粒子群优化算法概述
粒子群优化算法原理

粒子群优化算法原理
粒子群优化算法是一种群体智能算法,在仿真自然界粒子寻找食物的行为基础上,模拟多个个体在解空间中搜索全局最优解。
算法采用群体协同行为,通过不断迭代更新每个粒子的位置和速度,直至找到最优解。
算法流程:
1.初始化种群:随机生成一定数量的粒子,并随机初始化粒子的位置和速度。
2.评价粒子适应度:根据某个评价准则,评估每个粒子的适应度,并更新最优位置和全局最优位置。
3.更新每个粒子的速度和位置:根据一定的规则,更新每个粒子的速度和位置,使其朝向全局最优位置的方向移动,并在一定程度上考虑个体的最优位置。
4.重复迭代:不断循环进行步骤2和3,直到满足结束条件为止。
算法特点:
1.全局搜索能力较强,易于收敛到全局最优解。
2.算法复杂度较低,易于实现和应用。
3.算法具有较强的鲁棒性,对初始参数的选择和变异操作的变化相对不敏感。
4.算法应用范围广泛,可以用于目标函数的优化、机器学习参数的优化、图像处理等领域。
粒子群优化算法原理

粒子群优化算法原理PSO算法的基本原理是模拟鸟群或鱼群等自然现象的群体行为,通过社会化学习的方式不断最佳解。
PSO算法依靠粒子的位置和速度来进行,并通过不断地更新粒子的速度和位置来逐步找到最佳解。
下面将详细介绍PSO算法的基本原理:1.个体和群体的表示:在PSO算法中,解被表示为多维空间中的一个点,称为粒子。
每个粒子代表一个当前解,其位置和速度表示了该解的状态。
在最优化问题中,每个粒子代表了一组可能的解。
2.粒子的位置更新:在每一次迭代中,粒子的速度和位置都会发生变化。
粒子的位置更新基于其当前速度和位置以及目标解。
通过以下公式进行更新:v(i,j) = w * v(i,j) + c1 * rand1 * (p(i,j) - x(i,j)) + c2 * rand2 * (p(g,j) - x(i,j))x(i,j)=x(i,j)+v(i,j)其中,v(i,j)为粒子i在维度j上的速度,w为惯性权重,c1和c2分别为加速因子,rand1和rand2为随机数,p(i,j)和p(g,j)表示个体最佳位置和群体最佳位置,x(i,j)表示粒子i在维度j上的位置。
3.个体和群体的最佳位置更新:每个粒子都会记录自身的最佳位置,也就是使目标函数达到最小值或最大值的位置。
对于每个粒子i,如果当前位置的目标函数值优于历史最佳值,则将其当前位置作为个体最佳位置,并更新群体最佳位置。
4.终止条件:PSO算法通常设置一个迭代次数作为终止条件,当达到指定的迭代次数后,算法终止并给出最佳解。
另外,还可以根据目标函数的收敛程度来判断终止条件。
5.算法参数的选择:PSO算法中有几个重要的参数需要选择,包括惯性权重w、加速因子c1和c2等。
这些参数的选择会影响算法的能力和收敛速度,在实际应用中需要根据问题的性质进行调整。
综上所述,PSO算法通过模拟鸟群或鱼群等自然群体的行为来最佳解。
算法通过粒子的位置和速度来进行,并通过不断地更新粒子的位置和速度来逐步优化解。
粒子群优化算法的研究现状与发展概述

粒子群优化算法的研究现状与发展概述大家好啊!今天我想和你们唠唠粒子群优化算法这玩意儿。
我呀,最开始接触粒子群优化算法的时候,那真叫一个一头雾水。
就像突然闯进了一个满是神秘符号和复杂规则的迷宫里。
我当时就想,这都是啥呀?我记得那时候我和我的同学小李一起研究这个算法。
小李是个特别聪明的家伙,他总是能在我还在纠结基础概念的时候,就已经开始琢磨更深层次的东西了。
咱们先说说粒子群优化算法的研究现状吧。
现在这算法在好多领域都混得风生水起呢。
就好比是一个到处都受欢迎的明星。
在工程领域,比如说机械工程里,工程师们用它来优化机械结构的设计。
我有个朋友在一家机械制造企业工作,他跟我说啊,他们以前设计一个复杂的机械部件,那得花好长时间不断地试验、调整,就像瞎子摸象似的,全靠经验和大量的试错。
但是自从用了粒子群优化算法,就像是突然开了天眼一样。
这个算法就像一群小机灵鬼,在设计的各种可能方案里到处乱窜,寻找最优解。
这些小机灵鬼就是算法里的粒子,每个粒子都带着自己的经验(速度和位置信息),然后大家互相交流学习,就像一群工人在讨论怎么把活干得又快又好。
在电力系统方面也不甘示弱。
我之前参加过一个电力系统相关的研讨会,会上有个专家讲得可带劲了。
他说他们用粒子群优化算法来优化电网的调度。
你想啊,电网那么复杂,就像一个超级巨大的蜘蛛网,要让电在这个网里高效、稳定地传输,以前那得费多大的劲儿啊。
