粒子群优化算法综述
粒子群优化算法介绍

粒子群优化算法介绍
粒子群优化算法(Particle Swarm Optimization,PSO)是一种
基于群体智能的优化方法,其中包含了一组粒子(代表潜在解决方案)在n维空间中进行搜索,通过找到最优解来优化某个问题。
在PSO的
过程中,每个粒子根据自身当前的搜索位置和速度,在解空间中不断
地寻找最优解。
同时,粒子也会通过与周围粒子交换信息来寻找更好
的解。
这种信息交换模拟了鸟群或鱼群中的信息交流行为,因此PSO
算法也被称为群体智能算法。
由于其并行搜索和对局部最优解的较好处理,PSO算法在多个领
域均得到了广泛应用。
其中最常用的应用之一是在神经网络和其他机
器学习算法中用来寻找最优解。
此外,PSO算法在图像处理、数据挖掘、机器人控制、电力系统优化等领域也有着广泛的应用。
PSO算法的核心是描述每个粒子的一组速度和位置值,通常使用
向量来表示。
在PSO的初始化阶段,每个粒子在解空间中随机生成一
个初始位置和速度,并且将其当前位置作为当前最优解。
然后,每个
粒子在每次迭代(即搜索过程中的每一次)中根据当前速度和位置,
以及粒子群体中的最优解和全局最优解,更新其速度和位置。
PSO算法的重点在于如何更新各个粒子的速度向量,以期望他们能够快速、准
确地达到全局最优解。
总之, PSO算法是一种群体智能算法,目的是通过模拟粒子在解
空间中的移动来优化某个问题。
由于其简单、有效且易于实现,因此PSO算法在多个领域得到了广泛应用。
粒子群优化算法综述介绍

粒子群优化算法综述介绍PSO算法的基本原理是通过多个个体(粒子)在解空间里的,通过不断更新个体的位置和速度来寻找最优解。
每个粒子都有自己的位置和速度,并根据个体历史最佳位置和群体历史最佳位置进行更新。
当粒子接近最优解时,根据历史最优位置和当前位置的差异进行调整,从而实现相对于当前位置的。
具体而言,PSO算法可以分为以下几个步骤:1.初始化粒子群:定义粒子的位置和速度以及适应度函数。
2.更新每个粒子的速度和位置:根据粒子的历史最佳位置和群体历史最佳位置,以及加权系数进行更新。
可以使用以下公式计算:v(i+1) = w * v(i) + c1 * rand( * (pbest(i) - x(i)) + c2 * rand( * (gbest - x(i))x(i+1)=x(i)+v(i+1)其中,v(i+1)是第i+1次迭代时粒子的速度,x(i+1)是第i+1次迭代时粒子的位置,w是惯性权重,c1和c2是学习因子,rand(是一个随机数,pbest(i)是粒子个体历史最佳位置,gbest是整个群体历史最佳位置。
3.更新每个粒子的个体历史最佳位置和群体历史最佳位置:根据当前适应度函数值,更新每个粒子的个体历史最佳位置,同时更新群体历史最佳位置。
4.判断终止条件:当达到预设的最大迭代次数或者适应度函数值达到预设的误差范围时,停止迭代,输出结果。
PSO算法的优点在于简单易用、易于实现、不需要求导和梯度信息,并且可以灵活地应用于各种问题。
然而,PSO算法也存在一些缺点,如易于陷入局部最优解、收敛速度较慢等。
为了克服这些限制,研究者们提出了各种改进的粒子群优化算法,如自适应权重粒子群优化算法(Adaptive Weight Particle Swarm Optimization, AWPSO)、混合粒子群优化算法(Hybrid Particle Swarm Optimization, HPSO)等。
这些算法通过引入更多的因素或策略来加快收敛速度、改善性能。
粒子群优化算法概述

