人工神经网络算法

合集下载

人工神经网络算法

人工神经网络算法

反向传播算法
添加标题
定义:反向传播算法是一种监督学习算法,通过反向传播误差来调整神经网络的权重和偏置
添加标题
原理:在前向传播过程中,输入数据经过神经网络得到输出结果,然后将输出结果与真实结果进 行比较,计算误差,并将误差按照权重反向传播回神经网络中,调整神经网络的权重和偏置
添加标题
特点:反向传播算法是一种自适应的学习算法,能够自动调整神经网络的参数,提高神经网络的 性能
功能:隐藏层的主要作用是对输入数据进行特征提取和转换,为输出层 提供更加抽象和高级的特征表示
类型:常见的隐藏层类型包括全连接层、卷积层、池化层等
参数:隐藏层的参数包括权重、偏置等,需要通过反向传播算法进行优 化和调整
输出层
输出层是人工神经网络算法的最后 一级,负责将网络输出传递给外部 系统或用户。
添加标题
应用:反向传播算法广泛应用于各种神经网络模型中,如多层感知器、卷积神经网络等
其他算法
遗传算法 蚁群算法 粒子群优化算法 模拟退火算法
感谢您的观看
汇报人:PPT
前向传播算法
定义:前向传播算法是一种基于神经网络结构的信息传递过程
特点:按照层级进行信息传递,每个神经元只接收来自上一层神经元的输入,并将结果输出给 下一层神经元
计算过程:每个神经元根据接收到的输入和自身权重计算输出结果,然后将输出结果传递给下 一层神经元
作用:前向传播算法是神经网络中常用的算法之一,用于计算神经网络的输出结果
人工神经网络算法
PPT,a click toபைடு நூலகம்unlimited possibilities
汇报人:PPT
目录 /目录
01
人工神经网络 算法概述

