8、排列组合问题之涂色问题(四个方面)

8、排列组合问题之涂色问题(四个方面)
8、排列组合问题之涂色问题(四个方面)

排列组合问题之涂色问题(四个方面)

一、区域涂色问题

1、根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法。

例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?

解析:先给①号区域涂色有5种方法;再给②号涂色有4种方法;接着给③号涂色方法有3种方法;由于④号与①号、②号不相邻,因此④号有4种涂法。根据分步计数原理,不同的涂色方法有5434240???=种。

2、根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数。

例2、4种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

解析:依题意只能选用4种颜色,要分四类:

㈠②与⑤同色、④与⑥同色,则有4

4A 种;

㈡③与⑤同色、④与⑥同色,则有4

4A 种; ㈢②与⑤同色、③与⑥同色,则有4

4A 种;

㈣③与⑤同色、②与④同色,则有44A 种; ㈤②与④同色、③与⑥同色,则有4

4A 种。

根据分类计数原理得涂色方法总数为4

45120A =。

例3、如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色。现有4

解析:依题意至少要用3种颜色。 ①若用3

种颜色,区域2与4必须同色, 区域3与5必须同色,故有3

4A 种;

②若用4种颜色,则区域2与4同色,

区域3与5不同色,有44A 种;或区域3与5同色,区域2与不同色,有4种。共有4种。

根据分类计数原理得满足题意的着色方法共有34

44272A A +=。

3、根据某两个不相邻区域是否同色分类讨论。从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数。

例4、用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,五种颜色可以反复使用,共有多少种不同的涂色方法?

解析:可把问题分为三类:

①四格涂不同的颜色,有3

4A 种;

②有且仅有两个区域颜色相同,即只有 一组对角小方格涂相同的颜色。涂法种数有

12

542C C ; ③两组对角小方格分别涂相同的颜色,有2

5A 种。

根据分类计数原理得涂法种数共有3122

45452260A C C A ++=种。

②① ③

④ ⑤

4、根据相间区域使用颜色分类讨论。

例5、如图,6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可以反复使用,共有多少种不同的涂色方法?

解析:①当相间区域A 、C 、E 着同一种颜 色时,有4种着色方法,此时B 、D 、F 各有3 种着色方法,共有4333108???=种方法。

②当相间区域A 、C 、E 着两种不同

的颜色时,有2234C A 种着色方法,此时B 、D 、F

有322??种着色方法,共有2234322432C A ???=种方法。

③当相间区域A 、C 、E 着三种不同的颜色时有34A 种着色方法,此时B 、D 、

F 各有2种着色方法,共有34222192A ???=种方法。

总计有108432192732++=种不同的涂色方法。

5、用数列递推公式解决扇形区域涂色问题。

例6、把一个圆分成()2n n ≥个扇形,每个扇形用红、白、蓝、黑四色之一染色,要求相邻扇形不同色,有多少种不同的染色方法?

解析:设n 个扇形分别为1A 、2A 、、n A ,分成n 个扇形时的染色方法有n a 种,则

①当2n =时1A 、2A 有2412A =种染色方法,即212a =。

②当分成n 个扇形时,1A 与不同色,2A 与3A 不同色,,1n A -与n A 不同色,共有

143n -?种染色方法。由于n A 与1A 相邻,应排除n A 与1A 同色的情形。

n A 与1A 同色时,可把n A 、 1A 看成一个扇形,与前2n -个扇形加在一起为1n -个扇

形,此时有1n a -种染色法。故有如下递推关系:

1143n n n a a --=?-

1143n n n a a --∴=-+?()2124343n n n a ---=--+?+?

2124343n n n a ---=-?+?321343

4343n n n n a ----=+?-?+? ()1243313n n n --??==?-++-???