粒子群优化算法概述粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,最早由Eberhart和Kennedy于1995年提出。
它模拟了鸟群觅食的行为,并通过不断迭代,使得粒子(鸟)们逐渐找到目标点(食物)。
PSO算法的基本思想是通过模拟鸟群在解空间中的过程来寻找全局最优解。
在算法中,解被称为粒子,可以看作是在解空间中的一点。
每个粒子在解空间中的当前位置被认为是当前的解,并且每个粒子都有一个速度,用于指导粒子下一步的移动方向。
粒子的速度和位置的更新遵循以下规则:1.个体历史最优更新:每个粒子都有一个个体历史最优位置,它记录了粒子在过程中找到的最好解。
如果当前位置的适应度值好于个体历史最优位置的适应度值,则更新个体历史最优位置。
2.全局历史最优更新:整个粒子群有一个全局历史最优位置,即所有粒子中适应度值最好的位置。
如果当前位置的适应度值好于全局历史最优位置的适应度值,则更新全局历史最优位置。
3.速度更新:粒子的速度由个体历史最优位置和全局历史最优位置引导。
速度更新的公式为:V(t+1) = w * V(t) + c1 * r1 * (Pbest - X(t)) + c2 * r2 * (Gbest - X(t))其中,V(t+1)是下一时刻的速度,w是惯性权重,c1和c2是学习因子,r1和r2是随机数,Pbest是个体历史最优位置,Gbest是全局历史最优位置,X(t)是当前位置。
4.位置更新:粒子的位置由当前位置和速度决定。
位置更新的公式为:X(t+1)=X(t)+V(t+1)以上四个步骤不断重复迭代,直到满足停止准则为止,比如达到最大迭代次数或收敛到一个满意的解。
PSO算法具有以下一些特点和优势:1.简单易实现:PSO算法的原理和实现相对简单,不需要对目标函数的导数信息进行求解。
2.全局能力:由于粒子群中的信息共享和协作,PSO算法可以较好地避免陷入局部最优解,有较强的全局能力。
粒子群优化算法综述

粒子群优化算法综述粒子群优化算法的核心思想是模拟粒子通过信息交流来寻找最优解的过程。
每个粒子在空间中通过位置和速度进行与移动。
它们通过个体极值和全局极值的引导来调整自己的速度和位置。
具体而言,每个粒子根据自身经验和信息共享来更新速度和位置,并不断跟随历史经验和全局经验向最优解逼近。
在原始的粒子群优化算法中,粒子的速度和位置更新公式如下:\begin{{align*}}V_{ij}(t+1) &= wV_{ij}(t) + c_1r_1(p_{ij}(t) - x_{ij}(t)) + c_2r_2(g_{ij}(t) - x_{ij}(t)) \\x_{ij}(t+1) &= x_{ij}(t) + V_{ij}(t+1)\end{{align*}}\]其中,$V_{ij}(t)$为粒子$i$在维度$j$上的速度,$x_{ij}(t)$为粒子$i$在维度$j$上的位置,$p_{ij}(t)$为粒子$i$当前的个体最优位置,$g_{ij}(t)$为全局最优位置,$r_1$和$r_2$为[0, 1]的随机数,$c_1$和$c_2$为学习因子。
尽管原始的粒子群优化算法在一些简单问题上表现出良好的性能,但对于复杂问题,其效率和精度有待提升。
因此,研究者进行了一系列的改进与发展。
首先是关于学习因子的改进。
学习因子的选择会影响算法的性能。
经典的学习因子取值策略是将$c_1$和$c_2$设置为常数,但这种策略缺乏自适应性。
改进的学习因子选择方法包括线性递减学习因子、非线性学习因子和自适应学习因子等。
其次是关于收敛性和多样性的改进。
经典的粒子群优化算法容易陷入局部最优解,从而导致的收敛性不佳。
研究者通过引入惯性权重、控制种群多样性、引入随机性等方式改善了算法的收敛性和多样性。
此外,还有一些改进的算法思想在粒子群优化算法中得到了应用。
例如,粒子竞争机制、学习机制和混合策略等。
这些改进方法可以提高粒子群优化算法的效率和精度。
启发式优化算法综述

启发式优化算法综述启发式优化算法 (Heuristic Optimization Algorithms) 是一类通过模拟自然界生物学中的智能行为来解决优化问题的算法。
这些算法通常能够在较短的时间内找到接近最优解的解决方案,尤其适用于复杂的优化问题,如组合优化、连续优化、多目标优化等。
1. 粒子群优化算法 (Particle Swarm Optimization, PSO)粒子群优化算法模拟了鸟群捕食行为中个体之间的信息交流和寻找最佳食物源的过程。
在算法中,每个解被看作是一个“粒子”,通过调整速度和位置以最优解。
粒子之间通过更新自己和邻居的最佳位置来共享信息,并且通过迭代的方式不断收敛到全局最优解。
2. 遗传算法 (Genetic Algorithm, GA)遗传算法模拟了生物进化的过程。
算法通过构建一组候选解,称为“染色体”,其中包含了问题的可能解决方案。
算法使用选择、交叉和变异等操作来生成新的染色体,并根据染色体的适应度评估解的质量。
通过不断迭代,遗传算法可以全局最优解。
3. 蚁群算法 (Ant Colony Optimization, ACO)蚁群算法模拟了蚂蚁寻找食物的行为。
在算法中,每只蚂蚁通过释放信息素来标记其行走路径。
蚂蚁根据信息素浓度决定下一步的行动,并且信息素浓度会根据蚂蚁的选择进行更新。
通过蚂蚁的协作和信息素的反馈,蚁群算法能够出较优解。
4. 模拟退火算法 (Simulated Annealing, SA)模拟退火算法模拟了固体从高温退火到低温的冷却过程。
算法从一个初始解开始,通过随机地变换当前解以生成新的解,并计算新解的目标函数值。
算法根据目标函数值的变化和当前温度来决定是否接受新解。
通过逐渐降低温度的方式,模拟退火算法最终能够收敛到全局最优解。
这些启发式优化算法在不同的问题领域都取得了一定的成功。
它们被广泛运用于机器学习、数据挖掘、智能优化等领域,解决了很多实际问题。
尽管启发式优化算法在大多数情况下能够找到较优解,但并不能保证找到确切的全局最优解。
粒子群优化方法范文

