(预测题)中考数学专题20几何三大变换问题之轴对称(折叠)问题(含解析)

(预测题)中考数学专题20几何三大变换问题之轴对称(折叠)问题(含解析)
(预测题)中考数学专题20几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题

轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。

一. 有关三角形的轴对称性问题

1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF .

2. 如图,在Rt △ABC 中,∠C=900

,∠B=300

,BC=23,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。

F D

C

E

A

B

【答案】3。

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。

二. 有关四边形的轴对称性问题

3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】

A.4种 B.5种 C.6种 D.7种

【答案】B。

【考点】利用旋转的轴对称设计图案。

【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案:

得到的不同图案有:

共5个。故选B 。

4. 如图,△ABC 中,已知∠BAC=45°,AD ⊥BC 于D ,BD=2,DC=3,求AD 的长。

小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。

(1)分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 、C 点的对称点分别为E 、F ,延长EB 、FC 相交于G 点,求证:四边形AEGF 是正方形;

(2)设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值。

【答案】(1)由翻折变换可得∠E =∠A DB =90°,EB =BD =2,CF =CD =3,∠F =∠ADC =90°,AE =AD ,AF =AD ,再结合可得四边形AEGF 为矩形,再有AE =AF =AD ,即可证得结论;(2)6 【解析】

据勾股定理即可列方程求得结果.

在Rt △BGC 中,

解得(不合题意,舍去) ∴AD =x=6.

2

225)3()2(=-+-x x 1621-==x x ,

考点:翻折变换,正方形的判定,勾股定理

点评:解答本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.

5.菱形ABCD中,∠ABC=450,点P是对角线BD上的任一点,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H, BE与DF相交于点M,DG与BH相交于点N,证明:四边形BMDN是正方形。

【答案】∵四边形ABCD是菱形,

∴∠ABD=∠DBC=∠ADB=∠BDC。

∵∠ABC=450,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H,

∴∠MBN=∠MDN=900,∠MBC=∠MDB=450。

∴△BDM是等腰直角三角形。

∴∠BMD=900,BM=DM。

∴四边形BMDN是正方形。

【考点】菱形的性质,轴对称的性质,正方形的判定,等腰直角三角形的判定和性质。

三. 有关圆的轴对称性问题

6.如图,已知⊙O的直径CD为4,弧AC的度数为120°,弧BC的度数为30°,在直径CD上作出点P,使BP+AP的值最小,若BP+AP的值最小,则BP+AP的最小值为。

【答案】62

【考点】圆的综合题,轴对称(最短路线问题),弧、圆心角和圆周角的关系,等边三角形的性质,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质,配方法的应用。

【分析】如图,过B点作弦BE⊥CD,连接AE交CD于P点,连接PB,则点P 即为使BP+AP的值最小的点。

7.已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF

为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。设EB′=b,EC=c,EA′=p。试探究b,c,p三者的数量关系。

【答案】如图1,若点E在弧AB上,连接AB、AC、BC,

由题意,点A、B、C为圆上的六等分点,

∴AB=BC,

1360

ACB30

26

∠=?=。

在等腰△ABC中,过顶点B作BN⊥AC于点N,则AC=2CN=2BC?co s∠ACB=2cos300?BC,

∴AC

3 BC

=。

连接AE、BE,在CE上取一点D,使ED=EA,连接AD,

∴c = p +3b。

∵∠ABC=∠CED,

∴△ABC与△CED为顶角相等的两个等腰三角形。

∴△ABC∽△CED。∴AC CD

BC EC

=,∠ACB=∠DCE。

∵∠ACB=∠ACD+∠BCD,∠DCE=∠BCE+∠BCD,∴∠ACD=∠BCE。

在△ACD与△BCE中,∵AC CD

BC EC

=,∠ACD=∠BCE,∴△ACD∽△BCE。

∴DA AC

EB BC

=。∴

AC

DA EB3EB

BC

=?=。

∴EA=ED+DA=EC+3EB。

由折叠性质可知,p=EA′=EA,b=EB′=EB,c=EC。

∴p=c+3b。

【考点】圆的综合题,折叠问题,圆周角定理,等腰三角形的性质,相似三角形的判定和性质,锐角三角函数定义,分类思想的应用。

【分析】分点E在弧AB上和点E在弧BC上两种情况讨论,分别根据折叠的性质,综合应用圆周角定理,等腰三角形的性质,相似三角形的判定和性质,锐角三角函数定义求解即可。

