国家电网5C系列铁塔设计全参数
特高压交流J1转角塔设计及真型试验

耿景都1,秦庆芝2
(1.国网北京电力建设研究院,北京10240l;2.北京国电华北电力工程有限公司,北京 100011)
摘要:对1 000 kv特高压交流输电线路Jl转角塔的塔型设计、结构优化和新材料的应用进行了研究,并通过典
型试验进行验证。Jl转角塔塔型采用“干”字型。呼称高45 m,铁塔全高74 m,采用全方位长短腿设计,长短腿高差
节点构造设计是铁塔设计的关键环节之一。合 理分析和解决最薄弱环节。以较少的代价换来结构 更大的安全度.对整个线路长期稳定地运行有着重 要意义。为提高杆件的承载力,在节点构造处理上, 应尽量减小杆件的负端距,使塔身斜材直接连接于 主材最好,令塔身主材与斜材的准线交于一点。 1.3.3全方位长短腿
特高压线路工程所经地区,地形复杂,山地、丘 陵较多。根据自然地形地貌,J1转角塔采用全方位长 短腿,级差为1.5 m,最大高差9.0 m。可根据塔位处 的地形,灵活地配置长短腿,有效地减少塔基面开方
本次铁塔试验共设应变测点18个,其中塔身9 个,塔头9个.测点布置见图6。下面通过对90。大风工 况实测应变数据的计算数据进行比较,分析试验结 果的可靠性。
从表2中可以看出.实测应力与计算应力还是有 一定差异。杆件计算应力较大时,与测试结果接近, 计算应力较小时,差别较大。产生如此差别的原因 主要有以下几点:
综上所述,在进行实测应力与计算应力比较时, 应选取该工况控制的杆件进行。通过比较表2中数 据,发现试验实测数据与计算结果基本吻合,说明计 算模型在杆件传力关系和节点构造上是合理的。 2.2.3超载构件破坏分析
杆塔是在900大风超载130%~135%的加载过程 中破坏的。从杆塔破坏的照片(图7)上看到,中导挂 点横材下“K”形斜材压屈失稳破坏。中导挂点横隔 下正侧面侧“K”型斜材计算应力与实测应力见表3。
国家电网公司110-500kV输电线路通用设计修订技术要求汇总(2010年8月简洁版)

目前我国导线标准采用 2008 年颁布的《圆线同心绞架空导线》 (GB/T1179-2008),该标准基本参照 IEC 相关的架空线路导线标准编 制的,在导线设计、制造和检验方面基本与国际接轨。导线具体参数 可参考表 2-2。
110~500kV 导线安全系数取 2.5,年平均运行张力 25%,其中 110kV 钢管杆导线安全系数取 8,地线安全系数取 11。
第一篇 总论
一、目的和原则 2005 年以来,公司组织编制发布了 110~500kV 输电线路通用设
计并在公司系统推广应用,2006 年又增补了紧凑型、同塔多回等模 块,取得了良好效果。目前,输电线路设计相关国家标准、行业规范 已经颁布实施。为进一步深化基建标准化建设,全面推进输电线路标 准化成果应用,公司基建部组织开展输变电工程通用设计(110~ 500kV 线路部分)修订和应用工作。
原则上,新规范中的内容本文不再赘述,下面仅就“设计规范尚 未明确的”设计原则及“杆塔设计中已约定俗成的”或“各设计单位 理解不同的”设计条款等内容进行统一规定,以便于通用设计工作的 顺利开展及利于设计成果的通用性。
本次通用设计修订工作的设计原则最终解释权归国家电网公司 基建部所有,设计原则争议的解决方式是由国网基建部牵头,中国电
通用设计 110~500kV 输电线路部分模块划分具体情况见《110~ 500kV 输电线路通用设计修订模块主要技术条件》。
按 照 新 颁 布 的 《 110kV ~ 750kV 架 空 输 电 线 路 设 计 规 范 》 (GB50545-2010)及此次通用设计修订工作确定的《110~500kV 输 电线路通用设计修订主要设计原则及模块划分和编号》、《110~500kV 输电线路通用设计修订模块主要技术条件》等相关要求开展通用设计 工作,其他所有相关规定、规范如有与以上规范、文件有冲突的,均 以《110kV~750kV 架空输电线路设计规范》(GB50545-2010)为准。
35KV输电线路工程技术规范及要求

技术标准和要求1、施工范围1.1 35kV线路部分: 35KV高压配电装置出线柜同杆双回路,线路长度为2×6.743km;在#23~#24处跨越浙赣铁路;在#10~#11处穿越沪昆高速铁路采用电缆穿越;在#03~#04穿越马路采用电缆;在#1杆处连接原线路;。