()()12313313n n n --??=+?-++-??? ()()12123331313313n n

n n n n ----????=?-++-?+?-++-????? ()()()12212233313331313n n n n n n n n ----????=-+-+-?+-+--?+-????? ()133n

n =-?+

二、点涂色问题

方法:㈠根据共用了多少种颜色分类讨论;

㈡根据相对顶点是否同色分类讨论;

㈢将空间问题平面化,转化为区域涂色问题。

例7、将一个四棱锥S ABCD -

同一条棱的两端点异色,如果只有5染色方法的总数是多少?

解法一:满足题设条件的染色至少要用3种颜色。

①若恰用3种颜色,可先从5种颜色中任选一种染 A

B E F

C

D B

C

顶点S ,再从余下的4种颜色中任选2种染A 、B 、

C 、

D 四点,此时只能A 与C 、B 与D 分别同色,故

有125460C A =种方法。

②若恰用4种颜色,可以先从5种颜色中任选一种

染顶点S ,再从余下的4种颜色中任选2种染A 与B ,

由于A 、B 颜色可以交换,故有24A 种染法;再从余下的2种颜色中任选1种染D 或C ,而

D 与C 中的另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。

③若恰用5种颜色,有55120A =种方法。

综上,满足题意的染色方法数为60240120420++=种。

解法二:设想染色按S A B C D ----的顺序进行,对S 、A 、B 染色,

有54360??=种染色方法。由于C 点的颜色可能与A 同色或不同色,这影响到D 点颜色的选取方法数,故分类讨论:①C 与A 同色时(此时C 对颜色的选取方法唯一),

D 应与A (C )、S 不同色,有3种选择;②C 与A 不同色时, C 有2种选择的颜色,D 也有2种颜色可选择,从而对C 、D

染色有13227?+?=种染色方法。由分步计数乘法原理得,总 的染色方法数为607420?=种。 解法三:这个问题可转化成相邻区域不同色问题。如图,对这

五个区域用5种颜色涂色,有多少种不同的涂色方法?

三、线段涂色问题

方法:㈠根据共用了多少颜色分类讨论。

㈡根据相对线段是否同色分类讨论。

解决线段涂色问题,要特别注意对各条线段依次涂色。

例8、用红、黃、蓝、白四种颜色涂矩形ABCD 的四条边,每条边只涂一种颜色,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?

解法一:(1)①使用四种颜色,有44A 种;

②使用三种颜色,则必须将一组对边染成同色,故有112423C C A 种;

③使用二种颜色,则两组对边必须分别同色,有24A 种;

因此,染色方法共有411224423484A C C A A ++=种。

解法二:涂色按AB BC CD DA ---的顺序进行,对AB 、BC 涂色有4312?=种。

由于CD 的颜色可能与AB 同色或不同色,这影响到DA 颜色的选取,故分类讨论: ①当CD 与AB 同色时,这时CD 对颜色的选取唯一,则DA 有3种颜色可选; ②当CD 与AB 不同色时,CD 有两种颜色可选,DA 也有两种颜色可选.

对CD 、DA 有13227?+?=种涂色方法。

由分步计数乘法原理,总的涂色方法数为12784?=种。

例9、用六种颜色给正四面体A BCD -的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法?

解析:①若恰用三种颜色,则每组对棱涂同色,组与组之间不同色,有36A 种方法。

②若恰用四种颜色,则三组对棱中有二组对棱涂同色,有2436C A 种方法。

③若恰用五种颜色,则三组对棱中有一组对棱涂同色,有1536C A 种。

④若恰用六种颜色,则有66A 种。

综上,总的染色方法数为3241566363664080A C A C A A +++=种。

四、面涂色问题

例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?

解析:至少需要三种颜色,根据用了多少种颜色分类讨论。

①用了六种颜色。确定某种颜色所涂面为下底面,则上底面颜色有5种选择,在上、下底面已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案。153!30n =?=种。

②用了五种颜色。选定五种颜色有566C =种,必有两面同色(必为相对面)

,确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方案数取决于右侧面的颜

色,有3种选择(前后面可通过翻转交换)。5265390n C =??=种。

③用了四种颜色。仿上分析可得4236490n C C ==种。

④用了三种颜色。仿上分析可得34620n C ==种。

综上,总的涂色方案数为123430909020230n n n n +++=+++=种。

例10、四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?

