神经计算公式。
一、神经元的计算公式
神经元是神经网络的基本单元,被用于模拟人脑神经元的功能。
神经元接收输入信号,对其进行处理并产生输出信号。
常见的神经元计算公式包括:
1.感知机神经元计算公式
感知机神经元是最简单的神经元模型,其计算公式可以表示为:
y = f(∑(wi*xi) + b)
其中,wi是输入信号xi的权重,b是偏置项,f是激活函数,
∑(wi*xi)表示输入信号和权重的加权和。
2. Sigmoid神经元计算公式
Sigmoid神经元是一种常用的激活函数,其计算公式可以表示为:
y=1/(1+e^(-x))
其中,x是输入信号和权重的加权和,e是自然对数的底。
3.ReLU神经元计算公式
ReLU神经元是一种常用的激活函数,其计算公式可以表示为:
y = max(0, x)
其中,x是输入信号和权重的加权和。
二、神经网络的计算公式
神经网络是多个神经元相互连接而成的网络,用于模拟复杂的计算和
推理过程。
常见的神经网络计算公式包括:
1.前馈神经网络计算公式
前馈神经网络是一种最常见的神经网络,其计算公式可以表示为:
a^(l+1)=f(W^(l+1)*a^l+b^(l+1))
其中,W^(l+1)是第l层和第l+1层之间的权重矩阵,b^(l+1)是偏置
项向量,f是激活函数,a^l表示第l层的输出向量,a^(l+1)表示第l+1
层的输入向量。
2.反向传播算法
反向传播算法用于训练神经网络,其计算公式可以表示为:
δ^l=(∂C/∂z^l)⊙f'(z^l)
其中,δ^l表示第l层的误差项向量,C表示代价函数,z^l表示第
l层的加权输入,f'表示激活函数的导数,⊙表示元素级别的乘法。
3.卷积神经网络计算公式
卷积神经网络是一种专门用于处理图像和视频等二维数据的神经网络,其计算公式可以表示为:
a^(l+1)=f(W^(l+1)*a^l+b^(l+1))
其中,W^(l+1)是卷积核矩阵,b^(l+1)是偏置项向量,f是激活函数,a^l表示第l层的输出特征图,a^(l+1)表示第l+1层的输入特征图。
以上只是人工神经计算中的一小部分公式,实际应用中还有很多其他
公式和算法。
人工神经计算的公式是基于数学理论和实验数据进行推导和
验证的,它们不仅能够帮助我们理解神经元和神经网络的计算过程,还能
够指导我们设计和训练更加有效的人工神经网络。