新建双回线路长6.743km,其中双回电缆线路长 1.111km,导线采用JL/G1A-400/25,地线采用OPGW-24B1-50,电缆采用YJV-26/35-1*630单芯电缆。
本工程新立钢管杆6基,角钢塔26基。
负责本工程所有杆塔标示标牌制作安装(包括但不限于杆塔标号牌、警示牌、防护栏等)。
负责本工程35kV输电线路投运、通信施工及设备调试、保护调试等工作。
本次招标工程中#10~#11塔(穿越沪昆高速铁路)之间的电缆井、电缆沟道、排管等土建费用按实际米数计算。
1.2 投标方应负责施工范围内设备采购、安装、调试(包括单体调试、分系统调试、整套启动调试等),土建施工,市政道路施工协调恢复绿化工作以及配合协调政治处理等工作。
1.3 投标方在报价时应充分考虑线路跨越、穿越原有各电压等级线路、道路、河流、绿化、高大树木以及施工临时便道等不利因素,费用包含在投标总价中。
主要设备品牌推荐如下:电缆:江苏上上、浙江万马、浙江开成投标方须根据招标方提供的品牌采购。
2、工程概况发电机出线电压为10.5kV,分别直接接入10kV两段母线上,两段发电机母线之间设联络开关,10kV主母线采用单母线分段接线。
分别经2台20MVA双绕组主变升压至35kV。
35kV 母线采用单母线分段接线方式。
3、技术标准及规范表一:变电站土建工程现行主要质量标准、规范验收质量标准目录》(基建质量[2011]79号)文件,未提及标准请参考基建质量[2011]79号文件。
在施工过程中相关质量标准规范版本更新,由施工提供最新版本。
表二:变电站电气安装工程现行主要质量标准、规范备注:上述标准规范引自《国家电网公司输变电工程建设现行主要目录管理制度、施工与验收质量标准目录》(基建质量[2011]79号)文件,未提及标准请参考基建质量[2011]79号文件。
35kV输电线路典型设计课件

最大风速35m/s、最低温度-10°C和最大覆冰0mm,主要适用于 台风出现频率较高的东南沿海地区。
A气象区和F气象区应考虑适用于5mm和10mm两种覆冰条件。 对于设计冰厚20mm以上的重冰区和设计风速40m/s以上的特殊 风区,本次典型设计暂不考虑。
1700
R300 5.37° 11.3944.°87°
R600
5.37°
11.94° 34.87°
200
R650 100 850
R1300
1900
1900
19.92° 9.15°
47.38°
R650
R300
47.38° 19.92° 9.15°
R1300
R600
950
950
R1300
R650
35B13系列转角塔
其中: 混凝土杆8个模块48种杆型, 角钢塔22个模块154种塔型, 钢管杆12个模块60种杆型。
模块编 号
35A01 35A02 35B01 35B02 35B03 35B04 35B05 35B06 35C01 35C02 35C03 35C04
气象区 A
海拔高 度
≤1000
杆塔类 型
混凝土 杆
带电检修作业
典型设计的所有杆塔均依照规程、规范中 的相关规定,与以往设计的杆塔完全一致,因 此典型设计的所有杆塔均能满足带电检修作业 的要求。
5.4 间隙圆
绘制各类间隙圆图原则如下: 1)绘制间隙圆图时,绝缘子串长度按最长和最短计算, 选用重量较轻的合成绝缘子计算各工况下的摇摆角, 并按下导线和合成绝缘子导线侧的均压环分别检查塔 头的电气间隙。 2)悬垂串的风偏计算时,风压不均匀系数α取值见表。
架空输电线路铁塔结构与基础设计概述

1 架空输电线路铁塔结构设计原理
输变电线路铁塔结构设计的基本原则,是根据国家相关法 律法规,对 110~750 kV 架空输变电线路塔架进行优化设计,使 其在尺寸、布置、长度、面积等方面达到最佳,在加强强度和 稳定性方面进行设计,使之符合施工工程的地形地貌要求,达 到安装灵活,结构安全可靠。对于杆塔荷载要求、结构材料形 式与连接方式、钢种选择、预应力混凝土杆塔强度等问题,在 设计阶段都需要认真考虑与实践[1]。