四.有关利用轴对称性求最值问题

8.如图,已知直线a∥b∥c,且a与b之间的距离为3,且b与c之间的距离为1,点A到直线a的距离为2,点B到直线c的距离为3,AB=230a上找一点M,在直线c上找一点N,满足MN⊥a 且AM+MN+NB的长度和最短,则此时AM+NB=【】

A.12 B.10 C.8 D.6

【答案】C。

【考点】轴对称的应用(最短线路问题),平行线之间的距离,平行四边形的判定和性质,勾股定理。

【分析】MN表示直线a与直线c之间的距离,是定值,只要满足AM+NB的值最小即可,如图,作点A 关于直线a的对称点A′,连接A′B交直线c与点N,过点N作NM⊥直线a,连接AM,

9.

已知抛物线

的顶点在坐标轴上.

(1)求的值; (2)时,抛物线

向下平移个单位后与抛物线

关于

轴对称,且

,求

的函数关系式;

(3)

时,抛物线

的顶点为

,且过点

.问在直线

上是否存在一点

使得△

的周长最小,如果存在,求出点

的坐标, 如果不存在,请说明理由.

【答案】.解:当抛物线

的顶点在轴上时

解得

………………………………1分

当抛物线

的顶点在轴上时

………………………………2分 综上

…………………………………3分

∴抛物线:

∵过点

,即

……………………………………4分

解得

(由题意,舍去)∴

1

=n 0

>n 2

,121-==n n 0

22=-+n n 3122=-++n n n ()

3,n 1

C n

x x y -++=1221

C n

c -=12

=b 1

=a 3

-=m 1±=m 1

-=m ()0

1=+-m y

C

3

-=m 1

=m ()[]0

412

=-+-=?m x

C

Q

QPM

Q

1

-=x ()

0,1y P M

C

3<<-m 1

C ()

3,n 1

C y

c

bx ax y ++=21

C ()

0>n n C

>m m ()1

12++-=x m x y C

∴抛物线:.………………………………………………5分

【解析】略

五. 有关平面解析几何中图形的轴对称性问题

10.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D (m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E,当△ADE 是等腰直角三角形时,m= ,点E的坐标为;

【答案】3;(0,1)。

【考点】折叠问题,矩形的性质,折叠的对称性质,正方形的判定和性质。

x

x

y2

2+

=

1

C

11.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,2

3

),且与y轴交于点C(0,2

),与

x轴交于A,B两点(点A在点B的左边)。

(1)求抛物线的解析式及A,B两点的坐标;

(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由。

(2)存在。

如图,由(1)知:抛物线的对称轴l为x=4,

因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小。

∵B(6,0),C(0,2),∴OB=6,OC=2。∴B C=210。

∴AP+CP=BC=210。

∴AP+C P的最小值为210。

【考点】二次函数综合题,待定系数法的应用,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的应用(最矩线路问题),勾股定理。

中考数学中的折叠问题

D ' C ' B ' D A B C M E F B E ' D ' A C D E F 中考数学中的折叠问题 为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。几何图形的折叠问题,实际是轴对称问题。处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。所以一定要注意折叠前后的两个图形是全等的。即对应角相等,对应线段相等。有时可能还会出现平分线段、平分角等条件。这一类问题,把握住了关键点,并不难解决。 例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( ) A 、85° B 、90° C 、95° D 、100° 分析与解答:本题考查了有关折叠的知识。 由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC , ''180BMC CMC ∠+∠=°,又'C M 与'B M 重合, 则∠EMF=∠'EMC +∠'FMC =''11 ()18022 BMC CMC ∠+∠=?°= 90°,故选B 。 例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、 'D 。已知∠AFC=76°,则'CFD ∠等于( ) A 、31° B 、28° C 、24° D 、22° 分析与解答:本题同样是考查了折叠的知识。根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。 例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若OB=5,1 tan 2 BOC ∠=,则点' A 的坐标为 。 分析与解答:本题考查了结合坐标系求解矩形折叠问题的能力。 x A ' B O y C A G E F