粒子群优化方法范文
具体而言,粒子群优化算法包括以下几个步骤:
1.初始化粒子群:设定种群中粒子的初始位置和初始速度,并为每个粒子随机分配初始解。
2.评估个体适应度:通过适应度函数评估每个粒子的适应度,确定其解的质量。
3.更新粒子速度和位置:根据自身历史最优解和全局历史最优解,调整粒子的速度和位置,并更新粒子自身的最优解。
4.更新全局最优解:根据所有粒子的最优解,更新全局最优解,记录当前到的最佳解。
5.判断终止条件:设定终止条件,例如达到最大迭代次数、适应度值的收敛等,判断是否结束优化。
6.迭代更新:不断重复步骤2至5,直到满足终止条件。
相对于其他优化算法,粒子群优化算法具有以下优点:
1.简单而直观:算法的核心思想易于理解,模拟了生物群体的行为规律。
2.全局能力:粒子群优化算法可以问题的全局最优解,避免陷入局部最优解。
3.并行化和分布式计算:粒子群优化算法的并行化和分布式计算非常容易实现,能够加速求解过程。
然而,粒子群优化算法也存在一些不足之处:
1.对参数的敏感性:算法的性能受到参数设置的影响,不同问题需要不同的参数组合。
2.适应度函数的选取:适应度函数的选择对算法的结果有着重要的影响,需要根据问题的特点进行合理的设计。
3.收敛速度较慢:在寻找复杂问题的最优解时,粒子群优化算法可能需要较长的时间来收敛。
总之,粒子群优化算法是一种有效的全局优化算法,能够在多种问题中找到较优解。
通过合理选择参数和适应度函数,并结合其他优化方法,可以进一步提高算法的性能和收敛速度。
粒子群优化算法精讲

粒子群优化算法精讲粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,源自对鸟群觅食行为的观察与模拟。
它通过模拟鸟群中个体通过合作与信息交流来找到最优解的行为,从而在空间中找到最优解。
本文将详细介绍PSO算法的原理、步骤和应用,并提供多个例子以加深理解。
1.粒子群优化算法原理:PSO算法通过模拟鸟群中个体的行为来进行。
每个个体被称为粒子,其在空间中的位置被表示为一个向量,向量的每个维度表示一个参数。
每个粒子都有一个速度向量,表示其在空间中的移动速度。
粒子的位置和速度会根据个体最优和全局最优进行更新。
2.粒子群优化算法步骤:a.初始化粒子群:随机生成一定数量的粒子,初始化其位置和速度。
b. 更新粒子位置和速度:根据当前位置和速度,计算下一时刻的位置和速度。
速度更新公式为 v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 * rand( * (gbest - x(t)),其中w为惯性权重,c1和c2为加速因子,pbest为个体最优,gbest为全局最优,x(t)为当前位置。
c.更新个体最优和全局最优:对于每个粒子,比较其当前位置的适应度和个体最优,更新个体最优。
比较全体粒子的个体最优,更新全局最优。
d.终止条件判断:判断是否满足终止条件,如达到最大迭代次数或适应度达到阈值。
e.返回结果:返回全局最优位置作为最优解。
3.粒子群优化算法应用:PSO算法广泛应用于函数优化、机器学习、图像处理等领域。
下面列举几个具体的例子:a. 函数优化:PSO算法可以用来求解连续函数的最优解,如Rastrigin函数、Ackley函数等。
通过定义适应度函数,将函数优化问题转化为求解适应度最大化或最小化的问题。
b.神经网络训练:PSO算法可以用来训练神经网络的权重和偏置,从而提高神经网络的性能。
通过定义适应度函数,将神经网络训练问题转化为求解适应度最大化或最小化的问题。
生物信息计算模型优化算法综述