人工智能十大算法总结

人工智能十大算法总结

人工智能十大算法总结人工智能(Artificial Intelligence,简称AI)是一门涉及模拟和复制人类智能的科学和工程学科。

在人工智能的发展过程中,算法起着至关重要的作用。

算法是用来解决问题的一系列步骤和规则。

下面是人工智能领域中十大重要的算法总结。

一、回归算法回归算法用于预测数值型数据的结果。

常见的回归算法有线性回归、多项式回归、岭回归等。

这些算法通过建立数学模型来找到输入和输出之间的关系,从而进行预测。

二、决策树算法决策树算法是一种基于树形结构的模型,可用于分类和回归问题。

它将数据集拆分成决策节点和叶节点,并根据特征的属性进行分支。

决策树算法易于理解和解释,并且可以处理非线性关系。

三、支持向量机算法支持向量机算法用于分类和回归分析。

它通过在特征空间中构造一个超平面来将样本划分为不同的类别。

支持向量机算法具有高维特征空间的能力和较强的泛化能力。

四、聚类算法聚类算法用于将相似的数据点分组到一起。

常见的聚类算法有K均值聚类、层次聚类等。

聚类算法能够帮助我们发现数据中的模式和结构,从而对数据进行分析和处理。

五、人工神经网络算法人工神经网络是一种类似于生物神经系统的模型。

它由大量的节点和连接组成,可以模拟人脑的学习和推理过程。

人工神经网络算法可以用于分类、识别、预测等任务。

六、遗传算法遗传算法模拟生物进化的原理,通过模拟选择、交叉和变异等操作来寻找最优解。

遗传算法常用于求解复杂优化问题,如旅行商问题、背包问题等。

七、贝叶斯网络算法贝叶斯网络是一种概率图模型,用于表示变量之间的依赖关系。

贝叶斯网络算法可以用于推断和预测问题,如文本分类、诊断系统等。

它具有直观、可解释性强的特点。

八、深度学习算法深度学习是一种基于神经网络的算法,具有多层次的结构。

它可以通过无监督或监督学习来进行模型训练和参数优化。

深度学习算法在图像识别、语音识别等领域取得了显著的成果。

九、马尔科夫决策过程算法马尔科夫决策过程是一种基于状态转移的决策模型。

神经网络算法及其在人工智能中的应用

神经网络算法及其在人工智能中的应用

神经网络算法及其在人工智能中的应用近年来,随着计算机技术的不断发展,人工智能技术也得以飞速发展。

其中,神经网络算法是人工智能技术中非常重要的一部分,也是近年来发展最为迅猛的技术之一。

在本文中,我们将探讨神经网络算法及其在人工智能中的应用。

一、神经网络算法的概述神经网络算法最初可以追溯到20世纪40年代。

这种算法模仿了人类基于神经元的神经系统的工作方式。

神经网络算法是一种机器学习算法,可以通过训练数据来学习和适应模式,最终实现预测和分类的目的。

神经网络算法之所以在机器学习领域得到了广泛的应用,是因为它非常适合解决那些非线性或复杂的模型。

神经网络算法有许多成熟的模型和算法,如单层感知机、多层感知机、卷积神经网络、循环神经网络等等,每种模型和算法都有其独特的应用场景。

二、神经网络算法在人工智能中的应用神经网络算法是人工智能技术中的重要组成部分,它的广泛应用涉及到诸多领域。

下面,我们以几个典型的领域为例,介绍神经网络算法在其中的应用情况。

1. 图像识别在图像识别方面,神经网络算法是非常强大的。

目前,卷积神经网络是最常用的神经网络算法模型之一,它可以有效地学习到图像的特征,并且可以应用于图像识别、图像分类等领域。

另外,循环神经网络也可以应用于图像分类,例如在翻译图像字幕和语音识别中。

2. 自然语言处理在自然语言处理方面,循环神经网络是非常重要的一种算法模型。

它可以非常有效地处理以时间序列为基础的自然语言数据,例如文本、语音和视频数据。

循环神经网络常被应用于机器翻译、语音识别、文本分类等领域。

另外,双向循环神经网络也可以应用于自然语言处理中。

3. 人脸识别在人脸识别领域,神经网络算法也具有非常广泛的应用。

卷积神经网络可以用于学习特定模式,例如人脸特征等。

同时,多层感知机也可以用于人脸识别,通过学习多个图像特征,可以实现更加准确的识别结果。

4. 智能推荐神经网络算法在智能推荐领域也有很好的应用。

基于神经网络的推荐算法可以通过学习用户和物品之间的复杂关系,提高推荐结果的准确性。