?

解析:可转化为区域涂色问题。如右图,区域1、2、3、4相当于四个侧面,区域5相

当于底面。根据共用颜色多少分类:最少要用3种颜色,即1与3同色、2与4同色,有34

A 种;当用4种颜色时,1与3、2与4两组中只能有一组同色,此时有1424C A 种。故涂色方法

总数为31442472A C A +=种。

例11、用三种不同的颜色填涂右图33?方格中的9个区域,

要求每行、每列的三个区域都不同色,则不同的填涂方法种

数共有 ( D )

A 、48

B 、24

C 、12

D 、6

解析:第一行(或列)3种;第二行(或列)2种;第三

行(或列)1种。共有3216??=种。

B

C

排列组合中的区域涂色问题

排列组合中区域涂色问题 排列组合中的区域涂色问题技巧性强,方法灵活多变,一直是选修2-3中的教学难点问题。本文对部分常见区域涂色问题的解题规律做一下探讨。 区域涂色问题,应当从使用多少种颜色入手,分类讨论。再每一类中(若有必要),再根据两个不相邻区域是否同色分小类讨论。最后再根据分类加法计数原理求出所有方法种数。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜 分析:当使用4中颜色涂色时,方法种数为4 5A ;当使用3中颜色时,分两类:①④同色或者②④同色,方法种数为3 52A 。可以这样给学生解释:①④同色,相当于①④合并成了一个区域,这样的话原本的四个区域变成了3个区域,故涂色方法种数为35A 。根据分类分类加法原理,所有涂色方法总数为4355 2A A +。 例2、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意,可分为3种颜色或4中颜色两类。 ①当先用三种颜色时,区域2与4必须同色,区域3与5必须同色,(相当于5个区 域合并成了4个区域)故有3 4A 种; ②当用四种颜色时,若区域2与4同色,则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有24 4A 种。最后,由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72

例3、用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: ①涂四中颜色:四格涂不同的颜色,方法种数为45A ; ②涂三种颜色:有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色, 涂法种数为 12 542C A ; ③涂两种颜色:两组对角小方格分别涂相同的颜色,涂法种数为2 5A , 因此,所求的涂法种数为 2122 55452260A C A A ++= 例4、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据分类加法原理得涂色方法总数为544A =120 例5、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 分析:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法? ① ② ③ ④ ⑤ ⑥

高考数学轻松搞定排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第 1 2类办法中有 m种不同的方法,…,在第n类办法中有n m种不同的 2 方法, 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第 1 2步有 m种不同的方法,…,做第n步有n m种不同的方法,那么完2 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略

一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34 A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间, 也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也 看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能 连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4 舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 443

最新排列组合经典:涂色问题资料

高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 一.区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1。用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色 方法种数。 例2、四种不同的颜色涂在如图所示的6 个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44 A ; (2 )③与⑤同色、④与⑥同色,则有44 A ; (3)②与⑤同色、③与⑥同色,则有44 A ; (4)③与⑤同色、② 与④同色,则有 44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为54 4A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与4不同色,有4 4A 种,故用四种颜色时共有2 44 A 种。由加法原理可知满足题意的着色方法共有 34 A +24 4A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出 两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为45A ; (2) 有且仅两个区域相同的颜色, (3) 即只 有一组对角小方格涂相 同的颜色,涂法种数为 12542C A ; 5) 两组对角小方格分别涂相同的颜色,涂法种数为 25A , ① ② ③ ④ ⑤ ⑥