初中数学折叠问题

第1题图 第2题图 G 第3 题图第4题图 第5题图第6 题图 折叠问题文稿(不含压轴题) 1.如图,长方形ABCD 沿AE 折叠,使D 落在边BC 上的F 点处,如果∠BAF=60°,则∠DAE=___. 2.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG 的长. 3.如图,在Rt △ABC 中,∠ACB=90°∠A<∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在D 处,如果CD 恰好与AB 垂直,那么∠A 等于_ ____. 4.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,折痕交CD 于点E ,已知AB=8cm, BC=10cm , 求EC 的长. 5.如图,直角梯形ABCD 中,∠A=90°,将BC 边折叠,使点B 与点D 重合,折痕经过点C ,若AD=2,AB=4,求∠BCE 的正切值. 6.如图,点D 、E 分别是AB 、AC 的中点,将点A 沿过DE 的直线拆叠. (1)说明点A 的对应点A '一定落在BC 上; (2)当A '在BC 中点处时,求证:AB=AC .

第7题图 7. 如图,矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是多少? 8. 如图是面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边上的中点,将点C 折至MN 上,落在点P 位置,折痕为BQ ,连结PQ . (1)求MP 的长; (2)求证:以PQ 为边长的正方形面积等于 1 3 . 9. 把矩形ABCD 对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt △ABE ,延长EB 交AD 于点F ,若矩形的宽CD=4. (1 )求证:△AEF 是等边三角形; (2)求△ AEF 的面积. 第8题图 第9题图

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

初中数学中的折叠问题电子教案

初中数学中的折叠问题 一、矩形中的折叠 1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕, 折叠后BG和BH在同一条直线上,∠CBD= 度. 2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处, 再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是. 3.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,得折痕DG,求AG的长. 根据对称的性质得到相等的对应边和对应角,再在直角三角 形中根据勾股定理列方程求解即可 4.把矩形纸片ABCD沿BE折叠,使得BA边与BC重合,然后再沿着BF折叠,使得折痕BE也与BC边重合,展开后如图所示,则∠DFB等于() 注意折叠前后角的对应关系 5.如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积. 重合部分是以折痕为底边的等腰三角形3 2 1 F E D C B A G A' C A B D

6.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状三角形. 对折前后图形的位置变化,但形状、大小不变,注意一般 情况下要画出对折前后的图形,便于寻找对折前后图形之 间的关系,注意以折痕为底边的等腰△GEF 7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥). (1)求图②中∠BCB′的大小; (2)图⑥中的△GCC′是正三角形吗?请说明理由. 理清在每一个折叠过程中的变与不变 8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中 ①②③④四个三角形的周长之和为 折叠前后对应边相等 9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B 落在边AD的中点G处,求四边形BCFE的面积 注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D重合.MN 为折痕,折叠后B’C’与DN交于P. (1)连接BB’,那么BB’与MN的长度相等吗?为什么? (2)设BM=y,AB’=x,求y与x的函数关系式; (3)猜想当B点落在什么位置上时,折叠起来的梯形 MNC’B’面积最小?并验证你的猜想. 5 4 1 32 G D‘ F C‘ D B C A E

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

中考数学折叠问题

2016年中考专题:折叠问题 折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。 图形折叠问题中题型的变化比较多,主要有以下几点: 1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形; 2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称; 3.将长方形纸片折叠,三角形是否为等腰三角形; 4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系; 5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。 折叠问题数学思想: (1)思考问题的逆向(反方向), (2)从一般问题的特例人手,寻找问题解决的思路; (3)把一个复杂问题转化为解决过的基本问题的转化与化归思想; (4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类); (5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。 折叠问题主要有以下题型: 题型1:动手问题 此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起. 题型2:证明问题 动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题 此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。 典型例题 一.折叠后求度数 例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600B.750C.900D.950 练习 1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于() A.50°B.55°C.60°D.65°