(5)防腐设计。输电线路铁塔大部分建于野外,甚至是人 烟罕至的地区,维护较为困难。因此输电铁塔所用的角钢都是 经过热镀锌防腐处理,以满足国家电网有限公司的耐腐蚀标准要 求。输电铁塔通常建在交通不方便的野外,这样带来了较大的 钢结构防腐维护费用。同时,输电铁塔的特殊作业环境要求修复
工艺尽量简便易行,不需要携带复杂设备,一次成形后期免维 护等。目前,高锌含量镀层修复材料正在得到开发,它由纯度高 于99.99%的锌粉、挥发性溶剂和特殊有机树脂3部分配制而成, 涂层干膜中含锌量高达90%以上,以涂料的形式完成对钢铁表面 的防腐防锈处理,和热镀锌具有相同的防腐防锈的作用,具有 干燥时间快、施工简单、施工环境要求低等特点,特别是在梅雨 季节,表面很快干燥,不用担心雨淋。单组分是它的又一特点, 而且还具有易保管,保质期长等特性。在一般的腐蚀环境(C3 类)中,涂层厚度在80 μm以上时,防腐年限可达10~20年。
(3)斜柱插入基础。这类塔基与直柱板、台阶基础大致 相同,都是依靠土体和塔身的自重来实现抗拉、抗倾。其特点 主要是,斜塔与塔体的斜度近似,使配筋减小,经济性很高。 对于具体的施工,只要是在不含地下水的环境中,各种岩体及 图纸上均可采用斜柱插入基础。与此同时,其需要的混凝土和 钢筋较少,如果从经济投资角度考虑,可选用斜柱插入基础。
杆塔高低腿的优化

专题之十:杆塔高低腿的优化摘要根据国家电网公司110-500kV输电线路通用设计的杆塔规划要求,110kV线路山区和平地采用同一套杆塔系列,即所有杆塔按平腿塔设计。
近年来越来越多的输电线路工程在山区走线,而且电力建设对环境保护日益重视,对塔基开方和林木砍伐的重视程度也日益加强。
由于根开和塔基高差均较大,国网典设塔不能很好满足本工程的实际需要。
对于本工程110kV杆塔,采用长短腿进行设计。
铁塔采用长短腿设计是保护线路环境的最有效手段。
长短腿能适应各种复杂的塔位地形,配合高低基础的使用,不但能大大减少了土石方工程量、缩短工期、降低施工难度,而且也可最大限度地保护自然生态环境。
当塔位处于坡度较大的山区时,设置长短腿能有效避免基面进行大开挖而将铁塔的四个腿尽量设计成长、短不同,以适应于带坡度的地形,达到保护环境、减少土方的开挖和运输的目的。
由于地形复杂,长、短腿的高差及其组合也不同。
因此铁塔设计时,采用全方位长短腿设计。
根据以往国网典型设计,在各电压等级铁塔设计时,主要采用多塔身、多组共用接腿连接方式,经过计算,此种连接方式节省了图纸数量,但对塔材存在一定程度的浪费,对于工程投资而言未达到最大的经济型。
本专题提出所有长短腿铁塔均采用非公用腿型式,可降低塔重3%左右,经济效益十分明显。
本专题还对杆塔断面型式、斜材布置以及塔腿隔面布置等方面进行了优化,给出了适合于本工程的布置方式。
目录1工程概况 (1)2铁塔设计原则 (1)2.1设计依据 (1)2.2 设计原则 (1)2.3 杆塔材料 (3)2.4 杆塔防腐措施 (3)3铁塔长短腿设计 (3)3.1铁塔长短腿选择 (3)3.2铁塔长短腿级差确定 (4)3.3铁塔长短腿构造要求 (5)3.4本章小结 (7)4铁塔接腿优化 (7)4.1铁塔接腿(身)型式优化 (7)4.2杆塔断面型式优化 (9)4.3斜材布置优化 (9)4.4塔腿隔面布置优化 (10)5结论及建议 (12)1概况根据优化后的线路路径方案,本工程杆塔规划采用最新版国网典设1A3、1D5模块杆塔,所有模块杆塔均为平腿塔(山地、平地共用)。
输电铁塔构造

6FB接入110KV系统概况
1台110kV/200MVA主变,1座110kV开关站改、 扩建,主变至开关站一回架空线路及铁塔改造 (要求全线架空线路接入110kV开关站),主变 室内附属设备改造, 110kV开关站Ⅰ、Ⅱ号母 线改造,以及相应2套发变组保护装置更换,2 套110kV母差保护装置更换,1套母联保护装 置更换,保护整定计算,微机五防装置升级改 造,6号机组监控下位机更换等。 主变30年、其他电气一次设备20年,电气二次 设备3~5年,输电线路塔架及设备支架50年。
输电塔
常用塔型:猫头塔 单回路
一个负荷有1个供电电源的回路
酒杯塔
干字形塔
鼓形塔
组成:塔头、塔身、塔腿
双回路
一个负荷有2个供电电源的回路
铁塔的组成
各类杆塔的技术特性表1