人工智能技术中的神经网络算法介绍

人工智能技术中的神经网络算法介绍

人工智能技术中的神经网络算法介绍随着科技的不断发展,人工智能技术逐渐成为我们生活中不可或缺的一部分。

而在人工智能技术中,神经网络算法起到了至关重要的作用。

本文将介绍神经网络算法的基本概念、原理和应用。

一、神经网络算法的基本概念神经网络算法是一种模仿人脑神经元网络结构和工作方式的计算模型。

它由大量的人工神经元组成,每个神经元都有输入和输出,并通过调整神经元之间的连接权重来实现学习和决策。

神经网络算法可以分为前馈神经网络和反馈神经网络两种类型。

前馈神经网络是最常见的一种神经网络算法。

它的神经元之间的连接是单向的,信息只能从输入层经过隐藏层传递到输出层。

前馈神经网络通常用于分类、识别和预测等任务。

反馈神经网络是一种具有循环连接的神经网络算法。

它的神经元之间的连接可以形成环路,信息可以在网络中回流。

反馈神经网络通常用于时间序列预测、控制系统和模式识别等任务。

二、神经网络算法的原理神经网络算法的原理基于神经元之间的连接权重和激活函数。

每个神经元都有一个激活函数,用于将输入信号转换为输出信号。

常见的激活函数有sigmoid函数、ReLU函数和tanh函数等。

神经网络算法通过调整神经元之间的连接权重来实现学习和决策。

学习过程中,神经网络会根据输入数据的特征和输出结果的误差来更新连接权重,以提高网络的预测准确性。

这一过程通常使用反向传播算法来实现。

反向传播算法是一种基于梯度下降的优化算法。

它通过计算网络输出和真实输出之间的误差,并将误差反向传播到网络的每个神经元,从而调整连接权重。

通过多次迭代更新连接权重,神经网络可以逐渐提高预测准确性。

三、神经网络算法的应用神经网络算法在各个领域都有广泛的应用。

在计算机视觉领域,神经网络算法可以用于图像分类、目标检测和人脸识别等任务。

在自然语言处理领域,神经网络算法可以用于语义分析、情感分析和机器翻译等任务。

此外,神经网络算法还可以应用于金融风险评估、医学诊断和智能交通系统等领域。

基于人工神经网络的预测算法研究

基于人工神经网络的预测算法研究

基于人工神经网络的预测算法研究人工神经网络(Artificial Neural Network)是一种模拟人脑神经系统工作原理的计算模型,它通过大量的神经元单元之间的连接和相应的加权值,模拟人脑神经元之间的信息传递和处理过程。

基于人工神经网络的预测算法利用这一模型,通过对已有数据进行学习和训练,来预测未来的数据走势和趋势。

本文将围绕基于人工神经网络的预测算法进行研究,讨论其原理、应用、优势和局限性。

首先,我们来介绍基于人工神经网络的预测算法的原理。

人工神经网络由输入层、隐藏层和输出层组成,其中隐藏层可以包含多层。

每个神经元接收来自上一层的输入,并通过加权值和激活函数对输入进行处理,然后将结果传递给下一层。

在预测问题中,输入层通常表示历史数据特征,而输出层表示预测结果。

通过在训练过程中调整神经网络的连接权重,以及选择合适的激活函数和网络结构,使网络能够对输入与输出之间的关系进行建模和预测。

基于人工神经网络的预测算法在多个领域都有广泛的应用。

例如,它可以应用于金融市场预测,通过学习历史行情数据,来预测未来股票价格的走势;它也可以应用于气象预测,通过学习气象观测数据,来预测未来天气的变化;此外,它还可以应用于交通流量预测、销售预测、疾病预测等领域。

基于人工神经网络的预测算法可以为决策提供参考和辅助,帮助人们做出更准确的预测和计划。

相比于传统的统计分析方法,基于人工神经网络的预测算法具有一些优势。

首先,它可以处理非线性关系,而传统方法通常只能处理线性关系;其次,它可以自动学习和提取特征,无需过多人工干预;此外,它对于噪声和缺失数据具有一定的容错性,能够处理部分数据缺失的情况。

因此,基于人工神经网络的预测算法在处理复杂、非线性的预测问题时表现出色。

然而,基于人工神经网络的预测算法也存在一些局限性。

首先,神经网络的训练过程较为耗时,特别是在大规模数据集上进行训练时;其次,网络结构和参数的选择对预测结果的影响较大,需要进行一定的调试和优化;此外,神经网络的黑盒特性使得其内部的判断过程难以解释和理解,缺乏可解释性。