中考数学复习专题四几何变换压轴题试题

2019-2020 年中考数学复习专题四几何变换压轴题试题 类型一图形的旋转变换 几何图形的旋转变换是近年来中考中的常考点,多与三角形、四边形相结合.解决旋转变换问题,首先要明确旋转中心、旋转方向和旋转角,关键是找出旋转前后的对应点,利用旋转前后两图形全等等性质解题.如图,在菱形 ABCD 中,AB=2,∠BAD=60°,过点 D 作DE⊥AB 于点 E,DF⊥BC 于点 F. 1 (1)如图 1,连接 AC 分别交 DE,DF 于点M,N,求证:MN=AC; 3 (2)如图2,将∠EDF以点D 为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC 相交于点G,P.连接GP,当△DGP的面积等于3 3时,求旋转角的大小并指明旋转方向. 【分析】(1)连接 BD,由∠BAD=60°,得到△ABD为等边三角形,进而证明点 E 是AB 的中点,再根据相似三角形的性质解答;(2)分∠EDF 顺时针旋转和逆时针旋转两种情况,然后根据旋转的性质解题. 1.(xx·潍坊)边长为 6 的等边△ABC 中,点 D,E 分别在 AC,BC 边上,DE∥AB,EC=2 3. (1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点 N.当 CC′多大时,四边形MCND′为菱形?并说明理由. (2)如图 2,将△DEC绕点C 旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为 P. ①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接 AP,当 AP 最大时,求AD′的值.(结果保留根号) 图1 图2 2.(xx·成都)如图 1,△ABC中,∠ABC=45°,AH⊥BC于点H,点 D 在AH 上,且 DH=CH,连接 BD. (1)求证:BD=AC; (2)将△BHD 绕点 H 旋转,得到△EHF(点 B,D 分别与点 E,F 对应),连接 AE. ①如图 2,当点 F 落在 AC 上时(F 不与 C 重合),若 BC=4,tan C=3,求 AE 的长; ②如图 3,当△EHF 是由△BHD 绕点H 逆时针旋转 30°得到时,设射线 CF 与AE 相交于点 G,连接 GH,试探究线段 GH 与EF 之间满足的等量关系,并说明理由.

中考数学专题复习16矩形折叠问题(最新整理)

中考数学专题复习16——矩形折叠问 来源:家学网【相信自己,掌握未来,家学网值得信赖!】2012年05月18日

思路分析:找到由折叠产生的所有等量关系,其中也需要用到方程思想(设未知数,并表示出 其他线段长度) 例2.在长方形ABCD 中,AB=4,BC=8,将图形沿着AC 对折,如 图所示:(1)请说明△ABF △CFF(2)求 思路分析: 在多问设置的证明题中,前几问往往是为后面的问题服务的;所以得到全等之后,也就是得 到了多组等量关系,此时我们再来设未知数,自然可以表示出其他线段了. 例3. 在长方形 ABCD 中,AB=3,BC=5,将图形沿着 EF 对折,使得 B 点与 D 点重合。 (1)说明 DE=DF

(2)求 (3)求EF 的长度 思路分析:(1)要说明 DE=DF,有两种思路: ①可说明全等; ② 可说明△DEF 是等腰三角形,DE、DF 是两腰 所以这个题目既要有能力说明全等也要有能力说明等腰 例4 如图①,将边长为4cm 的正方形纸片 ABCD 沿EF 折叠(点 E、F 分别在边 AB、CD 上), 使点B 落在AD 边上的点 M 处,点 C 落在点 N 处,MN 与CD 交于点 P,连接 EP. (1)如图②,若M 为AD 边的中点,①,△AEM的周长= cm;②求证:EP=AE+DP; (2)随着落点 M 在AD 边上取遍所有的位置(点M 不与A、D 重合),△PDM的周长是否发生变化? 请说明理由. 思路分析:(1)①设 AE=x,由折叠的性质可知 EM=BE=12-x,在Rt△AEM 中,运用勾股定理求AE;②过点 F 作FG⊥AB,垂足为 G,连接 BM,根据折叠的性质得点 B 和点M 关于EF 对称, 即BM⊥EF,又AB=FG,∠A=∠EGF=90°,可证△ABM≌△GFE,把求 EF 的问题转化为求 BM;(2)设AE=x,AM=y,则 BE=EM=12-x,MD=12-y,在Rt△AEM中,由勾股定理得出 x、y 的关 系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长. 三.能力训练 1.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后 得到一个等腰三角形.则展开后三角形的周长是().