项目 自立式铁塔 角钢塔 空间 桁架 非居 民区 高 较大 钢管塔 空间 桁架 非居 民区 高 大 大跨越塔 空 间 桁 架 或 钢 筋混凝土 大跨越 拉线 铁塔 空 间 桁 架 带拉线 不均匀 沉降区 一般 一般 钢管 电杆 单 (双) 杆 居 民 区 较高 一般 普通 单 (双) 杆 居民(非 居民)区 一般 一般 混凝土电杆 预应力 单 (双) 杆 居民(非 居民)区 较高 一般 薄壁钢管 单 (双) 杆 居民 (非 居民) 区 较高 一般
9
15.5
6#BC出线设备概况
参数 名称
型号
2*LGJ-400/35
GJ-50 2*NRLH60GJ-500/35 110/100mm
额定电 流
变比
操作机构
架空导线
架空
HY10WE-100/260 避雷器 在线检测仪 JCF3-10/800 SF6开关 隔离开关 3AP1-FG GW4-126ⅥDW LB6-110W3丹33 LVB1-110W3丹31 4000A 2000A 1200 2500 1200/5 2500/5
35kV-110kV输电线路钢管杆通用设计技术要求

35kV-110kV输电线路钢管杆通用设计技术要求说明书(征求意见稿)二〇一〇年六月目录1 总论 (1)1.1 目的和原则 (1)1.2 设计依据 (1)1.2.1 主要规程规范 (1)1.2.2 国家电网公司的有关规定 (2)2 主要设计原则 (2)2.1 设计气象条件 (3)2.2 导线和地线 (3)2.3 绝缘配合及防雷保护 (4)2.4 塔头布置 (8)2.5 联塔金具 (8)2.6 杆塔设计一般规定 (9)2.7 杆塔规划 (9)2.8 杆塔荷载 (10)2.9 杆塔使用材料的原则和要求 (10)附录 1 35~110kV 输电线路钢管杆通用设计主要设计原则及模块划分和编号附录 2 35~110kV 输电线路钢管杆通用设计修订模块主要技术条件附录 3 联塔金具标准件图例附录 4 35~110kV 输电线路钢管杆通用设计模块杆塔规划使用条件附录 5 输电线路通用设计钢管杆制图和构造规定1 总论1.1 目的和原则目前,输电线路设计相关国家标准、行业规范即将颁布实施。
为进一步深化标准化建设,公司组织开展本地区输变电工程通用设计(35~110kV 线路部分)修订和应用工作。
本次修订充分借鉴已有的成果,应用即将颁布执行的新版设计标准,应用“两型三新”、全寿命周期设计、高强钢等新技术、新材料。
为了满足通用设计成果标准化、统一化、规范化的要求,公司颁布制定了《35~110kV 输电线路钢管杆通用设计修订主要设计原则及模块划分和编号》。
1.2 设计依据1.2.1 主要规程规范《110kV~750kV 架空输电线路设计规范》(GB50545-2010)《重覆冰区架空输电线路设计技术规程》(DL/T5440-2009)《高压架空送电线路和发电厂、变电所环境污秽分级及外绝缘选择标准》(GB16434-1996)《圆线同心绞架空导线》(GB/T1179-2008)《铝包钢绞线》(YB/T124-1997)《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)《高海拔污秽地区悬式绝缘子片数选用导则》(DL/T562-1995)《架空送电线路杆塔结构设计技术规定》(DL/T5154-2002)《钢结构设计规范》(GB50017-2003)《建筑结构荷载规范》(GB50009-2001)《架空送电线路钢管杆设计技术规定》(DL/T5130-2001)《输电线路铁塔制图和构造规定》(行标报批)《碳素结构钢》(GB/T700-2006)《低合金高强度结构钢》(GB/T1591-2008)《紧固件机械性能螺栓、螺钉和螺柱》(GB/T3098.1-2000)《紧固件机械性能螺母粗牙螺纹》(GB/T3098.2-2000)《紧固件机械性能螺母细牙螺纹》(GB/T3098.4-2000)1.2.2 国家电网公司的有关规定国家电网公司十八项电网重大反事故措施(试行)》(国家电网生计[2005]400 号);《国家电网公司安全工作规程(线路部分)》(国家电网安监[2009] 664号);《协调统一基建类和生产类标准差异条款(输电线路部分)》(办基建〔2008〕1 