排列组合中的区域涂色问题

排列组合中区域涂色问题 排列组合中的区域涂色问题技巧性强,方法灵活多变,一直是选修2-3中的教学难点问题。本文对部分常见区域涂色问题的解题规律做一下探讨。 区域涂色问题,应当从使用多少种颜色入手,分类讨论。再每一类中(若有必要),再根据两个不相邻区域是否同色分小类讨论。最后再根据分类加法计数原理求出所有方法种数。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:当使用4中颜色涂色时,方法种数为4 5A ;当使用3中颜色时,分两类:①④同色或者②④同色,方法种数为3 52A 。可以这样给学生解释:①④同色,相当于①④合并成了一个区域,这样的话原本的四个区域变成了3个区域,故涂色方法种数为3 5A 。根据 分类分类加法原理,所有涂色方法总数为43 55 2A A +。 例2、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意,可分为3种颜色或4中颜色两类。 ①当先用三种颜色时,区域2与4必须同色,区域3与5必须同色,(相当于5个区域合并成了4个区域)故有 3 4 A 种; ②当用四种颜色时,若区域2与4同色,则区域3与5不同色,有4 4A 种;若区域3 与5同色,则区域2与4不同色,有4 4A 种,故用四种颜色时共有2 4 4A 种。最后,由加法 原理可知满足题意的着色方法共有 34 A +2 4 4A =24+2?24=72

例3、用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: ①涂四中颜色:四格涂不同的颜色,方法种数为 4 5A ; ②涂三种颜色:有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色,涂法种数为 1254 2C A ; ③涂两种颜色:两组对角小方格分别涂相同的颜色,涂法种数为2 5A , 因此,所求的涂法种数为 212 255452260 A C A A ++= 例4、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据分类加法原理得涂色方法总数为54 4A =120 例5、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 分析:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法? ① ② ③ ④ ⑤ ⑥

解排列组合难题二十一方法

解排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

【排列组合】高中数学中涂色问题的“一带一路”模型

涂色问题的“一带一路”模型 例题用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,则不同的涂色方法共有________种(用数字作答). 解析:按照A→B→C→D的顺序进行涂色 N=6×5×5×5=750(种) 变式1 用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,若两端的格子颜色相同,则不同的涂色方法共有________种(用数字作答). 解析:按照A→D→B→C的顺序进行涂色 N=6×1×5×4=120(种) 变式2 用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子颜色不同,则不同的涂色方法共有________种(用数字作答). 解析: 法一:直接法 按照A→B→C→D的顺序进行涂色,对C按照CA同色(1×5)、CA异色(4×4)进行分类,则N=6×5×(1×5+4×4)= 630(种) 法二:间接法 由例题知在没有其它限制条件下共有750种涂法,由变式1知其中两端颜色相同的涂法有120种. 故两端格子异色的涂法为:N=750-120=630(种) 变式3 用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且最多使用3种颜色,则不同的涂色方法共有________

种(用数字作答). 解析:由分析知:完成涂色需要用的颜色数可能为2种、3种、4种,而本题中要求“最多使用3种颜色”,故对颜色数进行分类,再按照A→B→C→D的顺序涂色. ①2种颜色: 当A、B涂完色后C、D颜色已经确定了,故n1=6×5×1×1=30; ②3种颜色: 对C按照CA同色(1×4)、CA异色(4×2)进行分类,则 n2=6×5×(1×4+4×2)= 360(种). ∴N= n1+ n2=30+360= 390(种) 变式4 从6种不同的颜色中选出4种给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,则不同的涂色方法共有________种(用数字作答). 解析: 法一:直接法(简单快捷) 按照A→B→C→D的顺序涂色,N=6×5×4×3=360(种) 法二:间接法(繁琐易错) 按所用的颜色数进行分类如下: ①2种颜色:n1=6×5×1×1=30; ②3种颜色:n2=6×5×(1×4+4×2)=360; ③4种颜色:n3=6×5×4×3=360. 故N=30+360+360=750(种) 【思考】用6种不同的颜色给图中的5个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,则不同的涂色方法共有________种(用数字作答).