人工神经网络的算法和应用

人工神经网络的算法和应用

人工神经网络的算法和应用人工神经网络是一种由多个节点和连接组成的计算模型,其灵感来自于生物神经网络。

与传统的机器学习模型相比,人工神经网络可以处理更加复杂的任务,并且能够进行自适应性的学习,从而实现高效的模式识别和数据分析。

在本文中,我们将探讨人工神经网络的算法和应用。

一、算法1.感知机算法感知机算法是最早的人工神经网络算法之一,它基于一种称为感知机的计算单元。

感知机可以被看作是多个独立的逻辑门,通过输入和输出之间的权重调整来实现逻辑运算。

感知机算法的缺点在于它只适用于线性可分问题。

如果数据不能被线性分割,那么感知机就无法解决这个问题。

因此,感知机主要用于二元分类和线性回归问题。

2.反向传播算法反向传播算法是一种基于梯度下降的优化算法。

它通过不断调整权重和偏置,使神经网络的预测结果更加接近于实际值。

反向传播算法的优点在于它可以处理非线性可分问题,并且具有更好的精度和收敛速度。

然而,反向传播算法也有一些缺点,例如容易收敛到局部最优解、容易受到梯度消失和爆炸等问题的影响。

3.长短时记忆(LSTM)算法LSTM算法是一种专门用于处理序列数据的神经网络算法。

它通过引入“门”机制来控制信息的流动,并且能够长时间记忆先前的信息。

LSTM算法在自然语言处理、语音识别、股价预测等领域得到了广泛应用。

二、应用1.图像识别图像识别是人工神经网络的一个重要应用领域。

通过训练神经网络模型,图像识别系统可以实现对于图片中物体和场景的识别和分类。

在医疗诊断、自动驾驶、安防等领域,图像识别技术已经得到了广泛应用。

2.自然语言处理自然语言处理是另一个重要的应用领域。

通过训练神经网络模型,自然语言处理系统可以实现对于自然语言的理解和生成。

自然语言处理技术在智能客服、智能翻译、信息提取、情感分析等方面得到了广泛应用。

3.股价预测股价预测是人工神经网络在金融领域的应用之一。

通过训练神经网络模型,股价预测系统可以实现对于股票价格的预测。

ann算法

ann算法人工神经网络(Artificial Neural Network,ANN),也简称神经网络,是众多机器学习算法中比较接近生物神经网络特性的数学模型。

人工神经网络通过模拟生物神经网络(大脑)的结构和功能,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成,可以用来对数据之间的复杂关系进行建模。

一、每层由单元(unit)组成二、输入层由训练集的实例特征向量传入三、每个结点都有权重(weight)传入下一层,一层的输出是下一层的输入。

(根据生物学上的定义,每个单元成为神经结点)四、以上成为两层神经网络(输入层不算)五、每一层的加权求和,到下一层结点上还需要非线性函数激活,之后作为输出六、作为多层前馈神经网络,如果由足够多的隐藏层,和足够大的训练集,理论上可以模拟出任何方程。

反向传输算法核心(backpropagation)特点:1、通过迭代来处理训练集中的实例2、计算输入层预测值(predicted value)和真实值(target value)之间的差值error3、反向传输(输出层->隐藏层->输入层)来最小化误差(error)来更新每个链接的权重(weight)显然,对于神经网络而言,最重要的是能恰当配置好隐藏层和输出层神经元的权值和偏置。