现在有了这个算法,就像给这个蜘蛛网找了个超级智能的管理员,这个管理员指挥着那些代表不同参数的粒子,让它们在可能的解空间里寻找最好的调度方案。
再看看在经济学领域,一些经济学家也在尝试用这个算法来做投资组合的优化。
我有个亲戚是做投资的,他老是跟我抱怨投资市场就像个变幻莫测的大海,今天涨明天跌,根本摸不透。
我就跟他说啊,这个粒子群优化算法说不定能帮上忙呢。
就好比是一群小投资者(粒子)在市场这个大海洋里,一边游动(改变位置),一边交流经验(根据自身和群体的最优解调整速度),说不定就能找到那个风险最小收益最大的投资组合呢。
遗传算法与粒子群优化算法比较

遗传算法与粒子群优化算法比较遗传算法与粒子群优化算法是两种常见的优化算法,它们都是在自然界中得到启发而设计的。
在实际应用中,人们经常会比较这两种算法的性能,以确定哪种算法更适合解决特定的问题。
本文将分别介绍遗传算法和粒子群优化算法,并对它们进行比较,以便读者更好地理解它们的原理和应用。
1.遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
它基于达尔文的进化论和孟德尔的遗传定律,通过模拟自然选择和遗传机制来寻找最优解。
遗传算法的基本原理是通过种群中个体的适应度来评估其优劣,然后利用交叉和变异等操作来生成新的个体,以逐步优化种群中的个体,最终找到最优解。
遗传算法可以应用于许多不同的领域,例如工程优化、机器学习和图像处理等。
由于其模拟自然选择和遗传机制的特点,遗传算法在复杂的优化问题中表现出了较好的性能,特别是在多模态、高维度的优化问题中。
2.粒子群优化算法粒子群优化算法是一种模拟鸟群觅食的行为而设计的优化算法。
它基于鸟群觅食时的群体协作和信息共享,通过模拟粒子在解空间中的搜索和迁移来寻找最优解。
粒子群优化算法的基本原理是通过模拟粒子在解空间中的搜索和迁移,来寻找最优解。
粒子群优化算法也可以应用于许多不同的领域,例如无线通信、电力系统和图像处理等。
由于其模拟群体协作和信息共享的特点,粒子群优化算法在寻找全局最优解方面表现出了较好的性能,特别是在连续优化问题中。
3.比较分析接下来我们将分别从优化过程、收敛速度和适用范围三个方面对遗传算法和粒子群优化算法进行比较分析。
3.1优化过程遗传算法的优化过程包括选择、交叉和变异三个主要操作。
在选择操作中,根据个体的适应度选择父代个体,通常选择适应度较高的个体。
在交叉操作中,通过交叉两个父代个体的基因来生成子代个体,以增加种群的多样性。
在变异操作中,通过对个体的基因进行随机变异来增加种群的多样性。
通过这三个操作,遗传算法能够不断优化种群中的个体,最终找到最优解。
粒子群优化算法基本原理

粒子群优化算法基本原理粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于仿生学思想的优化算法,最早由美国加州大学洛杉矶分校(University of California, Los Angeles)的Eberhart和Kennedy于1995年提出。
该算法模拟了群体中个体之间的协作行为,通过不断的信息交流与迭代搜索,寻找最优解。
粒子群优化算法的基本思想是通过模拟鸟群或鱼群等生物群体在搜索空间中的行为,通过个体间的合作与信息共享来寻找最优解。
算法的核心是通过不断更新每个粒子的速度和位置,使其朝着全局最优解的方向进行搜索。
在粒子群优化算法中,每个粒子代表一个解决方案,并通过在搜索空间中移动来寻找最优解。
每个粒子都有一个位置向量和一个速度向量,位置向量表示当前粒子所在的位置,速度向量表示粒子在搜索空间中的移动方向和速度。
每个粒子还有两个重要的参数:个体最佳位置(Pbest)和全局最佳位置(Gbest)。
个体最佳位置表示粒子自身经历的最优位置,全局最佳位置表示整个粒子群中最优的位置。
算法的具体过程如下:1. 初始化粒子群的位置和速度,并为每个粒子设置初始的个体最佳位置。
2. 根据当前位置和速度更新粒子的位置和速度,并计算粒子的适应度值。
3. 更新粒子的个体最佳位置和全局最佳位置。
如果当前适应度值优于个体最佳适应度值,则更新个体最佳位置;如果当前适应度值优于全局最佳适应度值,则更新全局最佳位置。
4. 判断终止条件,如果满足停止条件,则输出全局最佳位置作为最优解;否则返回步骤2进行下一轮迭代。
5. 结束。
粒子群优化算法的优点在于简单易实现,不需要求导等额外计算,且具有全局搜索能力。
由于模拟了群体协作的行为,粒子群优化算法可以克服遗传算法等局部搜索算法容易陷入局部最优解的问题。
此外,算法的收敛速度较快,迭代次数相对较少。