生物信息计算模型优化算法综述随着科技的进步和生物信息学领域的发展,生物信息计算模型在解决生物学问题和推动医学研究上发挥着重要作用。
然而,由于复杂性和高维度的特点,生物信息数据的分析和处理面临着诸多挑战。
为此,研究人员开发了各种优化算法,以提高生物信息计算模型的准确性和效率。
本文将综述目前常用的生物信息计算模型优化算法,包括粒子群算法、遗传算法、蚁群算法以及模拟退火算法。
1. 粒子群算法(Particle Swarm Optimization,PSO)粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群或鱼群的行为特点实现优化目标的搜索过程。
在生物信息计算模型中,粒子群算法可以应用于序列比对、蛋白质折叠、基因定位等问题。
算法通过粒子群的位置和速度来表示解向量的搜寻过程,不断更新粒子的速度和位置,直到找到全局最优解或满足收敛条件。
2. 遗传算法(Genetic Algorithm,GA)遗传算法是一种基于进化理论的优化算法,通过模拟生物进化的过程来寻求最优解。
在生物信息计算模型中,遗传算法可以应用于基因选择、SNP(Single Nucleotide Polymorphisms)挖掘和基因表达分析等问题。
算法通过种群的选择、交叉和变异操作来模拟自然选择的过程,以生成更优解。
遗传算法具有全局搜索能力和并行处理特点,在生物信息学领域中被广泛应用。
3. 蚁群算法(Ant Colony Optimization,ACO)蚁群算法是一种模拟蚂蚁寻找食物的行为特点的优化算法,通过模拟蚂蚁释放信息素和信息素挥发的过程来寻找最优解。
在生物信息计算模型中,蚁群算法可以应用于聚类分析、基因网络分析等问题。
算法通过蚁群在解空间中随机搜索,并根据路径上信息素的浓度选择更优的路径,最终找到全局最优解。
蚁群算法具有自适应性和强鲁棒性,对于高纬度的数据处理具有一定优势。
4. 模拟退火算法(Simulated Annealing,SA)模拟退火算法是一种基于金属退火过程的优化算法,通过模拟固体的退火过程来寻找最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子群优化算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于迭代的优化工具。
系统初始化为一组随机解,通过迭代搜寻最优值。
但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。
详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域2. 背景: 人工生命"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的容1. 研究如何利用计算技术研究生物现象2. 研究如何利用生物技术研究计算问题我们现在关注的是第二部分的容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.3. 算法介绍如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。
在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。
这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。
这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。
在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义rand () 是介于(0,1)之间的随机数. c1, c2 是学习因子. 通常c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax4. 遗传算法和PSO 的比较大多数演化计算技术都是用同样的过程1. 种群随机初始化2. 对种群的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关3. 种群根据适应值进行复制4. 如果终止条件满足的话,就停止,否则转步骤2从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。
两个系统都不是保证一定找到最优解但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。
粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解5. 人工神经网络和PSO人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。
进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。
演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。
不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。
在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。
例如在分类问题中,错误分类的比率可以用来作为适应值演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。
但是缺点在于:在某些问题上性能并不是特别好。
2. 网络权重的编码而且遗传算子的选择有时比较麻烦最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。
研究表明PSO 是一种很有潜力的神经网络算法。
PSO速度比较快而且可以得到比较好的结果。
而且还没有遗传算法碰到的问题这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。
(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris 花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。
我们用3层的神经网络来做分类。
现在有四个输入和三个输出。
所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。
我们也可以训练神经网络中其他的参数。
不过这里我们只是来确定网络权重。
粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。
权重的围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。
对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。
然后记录所有的错误分类的数目作为那个粒子的适应值。
现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。
PSO本身并没有很多的参数需要调整。
所以在实验中只需要调整隐含层的节点数目和权重的围以取得较好的分类效果。
6. PSO的参数设置从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为(x1, x2,x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置粒子数: 一般取20 –40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或200粒子的长度: 这是由优化问题决定, 就是问题解的长度粒子的围: 由优化问题决定,每一维可是设定不同的围Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的围宽度,例如上面的例子里,粒子(x1, x2, x3) x1 属于[-10, 10], 那么Vmax 的大小就是20学习因子: c1 和c2 通常等于2. 不过在文献中也有其他的取值. 但是一般c1 等于c2 并且围在0和4之间中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)7. Online Resources of PSOThe development of PSO is still ongoing. And there are still many unknown areas in PSO research such as the mathematical validation of particle swarm theory.One can find much information from the internet. Following are some information you can get online: lots of information about Particle Swarms and, particularly, Particle Swarm Optimization. lots of Particle Swarm Links./~hux/PSO.shtml lists an updated bibliography of particle swarm optimization and some online paper links.researchindex./ you can search particle swarm related papers and references.2006.7.11 13:20 作者:xiao1jun收藏| 评论:0蚁群算法简介:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。