幸好的是,这个配置是由机器来做,而不是人类。

使用神经网络的步骤一般为:建立模型,按照业务场景建立网络结构,多少个输入神经元和输出神经元,多少层隐含层,层与层之间是全连接,还是部分连接等等。

训练模型,对于已经标记好的大量数据,将它们扔到神经网络中,神经网络通过预测输出与实际输出的差值来自动调整隐藏层和输出层神经元权值和偏置。

数据预测,对于新的数据,将他们直接扔到输入层,得到的输出就是预测输出。

机器学习的主要用途为分类,聚类,回归,关联规则等等。

现有的机器学习方法有SVM,logistic回归,决策树,随机森林等方法。

但是,在需要高精度,难以提取特征的无结构化数据机器学习中,深度学习几乎是唯一的选择。

人工智能算法在股票预测中的使用教程

人工智能算法在股票预测中的使用教程人工智能(Artificial Intelligence, AI)算法在股票预测中的应用正变得越来越普遍。

其基于大数据分析和机器学习技术,能够利用历史数据进行股票价格的预测和趋势分析,为投资者提供辅助决策的参考依据。

本文将介绍几种常见的人工智能算法,以及如何使用这些算法进行股票预测。

一、人工神经网络算法(Artificial Neural Network, ANN)人工神经网络算法是一种仿生的模式识别算法,模拟人脑的神经网络结构和学习过程。

它通过输入历史数据,通过训练和调整参数,建立一个具有预测功能的模型。

在股票价格预测中,人工神经网络算法能够学习历史价格的变化趋势和因素,通过模式识别进行预测。

使用人工神经网络算法进行股票预测的步骤如下:1. 整理数据:首先,需要收集和整理历史股票价格数据,包括开盘价、收盘价、最高价、最低价以及交易量等信息。

2. 划分训练集和测试集:将数据集划分为训练集和测试集,通常将大部分数据用于训练,少部分数据用于测试。

3. 构建模型:使用人工神经网络算法构建模型。

选择合适的网络结构、激活函数和学习算法。

数据的输入层是历史价格的特征,输出层是预测结果。

4. 训练模型:将训练集数据输入到模型中进行训练,通过调整参数来优化模型的预测能力。

可以使用梯度下降等方法进行模型的优化。

5. 测试预测:使用测试集的数据进行预测,并与实际价格进行比较,评估模型的预测准确性。

可以使用均方根误差(Root Mean Square Error, RMSE)等指标进行评估。

二、长、短期记忆网络算法(Long Short-Term Memory, LSTM)长、短期记忆网络算法是一种可以处理长期依赖关系的人工神经网络,能够更好地捕捉股票价格的时序特征。

相比传统的人工神经网络算法,LSTM网络能够记忆长时间的信息,并根据这些信息进行预测。

LSTM算法在股票预测中的应用步骤如下:1. 数据预处理:与人工神经网络算法类似,首先需要整理和划分数据集。

人工神经网络算法

人工神经网络算法人工神经网络(Artificial Neural Network,ANN)是一种模拟人脑神经网络进行计算的算法。

它由多个神经元(或称为节点)组成,通过不同神经元之间的连接进行信息传递和处理。

ANN可以用于解决各种问题,如分类、回归、聚类等。

ANN的设计灵感来自于人脑神经系统。

人脑中的神经元通过电信号进行信息处理和传递,而ANN中的神经元模拟了这个过程。

ANN中的每个神经元都有多个输入和一个输出,输入通过带有权重的连接传递给神经元,然后通过激活函数进行处理,并将结果传递给输出。

通过调整连接的权重和选择合适的激活函数,ANN可以学习和适应不同的输入模式,并做出相应的输出。

ANN的训练是通过反向传播算法来实现的。

反向传播算法基于梯度下降法,通过计算预测输出和实际输出之间的误差,并根据误差来调整每个连接的权重。

这个过程通过不断迭代来实现,直到达到一定的精确度或收敛条件。

ANN的性能和表达能力取决于其结构和参数的选择。

常见的ANN结构有多层感知机(Multi-Layer Perceptron,MLP)、卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)等。

不同结构适用于不同类型的问题。

此外,ANN 的性能还受到学习率、激活函数、正则化和初始化等参数的影响。

ANN的算法具有以下优点:1.具备学习和适应能力:ANN可以通过训练数据学习和适应不同的模式,从而适用于不同的问题。

2.并行处理能力:ANN中的神经元可以并行处理输入,从而加速计算速度。

3.容错性:ANN的误差传递和权重调整机制使其对输入数据的噪声和干扰具有一定的容忍能力。

然而1.需要大量的训练数据:ANN的性能和泛化能力需要大量的标记训练数据进行训练。

2.训练过程较为复杂:ANN的训练过程需要通过反向传播算法进行权重调整,这涉及到大量的计算和迭代。

基于人工神经网络的深度学习算法综述

基于人工神经网络的深度学习算法综述深度学习(Deep Learning)是一种机器学习技术,它可以在大规模
数据集上进行训练,从而构建复杂的模型,以解决各种复杂的问题。

深度
学习是一种基于人工神经网络的机器学习技术,目前被广泛应用于计算机
视觉、自然语言处理等领域。

它通过模拟人脑的神经网络进行知识的学习,并能够根据经验来做出决策。

主要的深度学习算法有:多层感知器(Multilayer Perceptron)、
卷积神经网络(Convolutional Neural Networks)、递归神经网络(Recurrent Neural Networks)、深度置信网络(Deep Belief Networks)和强化学习(Reinforcement Learning)。

多层感知器(MLP)是一种前馈神经网络,它由多个受控的计算单元(称为神经元)组成,每个神经元都有自己的权重和偏置。

神经元之间是
通过权重相互连接的,这些权重计算出输入和输出之间的关系。

它由输入层、隐藏层和输出层组成,隐藏层中的神经元之间也是相互连接的。

卷积神经网络(CNN)是一种基于多层感知器构建的前馈神经网络。

它利用卷积运算来替代多层感知器中的全连接层,从而实现更高的准确度
和精度。

CNN的网络结构包括输入层、卷积层、池化层、全连接层和输出层。

卷积层和池化层之间会有多个,这使CNN具有深度层次的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/s/blog_5bbd6ec00100b5nk.html人工神经网络算法(2008-11-20 17:24:22)标签:杂谈人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。