然而,粒子群优化算法也存在一些缺点。
首先,算法对于问题的解空间分布较为敏感,如果解空间分布较为复杂或存在多个局部最优解,算法可能无法找到全局最优解。
基于粒子群优化算法的多目标优化问题求解

基于粒子群优化算法的多目标优化问题求解摘要多目标优化问题是现代科学技术中经常遇到的问题之一。
传统的优化算法难以有效地解决这类问题,因此需要一种高效的优化算法来解决这种问题。
粒子群优化算法(Particle Swarm Optimization, PSO)作为一种新兴的优化算法,在多目标优化问题中表现出了良好的效果,本文将介绍基于粒子群优化算法的多目标优化问题求解的思路和方法。
1. 引言随着现代科学技术的不断发展,各行各业都涉及到了多目标优化问题。
例如,自动化工厂调度、工厂布局优化、电力系统调度等领域都需要解决多目标优化问题,传统的优化算法在解决这类问题上显得无能为力。
因此,研究高效的解决多目标优化问题的算法已成为当前的研究热点。
2. 多目标优化问题的定义与分类多目标优化问题(Multi-objective Optimization Problem, MOP)是指存在多个相互矛盾的目标函数需要最小化或最大化的优化问题。
多目标优化问题具有多样性、复杂性和不确定性等特点,它的解决涉及到数学、统计、计算机等多个领域。
根据问题的特征,多目标优化问题可分为以下几类:(1)在选择解时采用 Pareto 最优的非支配解集(Pareto Optimal Non-Dominated Solution Set, PONDS)作为解的选择标准,通常称为 Pareto 优化问题。
Pareto优化问题的主要研究方向是改进搜索算法和维护非支配解集。
(2)基于权衡的多目标优化问题。
在权衡的多目标优化问题中,目标函数的权值在不同的情况下有所不同,因此需要对不同权值下的优化结果进行比较,然后选择最优的结果。
该问题通常用加权平均法或效用函数法等方法来求解。
(3)约束多目标优化问题。
约束多目标优化问题是指在多目标优化问题的基础上,加入了约束条件。
该问题中要求解最优解,同时需要满足一定的约束条件。
3. 粒子群优化算法的概述粒子群优化算法(PSO)是一种优化算法,它是由Kennedy和Eberhart在1995年提出的。
粒子群优化算法论文

粒子群优化算法论文粒子群优化算法摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。
粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。
它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。
由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。
PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。
在一个PSO系统中,多元化解决方案共存且立即返回。
每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。
一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。
追踪记忆最佳位置,遇到构建微粒的经验。
因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。
PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。
关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individualsin a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , thepresent condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the above unconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem sear ch space looking for the optimal position to land. A particle, as time passes through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance explorationand exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved,and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。