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

中考数学中的折叠问题

专题:漫谈折叠问题(二) 、折叠问题小技巧 A 要注意折叠前后线段、角的变化,全等图形的构造; B 通常要设求知数; C 利用勾股定理构造方程。 、折叠问题常见考察点 (一)求角的度数 1. 如图,在折纸活动中,小明制作了一张 △KBC 纸片,点D E 分 别是边AB AC 上,将△KBC 沿着DE 折叠压平,A 与A 重合,若ZA=75°则△+£=【 】 【考点】翻折变换(折叠问题),三角形内角和定理。 AB= AC, △BAO 50° △BAC 的平分线与 AB 的中垂线交于点 D. 75 ABCC 中,虫=70°,将平行四边形折叠,使点 D C 分别落在点F 、E C. 105 2.如图,在平行四边形 ,折痕为MN 则△KMF 等于【 D . 20° 3.如图,在等腰 △XBC 中,

C沿EF折叠后与点Q重合,则?EF的度数是 【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。

4.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A处,连接A'C,则 5.如图,在△KBC中,D,、E分别是边AB AC的中点,ZB=5O°o现将△KDE沿DE折叠,点A落在三角形所在平面内的点为A i,则的度数为____________________________ ° 【考点】翻折变换(折叠问题),折叠对称的性质,三角形中位线定理,平行的性质。 (二)求线段长度 1. 如图,正方形纸片ABCD勺边长为3,点E、F分别在边BC CD上,将AB AD分别和AE、 AF折叠,点B、D恰好都将在点G处,已知BE=1,贝U EF的长为【 【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。 2. 如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A 恰好落在边BC的点F处?若AE= 5, BF= 3,则CD的长是【 A. 7 B . 8 C . 9 D . 10 【考点】折叠的性质,矩形的性质,勾股定理。

(精心整理)2017年中考数学复习专题图形折叠问题及答案

2017年中考数学一轮复习专题 图形折叠问题综合复习 一选择题: 1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( ) A.40° B.35° C.20° D.15° 2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于() A.50° B.55° C.60° D.65° 3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12 D.16 4.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为() A.3 B.4 C.5 D.6 5.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()

A.1 B.2 C. D. 6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为() A.12 B.10 C.8 D.6 7.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是() A.7 B.8 C.9 D. 10 8.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为() A.78° B.75° C.60° D.45° 9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为() A. 10 B. 13 C. 15 D. 12 10.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD的长是 ( ) A.12厘米 B.16厘米 C.20厘米 D.28厘米

中考数学十大解题思路之几何变换法-平行变换

中考数学十大解题思路之几何变换法 在数学问题的研究中,常常需要运用到变换法。几何变换就是几何图形在平面上满足某种条件的运动。运用几何变换可以把分散的点、线段、角等已知图形转移到恰当的位置,从而使分散的条件都集中在某个基本图形中,建立起新的联系,从而使问题得以转化解决。 ●平移变换 ●对称变换(示例详见《2013中考数学十大解题思路之几何变换法-对称变换》) ●旋转变换(示例详见《2013中考数学十大解题思路之几何变换法-旋转变换》) 第一节平移变换 所谓“平移变换”是指在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。图形平移的主要因素是平移方向和平移距离。平移变换后的图形与原图形是全等形,对应线段相等,对应角相等。平移变换法通常用于等腰梯形、正方形、矩形中平行线的辅助线作法及简单图形的平移以及函数图象的平移等有关知识巾,特别是进行图案设计及日常生活问题的解决中。 例题1

例题2 说明:对于已知条件中有共线且相等的线段的几何问题,也可以考虑用平移变换处理。 例题3

例题4 ' '32Y Y X X =-=+说明: 例题 5

例题6 例题7-1 例题7-2

第二节对称变换 对称变换就是将某一图形变到关于直线对称的另一图形的过程,称为该图形关于直线的对称变换。变换后的图形与原图形是全等形,对应线段相等,对应角相等,对称图形上每一对对称点的连线被对称轴垂直平分。对称变换经常用于等腰三角形、等边三角形、特殊平行四边形、梯形及圆等图形中。 第三节旋转变换 在平面内,某一图形绕一个中心旋转若干角度后得到另一个图形,这种变换称为旋转变换。旋转后的图形与原图形是全等形,对应线段相等,对应角相等,旋转变换的对应点到旋转中心的距离相等,任意两条对应线段的夹角等于旋转角。 旋转变换法主要用途是把分散元素通过旋转集中起来,从而为解题创造条件,旋转变换法经常用于等腰三角形、等边三角形及正方形等图形中。

中考数学折叠问题分析

中考数学“折叠”问题分析 平顶山市第二十七中学 高国普 2019年4月

中考数学“折叠”问题分析 一、近年来河南中考数学题中“折叠”考查内容 ①直接考查折叠的性质(全等变换); 与点坐标、角度结合,借助折叠(轴对称)的性质转移边、角,一般作为选择、填空题中的简单题、中等题进行考查。 ②在考查折叠的性质同时,对折叠作图提出了要求; 结合起来考查,以特殊△、正方形、矩形的折叠为背景,考查学生分类作图、分析转化、设计方案求解的能力,一般作为填空题中的小压轴出现。 ③将折叠作为背景放在综合问题中进行考查,侧重考查折叠特征的理解以及常见相关的常见组合搭配、套路等