这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。

机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。

根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。

人工神经网络就是这种机理。

假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。

现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊.现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就不要要求这么高了,不要说电脑,就是人类也无能为力,你的一个好朋友你经过多次的识记肯定认识吧,但是他整了容你们在大街上邂逅.你可能觉得这个人声音好熟悉,体形好熟悉,----都像自己一个朋友,就是脸长的不像.你不敢贸然上去搭讪吧(否定的判断).因为我们判定一个人是否是自己的朋友的时候依靠的关键的特征就是面部特征,而他恰恰就是改变了这一特征.当然也存在我们把一个拥有和我们朋友足够多相似特征的人判定为我们的朋友,这就是认错人的现象了.这些问题电脑也会出现.不过这个算法还是有比较积极的意义的,实现了一定程度上的智能化.下面是这种方法的理论解释:人工神经网路学习是要透过我们的头脑,因而研究大脑神经细胞的运作,可以帮助我们了解学习在脑神经是如何完成的,进而可以模拟神经细胞的运作以达到類似学习的功能。

据估计人脑约有一千亿(1011)个神经细胞,每个神经细胞约有一千(103)根連结与其它神经细胞相連,因此人脑中约有一百万亿(1014)根連结,形成一个高度連结网狀的神经网路(neural network)。

科学家们相信:人脑的信息处理工作即是透过这些連结來完成的 [葉怡成1993]。

神经细胞的形狀与一般的细胞有很大的不同,它包括:细胞体(soma):神经细胞中呈核狀的处理机构;轴突(axon):神经细胞中呈轴索狀的输送机构;树狀突(dendrites):神经细胞中呈树枝狀的输出入机构;与突触(synapse):树狀突上呈点狀的連结机构。

根据神经学家的研究发现:当神经细胞透过神经突触与树狀突从其它神经元输入脉波讯号后,经过细胞体处理,产生一个新的脉波讯号。

如果脉波讯号够强,将产生一个约千分之一秒100 毫伏的脉波讯号。

这个讯号再经过轴突传送到它的神经突触,成为其它神经细胞的输入脉波讯号。

如果脉波讯号是经过兴奋神经突触(excitatory synapse),则会增加脉波讯号的速率;相反的,如果脉波讯号是经过抑制神经突触(inhibitory synapse),则会减少脉波讯号的速率。

因此,脉波讯号的速率是同时取决于输入脉波讯号的速率,以及神经突触的强度。

而神经突触的强度可视为神经网路储存信息之所在,神经网路的学习即在调整神经突触的强度。

類神经网路(artificial neural networks),或译为人工神经网路,则是指模仿生物神经网路的信息处理系统,它是由许多人工神经细胞(又称为類神经元、人工神经元、与处理单元)所组成,人工神经细胞,如图15-18 所示。

本节将探讨最古老、也是最基本的類神经网路模式——感知机(perceptron),它是1957 年由Rosenblatt 所提出。

感知机的基本原理是由脑神经模型所启发,特别是1943 年McCulloch 和Pitts 所共同提出的數学模型,通称为MP 模型,以及Hebb 所提出的神经元学习规则,通称为Hebb 学习规则。

MP 模型的要点如下:(1) 神经元的狀态为兴奋或抑制二者之一,可用0 表示抑制狀态,用1 表示兴奋狀态。

(2) 神经元与其它神经元间的連结,可用一个加权值(weight)表示連结强度。

(3) 神经元的狀态会经由連结输出到其它神经元,成为其输入。

(4) 神经元的狀态受其相連的神经元制约,当从这些神经元传來的输入讯号(即该神经元的狀态)经过連结以加权乘积和计算所得的值大于某门坎值(threshold)时,神经元的狀态将成为兴奋狀态;否则,为抑制狀态。