粒子群优化算法及其应用

粒子群优化算法及其应用一、粒子群优化算法是啥呢?哎呀,粒子群优化算法啊,就像是一群超级聪明的小粒子在找宝藏呢!它是一种超级有趣的算法哦。
你想啊,就好比有好多小粒子在一个大大的空间里跑来跑去,每个粒子都带着自己的小目标,它们一边跑一边互相交流经验,就像小伙伴们一起做游戏一样。
这些粒子都有自己的位置和速度,它们根据自己的经验和小伙伴们的经验来调整自己的路线,想要找到那个最好的地方,也就是最优解啦。
二、粒子群优化算法的原理这个算法的原理其实也不是特别复杂啦。
每个粒子都有自己的当前位置,这就好比是它现在走到哪儿了,还有速度,就像是它跑得多快。
然后呢,每个粒子还有自己记忆中的最好位置,这个位置就是它到目前为止找到的最棒的地方啦。
同时呢,整个粒子群也有一个大家公认的最好位置。
粒子们就根据自己的速度、自己的最好位置还有群体的最好位置来调整自己下一次要跑的方向和速度呢。
就像是大家在一个迷宫里找出口,每个人都有自己觉得最可能是出口的地方,同时也知道大家普遍认为最可能是出口的地方,然后根据这些信息来决定下一步往哪儿走。
三、粒子群优化算法的应用1. 在工程优化中的应用这可太有用啦。
比如说在设计一个机械零件的时候,要考虑很多因素,像重量、强度、成本之类的。
粒子群优化算法就可以像一个超级助手一样,在众多可能的设计方案里找到那个最优的。
就好像是从一堆形状各异的积木里,找出搭出最稳固又最漂亮的那个组合的方法。
2. 在函数优化中的应用对于那些复杂的函数,想要找到它的最大值或者最小值可不容易。
但是粒子群优化算法就可以大显身手啦。
它能快速地在函数的定义域里穿梭,找到那个让函数值最大或者最小的点,就像在一片大草原上找到最高或者最低的那片草一样神奇。
3. 在神经网络中的应用神经网络有时候就像一个调皮的孩子,参数很多很难调整到最好的状态。
粒子群优化算法就可以来帮忙啦。
它可以调整神经网络的参数,让神经网络学习得更快更好,就像给这个调皮孩子请了一个超级厉害的家教。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机辅助工艺课程作业 学 生:赵 华 琳 学 号: s308070072 时 间:09年6月 粒子群优化算法概述 0.前 言 优化是科学研究、工程技术和经济管理等领域的重要研究工具。它所研究的问题是讨论在众多的方案中寻找最优方案。例如,工程设计中怎样选择设计参数,使设计方案既满足设计要求又能降低成本;资源分配中,怎样分配有限资源,使分配方案既能满足各方面的基本要求,又能获得好的经济效益。在人类活动的各个领域中,诸如此类,不胜枚举。优化这一技术,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性很强的科学。近十余年来,粒子群优化算法作为群体智能算法的一个重要分支得到了广泛深入的研究,在路径规划等许多领域都有应用。本文主要结合现阶段的研究概况对粒子群优化算法进行初步介绍。
1.粒子群优化算法的基本原理 1.1 粒子群优化算法的起源 粒子群优化(PSO)算法是由Kennedy和Eberhart于1995年用计算机模拟鸟群觅食这一简单的社会行为时,受到启发,简化之后而提出的[1][2]。 设想这样一个场景:一群鸟随机的分布在一个区域中,在这个区域里只有一块食物。所有的鸟都不知道食物在哪里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的方法就是追寻自己视野中目前离食物最近的鸟。如果把食物当作最优点,而把鸟离食物的距离当作函数的适应度,那么鸟寻觅食物的过程就可以当作一个函数寻优的过程。鱼群和鸟群的社会行为一直引起科学家的兴趣。他们以特殊的方式移动、同步,不会相互碰撞,整体行为看上去非常优美。生物学家CargiReynolds提出了一个非常有影响的鸟群聚集模型。在他的模拟模型boids中,每一个个体遵循:避免与邻域个体相冲撞、匹配邻域个体的速度、试图飞向感知到的鸟群中心这三条规则形成简单的非集中控制算法驱动鸟群的聚集,在一系列模拟实验中突现出了非常接近现实鸟群聚集行为的现象。