排列组合经典:涂色问题

排列组合经典:涂色问题

高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 一.区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1。用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号 与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色 方法种数。 例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44 A ; (2)③与⑤同色、④与⑥同色,则有44 A ; (3)②与⑤同色、③与⑥同色,则有44 A ; (4)③与⑤同色、② 与④同色,则有 44 A ;(5)②与④同色、③与⑥同色,则有4 4A ; 所以根据加法原理得涂色方法总数为544A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4 A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有 44 A 种;若区域3与5同色,则区域2与4不同色,有4 4A 种,故用四种颜色时共有2 44 A 种。由加法原理可知满足题意的着色方法共有 34 A +24 4A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出 两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为45A ; (2) 有且仅两个区域相同的颜色, (3) 即只 有一组对角小方格涂相 同的颜色,涂法种数为 12542C A ; 5) 两组对角小方格分别涂相同的颜色,涂法种数为 25A , ② ① ③ ④ 2 4 3 1 5 ① ②③ ④ ⑤ ⑥ 1 2 3 4

解决排列组合中涂色问题的常见方法及策略

解决排列组合中涂色问题的常见方法及策略 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜 色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求 出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ;l (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色, 有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法② ① ③ ④ 2 4 3 1 5 ① ②③ ④ ⑤ ⑥

高中数学轻松搞定排列组合难题二十一种方法10页

高中数学轻松搞定排列组合难页10题二十一种方法. 高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排 列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标

1.进一步理解和应用分步计数原理和分类计数原理。能运用解题策略解决简单的综合应用掌握解决排列组合问题的常用策略; 2. 题。提高学生解决问题分析问题的能力. 学会应用数学思想和方法解决排列组合问题 3. 复习巩固) 加法原理1.分类计数原理(2种不同的方法,在第完成一件事,有类办法,在第1类办法中有mn1种不同的方法,类办法中有类办法中有种不同的方法,…,在第mmn n2那么完成这件事共有2种不同的方法.分步计数原理(乘法原理)2.2种不同的方法,做第个步骤,做第1步有完成一件事,需要分成mn1种不同的方法,那么完成这件步有步有种不同的方法,…,做第mmn n2事共有2种不同的方法.分类计数原理分步计数原理区别3. 分类计数原理方法相互独立,任何

一种方法都可以独立地完成这件事。 不能完每步中的方法完成事件的一个阶段,分步计数原理各步相互依存,成整个事件.: 解决排列组合综合性问题的一般过程如下 1. 认真审题弄清要做什么事或是分步与分类同时即采取分步还是分 类,2.怎样做才能完成所要做的事, ,确定分多少步及多少类。进行元素总数是,无序)问题确定每一步或每一类是排列问题3.(有序)还是组合(. 多少及取出多少个元素因此必须掌握一些常用的解往往类与步交叉,4.解决排列组合综合性问题,题策略 .特殊元素和特殊位置优先策略一. 可以组成多少个没有重复数字五位奇数1.例由0,1,2,3,4,5以免不合要求的元素占了这应该优先安排,,解:由于末位和首位有特殊要求2 131CAC344. . 两个位置先排末位共有1C3然后排首位共有1C4最后排其它位置共有3A4由分步计数原理得311C288CA?434

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高中数学轻松搞定排列组合难) 含答案(题二十一种方法. 高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排 列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标

1.进一步理解和应用分步计数原理和分类计数原理。能运用解题策略解决简单的综合应用掌握解决排列组合问题的常用策略; 2. 题。提高学生解决问题分析问题的能力. 学会应用数学思想和方法解决排列组合问题 3. 复习巩固) 加法原理1.分类计数原理(2种不同的方法,在第完成一件事,有类办法,在第1类办法中有mn1种不同的方法,类办法中有类办法中有种不同的方法,…,在第mmn n2那么完成这件事共有2种不同的方法.分步计数原理(乘法原理)2.2种不同的方法,做第个步骤,做第1步有完成一件事,需要分成mn1种不同的方法,那么完成这件步有步有种不同的方法,…,做第mmn n2事共有2种不同的方法.分类计数原理分步计数原理区别3. 分类计数原理方法相互独立,任何