号);《国家电网公司新建线路杆塔作业防坠落装置通用技术规定》(试行)(国家电网基建[2010]184 号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家电网公司110~500kV输电线路典型设计500kV C方案方案介绍国家电网公司输电线路典型设计工作组二〇〇五年十一月十六日目录第一章概述 (2)第二章设计条件 (2)2.1 气象条件 (2)2.2 导地线型式 (2)第三章杆塔规划 (3)第四章绝缘配合 (5)第五章塔头布置 (6)第六章杆塔优化 (7)第七章荷载及组合.................................................... 错误!未定义书签。
第八章设计图 ........................................................... 错误!未定义书签。
第九章方案特点. (18)第一章概述按照《国家电网公司110~500kV输电线路典型设计工作会议》西南电力负责500kV典型设计模块C的设计工作。
该模块为海拔1000m以、设计风速30m/s、导线为4XLGJ-630/45的单回路铁塔,按平地和山区分别规划设计。
平地直线塔设计了一套猫头塔和一套中相V串的酒杯塔,山区直线塔设计了一套中相V串的酒杯塔,耐塔为干字型铁塔。
平地铁塔按平腿设计,山区铁塔按全方位长短腿设计。
全部铁塔共25个。
本次典型设计采用以下规程、规:《110~500kV架空送电线路设计技术规程》(DL/T5092-1999)《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002)第二章设计条件2.1气象条件本模块气象条件及组合见下表:2.2导地线型式本次线路典型设计采用的导线按照国标《铝绞线及钢芯铝绞线》GB1179-83选取,根据2005年8月9日国家电网公司召开的《国家电网公司110~500kV输电线路典型设计工作会议》精神500kV典型设计模块C导线型号选用LGJ-630/45型钢芯铝绞线;地线型号选用铝包钢绞线JLB4-150。
导线和地线的参数如下表:第三章杆塔规划为使典型设计塔型规划更加合理,我们对以往我院设计的一些500kV送电线路工程的水平档距、垂直档距、垂直档距系数、转角度数分布等进行了统计,在对统计结果进行分析、整理的基础上进行杆塔规划。
模块C平地塔型规划表模块C山区塔型规划表第四章绝缘配合4.1 绝缘子型式及片数绝缘子片数根据不同的污秽等级,采用不同的片数和型式,即I、II级污区基本片数采用28片160kN、26片210kN绝缘子,III级污区采用180kN、240kN合成绝缘子;在确定塔头尺寸时,还考虑线路的地形因素(即下倾△f)的影响。
主要绝缘子串型式、片数、长度见下表:绝缘子串型式、片数、长度4.2 空气间隙塔头空气间隙考虑工频电压、操作过电压、外过电压和带电作业情况。
本段线路经过地区海拔高度在1000米以下,空气间隙取值见下表:空气间隙第五章塔头布置塔头布置规划的猫头塔和酒杯塔设计条件,以“满足电气间隙要求,杆件受力合理,传力路径清析,兼顾美观”为原则。
1) 地线对导线的保护角按小于10º考虑。
2) 导地线之间水平位移不小于1.75m;3) 两根地线之间的距离,不应超过地线与导线间垂直距离的5倍;4) 水平排列的酒杯塔中相采用“V”串,其“V”型串的夹角为:I 型塔取85°、II型塔取90°、III型塔取100°、IV型塔取110°(山区),90°(平地);V型塔取90°(山区)。
5) 在进行铁塔外形布置时的结构裕度对应于角钢准线选取,塔身部为300mm,其余部位200mm。
6)塔头规划时,摇摆角最大风速不均匀系数取0.61,设计时按0.75校核。
5.1猫头塔地线支架采用悬臂结构猫头塔以往地线支架采用三角形支架,杆件数量多,节点处理复杂,地线支架较重。
本次典设在满足地线对导线保护角小于10度情况下,地线支架采用悬臂结构,构件受力清晰,结构处理简洁,重量较轻。
酒杯塔上、下曲臂长度的比值,不仅决定塔头的形状和导线线间距离的大小,更影响上下曲臂的受力,本模块经优化比较后,上下曲臂长度比值0.6~0.75之间,铁塔受力最合理。