该结果显示了在空中回旋的鸟组成轮廓清晰的群体,以及遇到障碍物时鸟群的分裂和再度汇合过程。由此受到启发,经过简化提出了粒子群优化算法。 1.2粒子群优化算法的原理 在粒子群优化算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。优化开始时先初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是整个种群目前找到的最优解。这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。第二个极值是粒子本身所找到的最优解,称为个体极值。这是因为粒子仅仅通过跟踪全局极值或者局部极值来更新位置,不可能总是获得较好的解。这样在优化过程中,粒子在追随全局极值或局部极值的同时追随个体极值则圆满的解决了这个问题。这就是粒子群优化算法的原理。 在算法开始时,随机初始化粒子的位置和速度构成初始种群,初始种群在解空间中为均匀分布。其中第i个粒子在n维解空间的位置和速度可分别表示为Xi=(xi1,xi2,…,xid)和Vi=(vi1,vi2,…,vid),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己的速度和位置。一个极值是粒子本身到目前为止所找到的最优解,这个极值称为个体极值Pbi=(Pbi1,Pbi2,…,Pbid)。另一个极值是该粒子的邻域到目前为止找到的最优解,这个极值称为整个邻域的最优粒子Nbesti=(Nbesti1,Nbesti2,…,Nbestid)。粒子根据如下的式(2-1)和式(2-2)来更新自己的速度和位置: Vi=Vi+c1·rand()·(Pbesti-Xi)+c2·rand()·(Nbesti-Xi) (2-1) Xi= Xi+ Vi (2-2) 式中c1和c2是加速常量,分别调节向全局最好粒子和个体最好粒子方向飞行的最大步长,若太小,则粒子可能远离目标区域,若太大则会导致突然向目标区域飞去,或飞过目标区域。合适的c1,c2可以加快收敛且不易陷入局部最优。rand()是0到1之间的随机数。粒子在每一维飞行的速度不能超过算法设定的最大速度Vmax。设置较大的Vmax可以保证粒子种群的全局搜索能力,Vmax较小则粒子种群优化算法的局部搜索能力加强。 粒子群优化算法是在模拟鸟群觅食时受到启发提出的。提出之后却发现用动物或人的认知来解释算法的原理更加完美。在速度更新公式(2-1)中由3个部分构成。第1个部分是Vi,表示粒子在解空间有按照原有方向和速度进行搜索的趋势,这可以用人在认知事物时总是用固有的习惯来解释。第2个部分是c1·rand()·(Pbesti-Xi),表示粒子在解空间有朝着过去曾碰到的最优解进行搜索的趋势,这可以用人在认知事物时总是用过去的经验来解释。第3部分是c2·rand()·(Nbesti-Xi),表示粒子在解空间有朝着整个邻域过去曾碰到的最优解进行搜索的趋势,这可以用人在认知事物时总可以通过学习其他人的知识,也就是分享别人的经验来解释。因此,粒子群优化算法实际上是借用了人或动物认知事物时的习惯,经验,及学习过程来进行寻优的。粒子在优化过程中的运动轨迹见图1。
图1 粒子群算法优化搜索示意图 1.3粒子群优化算法的优点 粒子群优化算法具有以下主要优点:(1)易于描述;(2)便于实现;(3)要调整的参数很少;(4)使用规模相对较少的群体;(5)收敛需要评估函数的次数少;(6)收敛速度快粒子群优化算法很容易实现,计算代价低,由于其内存和CPU速度要求都很低。而且,它不需要目标函数的梯度信息,只依靠函数值。粒子群优化算法已被证明是解决许多全局优化问题的有效方法。
2.粒子群优化算法的实现 粒子群优化算法具有编程简单,易实现的特点,粒子群优化算法的流程如图2所示。下面给出其实现的具体步骤: 步骤1:初始化。初始搜索点的位置X0i及其速度V0i通常是在允许的范围内随机产生的,每个粒子的Pbest坐标设置为其当前位置,且计算出其相应的个体极值(即个体极值点 的适应度值),而整个邻域的最优粒子就是该粒子邻域中个体极值中最好的,记录该最好值的粒子序号,并将Nbesti设置为该最好粒子的当前位置。 步骤2:评价每一个粒子。计算粒子的适应度值,如果好于该粒子当前的个体极值,则将Pbest设置为该粒子的位置,且更新个体极值。如果在该粒子的邻域内所有粒子的个体极值中最好的好于当前的Nbesti,则将Nbesti设置为该粒子的位置,记录该粒子的序号,且更新Nbesti的函数值。 步骤3:粒子的更新。用式(2-1)和式(2-2)对每一个粒子的速度和位置进行更新。 步骤4:检验是否符合结束条件。如果当前的迭代次数达到了预先设定的最大次数(或达到最小错误要求),则停止迭代,输出最优解,否则转到步骤2。