一种方法都可以独立地完成这件事。 不能完每步中的方法完成事件的一个阶段,分步计数原理各步相互依存,成整个事件.: 解决排列组合综合性问题的一般过程如下 1. 认真审题弄清要做什么事或是分步与分类同时即采取分步还是分 类,2.怎样做才能完成所要做的事, ,确定分多少步及多少类。进行元素总数是,无序)问题确定每一步或每一类是排列问题3.(有序)还是组合(. 多少及取出多少个元素因此必须掌握一些常用的解往往类与步交叉,4.解决排列组合综合性问题,题策略 .特殊元素和特殊位置优先策略一. 可以组成多少个没有重复数字五位奇数1.例由0,1,2,3,4,5以免不合要求的元素占了这应该优先安排,,解:由于末位和首位有特殊要求2 131CAC344. . 两个位置先排末位共有1C3然后排首位共有1C4最后排其它位置共有3A4由分步计数原理得311C288CA?434

解决排列组合中涂色问题的常见方法及策略

解决排列组合中涂色问题的常见方法及策略 江苏省阜宁中学 刘 佐 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种 颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理 求出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3A 种; ① ②③ ④ ⑤ ⑥

排列组合高考真题及答案

排列组合高考真题及答 案 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种 【答案】B 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有 种方法;其他四封信放入两个信封, 每个信封两个有种方法,共有种,故选B. 2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 (A )30种 (B )36种 (C )42种 (D )48种 解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即221211645 4432C C C C C C -?+=42 法二:分两类 甲、乙同组,则只能排在15日,有24C =6种排法 3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有

A. 504种 B. 960种 C. 1008种 D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4 414 222A A A ?种方法 甲乙排中间,丙排7号或不排7号,共有)(43 31313 4422A A A A A +种方法 故共有1008种不同的排法 名学生和2位第师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C 答案:A 5.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法 ①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个 ②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个 答案:C 6.如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用 (A )288种 (B )264种 (C )240种 (D )168种 【答案】D 【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。 (1) B,D,E,F 用四种颜色,则有441124A ??=种涂色方法;

高中数学排列组合难题二十一种方法(含答案)

高考数学排列组合难题二十一种方法 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 具体策略 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.那么不同插法的种数为 30 四.定序问题倍缩空位插入策略

排列组合中涂色问题

解决排列组合中涂色问题的常见方法及策略 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种 颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理 求出不同的涂色方法种数。 例2、(2003卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; ① ②③ ④ ⑤ ⑥

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

解决排列组合中涂色问题专题讲座(有详细答案)

解决排列组合中涂色问题的常见方法及策略专题讲座 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧 性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种 颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理 求出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不 能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; ① ④ ⑤

(2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色, 有44A 种,故用四种颜色时共有244A 种。由加法原理可知满足题意的着色方 法共有34A +244A =24+2 24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入 手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一 种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同 的涂色方法? 分析:可把问题分为三类:

高中数学排列组合难题二十一种方法学生版 (1)

1 高考数学排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此 解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =++ +种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =?? ?种不同的方法. 3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例 2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续 出场,则节目的出场顺序有多少种? 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两 个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就 座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 八.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种 不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种 九.小集团问题先整体后局部策略 例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 练习题: 1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有几种 十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 练习题: 1. 10个相同的球装5个盒中,每盒至少一有多少装法? 2 .100x y z w +++=求这个方程组的自然数解的组数 十一.正难则反总体淘汰策略 例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种? 练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 十二.平均分组问题除法策略 例12. 6本不同的书平均分成3堆,每堆2本共有多少分法? 1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法? 2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略 例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要 演出一个2人唱歌2人伴舞的节目,有多少选派方法 1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须

相关文档
最新文档