上、下曲臂连接的“K”节点,以往规划塔时外侧平面在一条线变化相协调,使主材受力均匀。
塔身坡度越大,主材受力越小、基础作用力也越小,但斜材长度和辅助材长度增加,且可能使结构布置复杂化;反之,主材受力加大、基础作用力也加大,但斜材长度减小。
下表以5C-ZB1为例,列表说明坡度及根开于塔重的关系。
从上表看出,5C-ZB1在坡度为0.2、根开7000时,铁塔重量最轻。
依照此方法,本次典设其余铁塔根据每个塔的荷载情况进行优化设计,使铁塔主、斜材受力合理,铁塔更轻。
除以上三点主要优化设计外,本次典设铁塔在计算时对主、斜材的节间长度、支撑型式,辅助材的布置,隔面设置的位置及型式等进行了优化。
通过一系列的优化设计,使本典设铁塔外形美观、结构安全合理、铁塔重量较轻。
第六章荷载及工况组合6.1荷载6.1.1所有直线塔均考虑锚线条件,安装荷载按照2倍起吊考虑。
6.1.2荷载组合满足《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002)的相关要求。
6.1.3山区耐塔考虑一侧上拔、另侧下压的情况,其上拔垂直荷载按照设计垂直档距中的负垂直档距值计算;平地耐塔不考虑上拔情况,垂直荷载按照3:7分配。
6.1.4 耐塔代表档距的取值围为300m~600m,按照最严重情况组合。
6.1.5 地线不平衡力直线塔取50%,转角塔取80%;6.1.6 直线塔断线力取最大使用力的15%、20%、25%。
6.2 工况组合6.2.1直线塔工况工况1:90度大风,Gmax工况2:60度大风,Gmax工况3:45度大风,Gmax工况4:0度大风,Gmax工况5:90度大风,Gmin工况6:60度大风,Gmin工况7:45度大风,Gmin工况8:0度大风,Gmin工况9:覆冰,90度风,Gmax工况10:二倍吊装右地线工况11:二倍吊装中导线工况12:二倍吊装左导线工况13:二倍吊装右导线工况14:左地线正锚工况15:左地线已锚,右地线正锚工况16:地线已锚,中导线正锚(“V”点锚线)工况17:地线、中导已锚,左导线正锚(“V”点锚线)工况18:地线、左、中导已锚,右导线正锚(“V”点锚线)工况19:右地已架,左地线前侧已锚,后侧正挂(用于OPGW 开断情况)工况20:地线已锚,中导线正锚(“I”点锚线)工况21:地线、中导已锚,左导线正锚(“I”点锚线)工况22:地线、左、中导已锚,右导线正锚(“I”点锚线)工况23:断左地线,Gmax工况24:断右地线,Gmax工况25:断中导线,Gmax工况26:断左导线,Gmax工况27:断中导线,Gmin工况28:断左导线,Gmin6.2.2 耐转角塔工况工况1:90度大风,最大转角,两侧大力(兼基础作用力计算)工况2:90度大风,最大转角,前侧大力,后侧小力(兼基础作用力计算)工况3:90度大风,最大转角,前侧下压(大力),后侧上拔(小力)(兼基础作用力计算)工况4:90度大风,最大转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况5:90度反向大风,最大转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况6:90度大风,角度分级I,前侧大力,后侧小力(兼基础作用力计算)工况7:90度大风,角度分级I,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况8:90度反向大风,角度分级I,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况9:90度大风,角度分级II,前侧大力,后侧小力(兼基础作用力计算)工况10:90度大风,角度分级II,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况11:90度反向大风,角度分级II,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况12:90度大风,最小转角,前侧大力,后侧小力(兼基础作用力计算)工况13:90度大风,最小转角,前侧下压(大力),后侧上拔(小力)(兼基础作用力计算)工况14:90度大风,最小转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况15:90度反向大风,最小转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况16:覆冰,90度风,最大转角,两侧大力(兼基础作用力计算) 