离散数学期末考试题(附答案和含解析1)

合集下载

离散数学期末考试含答案

离散数学期末考试含答案

离散数学综合练习题一一、单项选择题(每题2分 )16 %设P :王强是南方人,Q :他怕热.命题“王强不怕热是因为他是南方人”符号化为 ( ) (A)(B)()(D)P Q P Q C Q P Q P →→⌝→⌝→2 设F (x ):x 是熊猫,G (y ):y 是竹子,H (x ,y ):x 喜欢y. 那么命题“有些熊猫喜欢各种的竹子”符号化为 ( )(A) (()(()(,)))x F x y G y H x y ∃→∀∧ (B) (()(()(,)))x F x y G y H x y ∃→∀→ (C) (()(()(,)))x F x y G y H x y ∃∧∀→ (D) (()(()(,)))y x F x G y H x y ∀∃→∧3. 命题公式()p q p →∧⌝是 ( )(A) 重言式 (B) 矛盾式(C) 可满足式 (D) 以上3种都不是4. 设集合A ={a,b,{c,d,e}}则下列各式为真的是 ( )(A) ∈A (B) c ∈A (C) {c,d,e} A (D) {a,b}A5. 设函数 :f N N →且()3x f x =,则f 是 ( )(A) 单射,非满射 (B) 满射,非单射 (C) 双射 (D) 非单射,非满射6. 设E 为全集, A , B 为非空集,且BA ,则空集为( )(A) A B I (B) A B :I (C) A B I : (D) A B :I :7. 设A ={0,1,2,3},A 上的关系R ={<0,1>,<0,2>,<1,1>,<1,2>,<2,1>,<2,2>,<3,3>},则R 是 ( )(A )自反的 (B )对称的 (C )反对称的 (D )可传递的8. 无向图K 3,3是( )(A )哈密顿图 (B )欧拉图 (C )完全图 (D )平面图二、填空题(每空2分)18 %1. 设():F x x 是火车,():G y y 是汽车,H (x,y ):x 比y 快,则命题“说所有火车比有的汽车快是不对的”符号化是 ,其另一种等值形式为 。

离散数学期末试卷及答案

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分)在各题末尾的括号内画 表示正确,画 表示错误:1.设p、q为任意命题公式,则(p∧q)∨p ⇔ p ( )2.∀x(F(y)→G(x)) ⇔ F(y)→∃xG(x)。

( )3.初级回路一定是简单回路。

( )4.自然映射是双射。

( )5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。

( )6.群的运算是可交换的。

( )7.自然数集关于数的加法和乘法<N,+, >构成环。

( )8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。

( )9.设A={a,b,c},则A上的关系R={<a,b>,<a,c>}是传递的。

( )10.设A、B、C为任意集合,则A⨯(B⨯C)=(A⨯B)⨯C。

( )二、填空题(共10题,每题3分,共30分)11.设p:天气热。

q:他去游泳。

则命题“只有天气热,他才去游泳”可符号化为。

12.设M(x):x是人。

S(x):x到过月球。

则命题“有人到过月球”可符号化为。

13.p↔q的主合取范式是。

14.完全二部图K r,s(r < s)的边连通度等于。

15.设A={a,b},,则A上共有个不同的偏序关系。

16.模6加群<Z6,⊕>中,4是阶元。

17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。

.18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度列为。

19.n阶无向简单连通图G的生成树有条边。

20.7阶圈的点色数是。

三、运算题(共5小题,每小题8分,共40分)21.求∃xF(x)→∃yG(x,y)的前束范式。

22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R证明: 左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P∨Q)∨(P∨Q))∧RT∧R(置换)R2) x (A(x)B(x))xA(x)xB(x)证明:x(A(x)B(x))x(A(x)∨B(x))x A(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D,(C∨D)E,E(A∧B),(A∧B)(R∨S)R∨S 证明:(1) (C∨D) E P(2) E(A∧B) P(3) (C∨D)(A∧B) T(1)(2),I(4) (A∧B)(R∨S) P(5) (C∨D)(R∨S) T(3)(4),I(6) C∨D P(7) R∨S T(5),I2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x) P(2)P(a) T(1),ES(3)x(P(x)Q(y)∧R(x)) P(4)P(a)Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)x(P(x)∧R(x)) T(8),EG(10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空
2.A ,B,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C )—A
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 . 6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:
⎪⎪⎪⎪⎪⎭

⎝⎛=0000100001010010
R
⎪⎪⎪⎪⎪⎭


⎛=0000000010100101
2
R
7.设A={a,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a ,b),(a ,c ), (a ,d), (b,d ), (c,d )} U {(a ,a),(b,b)(c,c )(d ,d )} .
//备注:偏序满足自反性,反对称性,传递性
8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图。

自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d } ,A 上二元运算如下:
* a b c d a b c d
a b c d b c d a c d a b d a b c
那么代数系统〈A,*〉的幺元是 a ,有逆元的元素为 a ,b,c,d ,它们的逆元分别为 a ,b ,c,d 。

//备注:二元运算为x*y=max{x,y },x ,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大
下界的偏序)
二、选择题
1、下列是真命题的有( C 、D )
A . }}{{}{a a ⊆;
B .}}{,{}}{{ΦΦ∈Φ;
C .
}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ.
2、下列集合中相等的有( B 、C )
A C
A .{4,3}Φ⋃;
B .{Φ,3,4};
C .{4,Φ,3,3};
D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( C )个。