以公式表示为:其中,Wij为神经元i与神经元j间的連结强度,即連结加权值,Xi为从神经元i传來的输入讯号,θj为神经元j的门坎值,f为转换函數(transfer function),通常为一个阶梯函數(step function),其定义如下:(5) 神经网路的学习过程即在调整神经元间的連结强度,即連结加权值。

而Hebb学习规则的要点如下:调整兩个神经元间連结加权值的原则为当第i个与第j个神经元同时处于兴奋狀态时,则其連结应当加强。

Hebb 学习规则与动物行为科学中的条件反射学說一致。

感知机的网路架构有兩种,如图15-19 所示,一含有隐藏层,另一种则无。

它们皆包括有输入层与输出层。

输入层用以表现网路的输入变數,其处理单元數目依问题而定,使用线性转换函數f (X ) = X,亦即输入值即为输出值。

隐藏层用以表现输入处理单元间的交互影响,其处理单元數目通常以实验方式决定其最佳數目,隐藏层可以有一层以上,也可以没有。

输出层用以表现网路的输出变數,其处理单元的數目依问题而定。

输入变數形成一个输入向量,输出变數形成一个输出向量。

图15-19 感知机网路架构我们以简单的无隐藏层的感知机來說明類神经网路的学习机制。

在神经网路的学习中,样本资料以數值形式表示,每一个样本都包含有输入向量X = [X1, X2, …,Xn] 和目标输出向量T = [T1, T2, …, Tm]。

一般将所有的样本资料随机分为兩部分,一部分为训練样本(training samples),另一部分为测试样本(test samples)。

首先,将感知机初始化,即给定每一个連结一个随机亂數值。

然后将一个训練样本的输入向量X输入感知机中,并利用公式 (15-6.1) 和 (15-6.2) 计算其推論输出向量Y= [Y1, Y2, …, Ym]。

此网路利用由训練样本输入之目标输出向量T和透过网路推得的推論输出向量Y相较之下的误差,作为修正連结中的加权值的依据,以从训練样本中学习隐含的输入向量与输出向量之对应关系。

差距量δj计算公式如下:δj=T j-Y j (15-6.4)若δj > 0,表示推論输出变數Y j小于目标输出变數T j,根据公式 (15-6.2) 得知連结加权值W ij太小,故应增加W ij的值。

相反的,若δj < 0,表示推論输出变數Y j大于目标输出变數T j,根据公式 (15-6.2) 得知連结加权值W ij太大,故应减少W ij的值。

加权值之改变量公式可表达如下:△W ij=ηδXi (15-6.5)其中,η为学习速率(learning rate),控制每次加权值改变量的幅度。

公式 (15-6.5)中,加权值之改变量也应与输入讯号Xi成正比,因为讯号越大,其修正量也应越大。

同理,输出单元的门坎值改变量公式计算如下:△θj=-ηδj (15-6.6)類神经网路的学习过程,通常以一次一个训練样本的方式进行,直到学习完所有的训練样本为止,称为一个学习循环(learning cycle)。

加权值与门坎值的修正可采用逐步学习(step learning)或批次学习(batch learning),逐步学习是每输入一个训練样本,计算其加权值与门坎值的修正量后立即修改。

而批次学习是在一个学习循环后,计算所有训練样本的加权值与门坎值的修正量后,依下列公式计算其整体修正量而修改之。

其中,m表示第m个样本,而N为训練样本总數。

一个网路可以将训練样本反复学习多个循环,直到满足终止条件为止。

而终止条件可订为执行一定數目的学习循环或是网路已收敛(即误差不再有明显变化)。

感知机的误差程度可用总错误率E定义如下:学习过程:1. 设定网路參數。

2. 以均布随机亂數设定加权值矩阵W,与偏权值向量初始值。

3. 输入一个训練样本的输入向量X与目标输出向量T。

4. 计算推論输出向量Y。

5. 计算差距量δ。

6. 计算加权值矩阵修正量ΔW,以及偏权值向量修正量Δθ。

7. 更新加权值矩阵W,以及偏权值向量θ。

8. 重复步骤3 至步骤7 直至到收敛或执行一定數目的学习循环。

回想过程:1. 设定网路參數。

相关文档
最新文档