工况17:覆冰,90度风,最大转角,前侧大力,后侧小力(兼基础作用力计算)工况18:覆冰,90度风,最大转角,前侧下压(大力),后侧上拔(小力)(兼基础作用力计算)工况19:覆冰,90度风,最大转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况20:覆冰,90度风,角度分级I,前侧大力,后侧小力(兼基础作用力计算)工况21:覆冰,90度风,角度分级I,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况22:覆冰,90度风,角度分级II,前侧大力,后侧小力(兼基础作用力计算)工况23:覆冰,90度风,角度分级II,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况24:覆冰,90度风,最小转角,前侧大力,后侧小力(兼基础作用力计算)工况25:覆冰,90度风,最小转角,前侧下压(大力),后侧上拔(小力)(兼基础作用力计算)工况26:覆冰,90度风,最小转角,前侧为0(大力),后侧上拔(小力)(兼基础作用力计算)工况27:低温,最大转角,前侧大力,后侧小力工况28:低温,最大转角,前侧下压(大力),后侧上拔(小力)工况29:低温,最小转角,前侧大力,后侧小力工况30:低温,最小转角,前侧下压(大力),后侧上拔(小力)工况31:90度风,最大转角,二倍吊装跳线(中间吊装)工况32:90度风,最大转角,二倍吊装跳线(单侧吊装)工况33:90度风,最大转角,左地线正锚,其余未锚(锚线)工况34:90度风,最大转角,左地线已锚,右地正锚,其余未锚(锚线)工况35:90度风,最大转角,地线已锚,中导正锚,其余未锚(锚线) 工况36:90度风,最大转角,地线、中导已锚,右导正锚,其余未锚(锚线)工况37:90度风,最大转角,地线、中导已锚,左导正锚,其余未锚(锚线)工况38:90度风,最大转角,地线、中、左导已锚,右导正锚(锚线) 工况39:90度风,最小转角,左地线正锚,其余未锚(锚线)工况40:90度风,最小转角,左地线已锚,右地正锚,其余未锚(锚线)工况41:90度风,最小转角,地线已锚,中导正锚,其余未锚(锚线) 工况42:90度风,最小转角,地线、中导已锚,右导正锚,其余未锚(锚线)工况43:90度风,最小转角,地线、中导已锚,左导正锚,其余未锚(锚线)工况44:90度风,最小转角,地线、中、左导已锚,右导正锚(锚线) 工况45:90度风,最大转角,后侧已锚,左地线前侧正牵,其余未架(锚兼牵)工况46:90度风,最大转角,后侧已锚,左地已架,右地前侧正牵,其余未架(锚兼牵)工况47:90度风,最大转角,地线已架,导线后侧已锚,中导前侧正牵,其余未架(锚兼牵)工况48:90度风,最大转角,地线、中导已架,边导线后侧已锚,左导前侧正牵,其余未架(锚兼牵)工况49:90度风,最大转角,地线、中导、左导已架,右导后侧已锚、前侧正牵,其余未架(锚兼牵)工况50:断左地线,最大转角,全下压工况51:断右地线,最大转角,全下压工况52:断右中导线,最大转角,全下压工况53:断左中导线,最大转角,全下压工况54:断左右导线,最大转角,全下压工况55:断左地线,最小转角,全下压工况56:断右地线,最小转角,全下压工况57:断右中导线,最小转角,全下压工况58:断左中导线,最小转角,全下压工况59:断左右导线,最小转角,全下压第七章单线图第八章方案特点8.1 该模块适用于海拔高度≤1000m地区8.2 铁塔按平地和山区分别规划设计:平地:直线塔分别规划一套猫头塔和一套中相V串的酒杯塔;耐塔规划一套干字型塔;山区:直线塔规划一套中相V串的酒杯塔;耐塔规划一套干字型塔;按此规划后,铁塔的种类较多,终勘定位更方便灵活,线路综合指标最优。