二、轴对称(折叠)的思考层次 (1)全等变换:对应边相等、对应角相等. (2)对称轴性质:①对应点所连线段被对称轴垂直平分; ②对称轴上的点到对应点的距离相等。 (3)组合搭配:矩形背景下常出现等腰三角形、 两次折叠常出现直角,60°角; 折叠会出现圆弧等. (4)作图:关注对称轴和对应点,有时需要依据不变特征分析转化,补全图形。 三、15题基本解题步骤: 1.研究背景图形:求解边、角;表达式、坐标(尤其注意特殊角) 2.组合特征、辨识结构: 先考虑折叠,根据折叠的思考层次尝试分析;然后从存在性问题出发,考虑不变特征以及需要满足的条件因素;两者组合进行分析. 3.依据特征分类,作图 4.求解、验证 应用举例 如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠, 使点B落在CD边上的B'处,点A的对应点为A',且B'C=3,则 BN=______,AM=______ ,MN=______. 四、直角思考层次: 1.边:勾股定理 2.角:互余(常多个直角配合进行角的传递) 3.面积:看作高(考虑等积公式) 4.常见组合搭配 ①直角+中点(直角三角形斜边中线等于斜边一半) ②直角+特殊角(由特殊角构造直角三角形) ③直角+角平分线(等腰三角形三线合一) ④直角三角形斜边上的高(母子型相似) ⑤弦图结构 ⑥三等角模型 ⑦斜直角放正 ⑧十字模型 5.函数背景下: 6.圆背景下:90°圆周角——直径 注:常由顶点移动的90°直角考虑该顶点所在的圆 应用举例 直角结构——固定用法“斜直角放正” ①一线三等角

中考数学中的折叠问题

专题:漫谈折叠问题(二) 一、折叠问题小技巧 A 要注意折叠前后线段、角的变化,全等图形的构造; B 通常要设求知数; C 利用勾股定理构造方程。 二、折叠问题常见考察点 (一)求角的度数 1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】 A.150°B.210°C.105°D.75° 【考点】翻折变换(折叠问题),三角形内角和定理。 2. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于【】

A.70° B.40° C.30° D.20° 3. 如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是__________. 【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。

4. 如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=__________度. 5.如图,在△ABC中,D,、E分别是边AB、AC的中点, ∠B=50°o.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则∠BDA1的度数为__________°. 【考点】翻折变换(折叠问题),折叠对称的性质,三角形中位线定理,平行的性质。 (二)求线段长度 1.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】

几何变换综合题2018版中考数学压轴题

一、选择题 1.(2017四川省达州市,第9题,3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为() A.2017πB.2034πC.3024πD.3026π 2.(2017临沂,第14题,3分)如图,在平面直角坐标系中,反比例函数 k y x =(x>0)的图象与边长是 6的正方形OABC的两边AB,BC分别相交于M,N两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是() A.62B.10C.226D.229 3.(2017新疆乌鲁木齐市,第10题,4分)如图,点A(a,3),B(b,1)都在双曲线 3 y x =上,点C, D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A.52B.62C.21022 +D.82 4.(2017湖北省恩施州,第12题,3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,

直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E 关于y轴对称,抛物线2 y ax bx c =++过E、B、C三点,下列判断中: ①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有() A.5B.4C.3D.2 5.(2017湖北省咸宁市,第8题,3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为() A.(3 2 ,0)B.(2,0)C.( 5 2 ,0)D.(3,0) 6.(2017辽宁省营口市,第8题,3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函 数 k y x 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()

初中数学中的折叠问题

. . 初中数学中的折叠问题 对于折叠问题,我们要明白: 1、折叠问题(翻折变换)实质上就是轴对称变换. 2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系. 4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形 5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解. 一、矩形中的折叠 1.将一长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度. BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD 则∠CBD = 90° 折叠前后的对应角相等 2.如图所示,一矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是. 沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 1 2 AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积 = 24 对称轴垂直平分对应点的连线 3.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,得折痕DG,求AG的长. 由勾股定理可得BD = 5,由对称的性质得△ADG ≌△ A’DG,由A’D = AD = 3,AG’ = AG,则A’B = 5 – 3 A' C D