A . 23 ; B . 32 ; C .
332⨯; D . 2
23⨯。

//备注:A 的二元关系个数为:
2
n 2
个。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( A ) A .若R ,S 是自反的, 则S R 是自反的; B .若R,S 是反自反的, 则S R 是反自反的; X C .若R,S 是对称的, 则S R 是对称的; X D .若R ,S 是传递的, 则S R 是传递的. X //备注:设R={<3,3>,〈6,2〉},S={<2,3〉}, 则R S
={
〈6,3>} , S R ={〈2,3〉}
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下
|}||(|)(,|,{t s A p t s t s R =∧∈><=,则P (A )/ R=( D )
A .A ;
B .P(A) ;
C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};
D .{{Φ},{2},{2,3},{{2,3,4}},{A }}
6、设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为( C )
//例题:画出下列各关系的哈斯图
1)P={1,2,3,4},<P,≤>的哈斯图。

2)A={2,3,6,12,24,36},〈A,整除>的哈斯图。

3)A={1,2,3,5,6,10,15,30},<A ,整除>的哈斯图
7、下列函数是双射的为( A ) //双射既是单射又是满射
A .f : I →E , f (x) = 2x ;
B .f : N →N ⨯N, f (n) = <n , n+1> ;
C .f : R →I , f (x) = [x ] ;//x 的象
D .f :I →N , f (x) = | x | 。

(注:I —整数集,
E —偶数集, N —自然数集,R-实数集) 8、图 中 从v1到v3长度为3 的通路有( D )条。

//备注:分别是v1-〉v1-〉v1—>v3,v1-〉v4->v1—〉v3,v1—>v3—〉v1—>v3
A .0;
B .1;
C .2;
D .3。

9、下图中既不是Eular (欧拉)图,也不是Hamilton (哈密顿)图的图是( B )
10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有( A )个4度结点。

A .1;
B .2;
C .3;
D .4 .
//备注:树的顶点数=边数+1 7+3×3+4n=2(7+3+n —1) 解得n=1 三、证明题
1、R 是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当< a , b>和<a , c 〉在R 中有〈b , c 〉在R 中。

证:
“⇒"
X c b a ∈∀,, 若R >c ,a <,>b ,a <∈由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得 R >c ,b <∈ “⇐” 若
R >b ,a <∈,R >c ,a <∈有 R >c ,b <∈ 任意 X b a ∈,,因R >a ,a <∈若
R >b ,a <∈R >a ,b < ∈∴ 所以R 是对称的

R >b ,a <∈,R >c b,<∈ 则 R c b, R >a b,<>∈<∧∈ R >c ,a < ∈∴ 即R 是传递的
2、f 和g 都是群〈G1 ,★〉到〈 G2, *〉的同态映射。

证明〈C , ★>是〈G1, ★〉的一个子群.其中C=)}()(|{1x g x f G x x =∈且
证:
C b a ∈∀,,有 )()(),()(b g b f a g a f ==,又
)()(,
)()(111
1b g b g b f
b f ----==)()()()(1111----===∴b g b g b f b f
a f (∴★a g
b g a g b f a f b ()(*)()(*)()111===---★)1-b
a ∴★C
b ∈-1 ∴〈 C , ★〉 是 < G1 , ★〉的子群.
3、G=〈V , E 〉 (|V | = v ,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则 2)
2(--≤
k v k e , 由此
证明彼得森图(Peterson )图是非平面图。

(11分) 证:
①设G 有r 个面,则
rk
F d e r
i i ≥=∑=1
)(2,即
k e
r 2≤。


2=+-r e v 故
k e
e v r e v 22+
-≤+-=即得
2)
2(--≤
k v k e .(8分)
②彼得森图为
10,15,5===v e k ,这样2)
2(--≤
k v k e 不成立,
所以彼得森图非平面图为:
四、逻辑推演
1、用CP 规则证明下题
)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀
①)(x xP ∀
P (附加前提)

)(c P
US①
③))()((x Q x P x →∀ P ④)()(c Q c P →
US③

)(c Q T②④I ⑥
)(x xQ ∀ UG⑤ ⑦
)()(x xQ x xP ∀→∀ CP
五、计算题
1、设集合A={a,b,c,d}上的关系R={〈a , b > ,< b , a 〉 ,< b, c > , 〈 c , d 〉}用矩阵运算求出R 的传递闭包t (R )。

解:
⎪⎪⎪


⎭⎫

⎛=0000100001010010
R M , ⎪⎪⎪
⎪⎪
⎭⎫
⎝⎛==00000000101001012R R R M M M , ⎪⎪⎪
⎪⎪⎭⎫
⎝⎛==00000000010
1101023R R R M M M
⎪⎪⎪
⎪⎪
⎭⎫

⎛==000000001010
0101
3
4R R R M M M , ⎪⎪⎪
⎪⎪⎭⎫
⎝⎛=+++=00001000111
11111432)(R R R R R t M M M M M
t (R)={〈a , a 〉 , <a , b> , < a , c> , 〈a , d 〉 , 〈b , a 〉 , 〈 b ,b > , < b , c 。

〉 , 〈 b , d 〉 , 〈 c , d > }。

相关文档
最新文档