图2 粒子群算法优化算法流程图 3.粒子群优化算法的两种模式 Kennedy等人在观察鸟群觅食的过程中注意到,通常飞鸟并不一定看到鸟群中其他所有飞鸟的位置和动向,往往只是看到相邻的飞鸟的位置和动向。因此他在研究粒子群算法时,同时开发了两种模式:全局最优(Gbest)和局部最优(Lbest)。 基本粒子群优化算法就是全局最优的具体实现。在全局最优中每个个体被吸引到由种群任何个体发现的最优解。该结构相当于一个完全连接的社会网络;每一个个体能够跟种群中所有其他个体进行比较性能,模仿真正最好的个体。每个粒子的轨迹受粒子群中所有粒子的所有的经验和意识的影响。全局模式有较快的收敛速度,但容易陷入局部极值。 而在局部模式中,粒子总根据它自己的信息和邻域内的最优值信息来调整它的运动轨迹,而不是群体粒子的最优值信息,粒子的轨迹只受自身的认知和邻近的粒子状态的影响,而不是被所有粒子的状态影响。这样,粒子就不是向全局最优值移动,而是向邻域内的最优值移动。而最终的全局最优值从邻域最优值内选出,即邻域最优之中适应值最高的值。在算法中,相邻两邻域内部分粒子重叠,这样两相邻邻域内公共粒子可在两个邻域间交换信息,从而有助于粒子跳出局部最优,达到全局最优。 局部模式本身存在着两种不同的方式。一种方式是由两个粒子空间位置决定“邻居”,它们的远近用粒子间距离来度量;局部最优的另一种方式是编号方法,粒子群中的粒子在搜索之前就被编以不同的号码,形成环状拓扑社会结构。对于第一种方式,在每次迭代之后都需要计算每个粒子与其他粒子间的距离来确定邻居中包括哪些粒子,这导致算法的复杂度增强,算法运行效率降低;而第二种方式由于事先对粒子进行了编号,因而在迭代中粒子的邻域不会改变,这导致在搜索过程中,当前粒子与指定的“邻居”粒子迅速聚集,而整个粒子群就被分成几个小块,表面上看似乎是增大了搜索的范围,实际上则大大降低了收敛速度。局部最优模式收敛速度较慢,但却具有较强的全局搜索能力。例如在环形拓扑中1号与最后一个粒子和2号相邻,2号粒子则与1号、3号相邻,这种定义方式被称为拓扑意义下的邻居。根据社会学家的研究,这两种邻居的概念都是有社会背景的。 全局模式的拓扑结构如图3中的(a)所示,环形局部模式的拓扑结构如图3中的(b)所示。
图3 粒子群算法的两种模型:(a)全局模型;(b)环形局部模型 Suganthan提出带有邻域操作的PSO模型,用每个粒子所定义的当前邻域极值代替粒子群的当前全局极值。在优化的初始阶段,将邻域定义为每个粒子自身,随着迭代次数的增加,将邻域范围逐步扩展到包含所有粒子,则此时的邻域极值即为全局极值。这种模型在一定程度上克服了PSO模型在优化搜索后期,随迭代次数增加搜索结果无明显该进的缺点。
4.粒子群算法的应用 PSO算法的优势在于算法的简洁性,易于实现,没有很多参数需要调整,需要梯度信息。PSO算法是非线性连续优化问题、组合优化问题和混合整数非线性优化问题的有效优化工具。 1.函数优化 第三章粒子群算法原理与收敛性分析大量的问题最终可归结为函数的优化问题,通常这些函数是非常复杂的,主要表现为规模大、维数高、非线性、非凸和不可微等特性,而且有的函数存在大量局部极小。许多传统确定性优化算法收敛速度较快,计算精度高,但对初值敏感,易陷入局部最小。而一些具有全局性的优化算法,如遗传算法、模拟退火算法、进化规划等,受限于各自的机理和单一结构,对于高维复杂函数难以实现高效优化。PSO算法通过改进或结合其它算法,对高维复杂函数可以实现高效优化。 2.神经网络的训练 PSO算法用于神经网络的训练中,主要包含3个方面:连接权重、网络拓扑结构及传递函数、学习算法。每个粒子包含神经网络的所有参数,通过迭代来优化这些参数,从而达到训练的目的。与BP算法相比,使用PSO算法训练神经网络的优点在于不使用梯度信息,可使用一些不可微的传递函数。多数情况下其训练结果优于BP算法,而且训练速度非常快。 3.参数优化 PSO算法己广泛应用于各类连续问题和离散问题的参数优化。例如,在模糊控制器的设计、机器人路径规划、信号处理和模式识别等问题上均取得了不错的效果。 4、组合优化 许多组合优化问题中存在序结构如何表达以及约束条件如何处理等问题,离散二进制版PSO算法不能完全适用。研究者们根据问题的不同,提出了相应问题的粒子表达方式,或通过重新定义算子来解决不同问题。目前,已提出了多种解决TSP、VRP以及车间调度等问题