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学复习专题:折叠问题

中考数学复习专题:折叠问题

根据折叠的性质,可得 ∠A′D′F=∠D=120°, ∴∠FD′M=180°-∠A′D′F=60°。 ∵D′F⊥CD ,∴∠D′FM=90°, ∠M=90°-∠FD′M=30°。 ∵∠BCM=180°-∠BCD=120° ,∴∠CBM=180°-∠BCM -∠M=30°。∴∠CBM=∠M。 ∴BC=CM。 设 CF=x ,D′F=DF=y , 则BC=CM=CD=CF+DF=x+y 。∴FM=CM+CF=2x+y, 在Rt△D′FM 中 ,tan∠M=tan30°=D F y 3FM 2x y '==+3-1x =。 ∴CF x 3-1FD y ==。故选A 。 3. (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是【 】

A3 1 B2+1 C.2.5 D5【答案】B。 【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,等腰三角形的性质,三角形内角和定理,锐角三角函数定义,勾股定理。 【分析】∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处, ∴AB=BE,∠AEB=∠EAB=45°, ∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处, ∴AE=EF,∠EAF=∠EFA=045 = 2 22.5°。∴∠FAB=67.5°。 设AB=x,则AE=EF2x, ∴an67.5°=tan∠FAB= t FB2x+x21 ==。故选B。 AB x 4. (2012广东河源3分)如图,在折纸活动中, 小明制作了一张△ABC纸片,点D、E分别在

中考数学复习专题:折叠问题

2012年全国中考数学试题分类解析汇编(159套63专题) 专题31:折叠问题 一、选择题 1、 (2012广东梅州3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别就是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】 A.150° B.210° C.105° D.75° 【答案】A。 【考点】翻折变换(折叠问题),三角形内角与定理。 【分析】∵△A′DE就是△ABC翻折变换而 成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°。 ∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣ 2×105°=150°。 故选A。 2、 (2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,得值为【】 A、B、C、D、 【答案】A。 【考点】翻折变换(折叠问题),菱形得性质,平行得性质,折叠得性质,锐角三角函数定义,特殊角得三角函数值。 【分析】延长DC与A′D′,交于点M, ∵在菱形纸片ABCD中,∠A=60°, ∴∠DCB=∠A=60°,AB∥CD。 ∴∠D=180°∠A=120°。 根据折叠得性质,可得 ∠A′D′F=∠D=120°, ∴∠FD′M=180°∠A′D′F=60°。 ∵D′F⊥CD,∴∠D′FM=90°,∠M=90°∠FD′M=30°。

∵∠BCM=180°∠BCD=120°,∴∠CBM=180°∠BCM∠M=30°。∴∠CBM=∠M。 ∴BC=CM。 设CF=x,D′F=DF=y, 则BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y, 在Rt△D′FM中,tan∠M=tan30°=,∴。 ∴。故选A。 3、 (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示得矩形纸片ABCD沿过点B得直线折叠,使点A落在BC上得点E处,还原后,再沿过点E得直线折叠,使点A落在BC上得点F处,这样就可以求出67、5°角得正切值就是【】 A.+1 B.+1 C.2、5 D. 【答案】B。 【考点】翻折变换(折叠问题),折叠得性质,矩形得性质,等腰三角形得性质,三角形内角与定理,锐角三角函数定义,勾股定理。 【分析】∵将如图所示得矩形纸片ABCD沿过点B得直线折叠,使点A落在BC上得点E处, ∴AB=BE,∠AEB=∠EAB=45°, ∵还原后,再沿过点E得直线折叠,使点A落在BC上得点F处, ∴AE=EF,∠EAF=∠EFA==22、5°。∴∠FAB=67、5°。 设AB=x,则AE=EF=x, ∴an67、5°=tan∠FAB=t。故选B。 4、 (2012广东河源3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在 边AB、 AC上,将△ABC沿着DE折叠压平,A与A′重合.若∠A=75o,则∠1+∠2=【】 A.150o B.210o C.105o D.75o 【答案】A。 【考点】折叠得性质,平角得定义,多边形内角与定理。 【分析】根据折叠对称得性质,∠A′=∠A=75o。 根据平角得定义与多边形内角与定理,得 ∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

相关文档
最新文档