fe基非晶纳米晶

合集下载

非晶纳米晶软磁材料都有哪些

非晶纳米晶软磁材料都有哪些

如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,其排列方式类似于液体,是混乱的,这就是非晶合金。

非晶纳米晶软磁材料都有哪些?您可以咨询安徽华晶机械有限公司,下面小编为您简单介绍,希望给您带来一定程度上的帮助。

非晶软磁合金材料的种类:1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。

它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T )、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电 变压器可降低铁损60-70%。

铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下),例如配电变压器、中频变压器、大功率电感、电抗器等。

2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。

3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。

4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。

安徽华晶机械有限公司位于安庆长江大桥经济开发区。

是人民解放军第4812工厂全资子公司。

公司经营以机械制造为主,拥有各类专业生产、检验试验设备94台(套),涉及铸造、橡胶制品、压力容器、制造等多个行业,主要从事非晶软磁设备、空压机及气源设备、橡胶件(含特种橡胶件)、餐余垃圾处理设备、铸件、机械加工等产品的研制、生产、经营和服务。

Fe基非晶涂层组织及晶化行为分析

Fe基非晶涂层组织及晶化行为分析

Fe基非晶涂层组织及晶化行为分析左瑶;王善林;龚玉兵【摘要】目的研究非晶涂层在不同喷涂速度下的涂层组织及晶化行为.方法以成分为FeCoCrMoCBY的非晶粉末为喷涂材料,采用超音速火焰喷涂(HVOF)在Q235钢表面制备非晶涂层,通过降低喷涂速度,使得单位面积上涂层得到的热输入量增加,使得涂层发生晶化行为,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描热仪DSC和透射电镜TEM等研究不同喷涂速度对非晶涂层显微组织及晶化行为的影响.结果随喷涂速度降低,未熔颗粒减少,涂层孔隙率逐渐减小,涂层晶化程度增高且更易氧化.采用不同喷涂速度使单位面积内涂层的热输入量不一样,导致涂层发生晶化,涂层在晶化过程中先析出α-Fe,再析出FeO,Fe3C及其他相.结论不同喷涂速度下得到的涂层可以用来分析涂层的晶化行为.对于非晶含量较高的涂层,在界面处也可能会有纳米晶产生.【期刊名称】《精密成形工程》【年(卷),期】2018(010)005【总页数】6页(P113-118)【关键词】超音速火焰喷涂(HVOF);喷涂速度;显微组织;晶化行为【作者】左瑶;王善林;龚玉兵【作者单位】南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌330063;南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063;南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063【正文语种】中文【中图分类】TG174大块金属玻璃(BMG)是亚稳态金属材料,原子呈无序排列,具有独特的性能,如高强度和硬度,优异的耐蚀耐磨性[1—4],这样的特点使得铁基非晶非常适合应用在侵蚀性环境的工业应用中[5]。

目前,有很多方法可以制备非晶涂层,如等离子喷涂[6]、火花等离子烧结[7]、动力喷涂[8],以及超音速火焰喷涂[9—10]。

与其他工艺相比,HVOF制备的Fe基非晶涂层具有更低的孔隙率,更高的非晶含量和更高的硬度,因此超音速火焰喷涂(HVOF)涂层被广泛应用于需要良好耐磨或耐腐蚀性能的工业应用[11—13]。

纳米晶带材简介

纳米晶带材简介

铁基纳米晶合金一、简介:铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为的,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。

微晶直径10-20 nm, 适用频率范围50Hz-100kHz.二、背景介绍:1988年日本的Yoshizawa等人首先发现,在Fe-S-iB非晶合金的基体中加入少量Cu和M(M=Nb,Ta,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构的超细晶粒(D约10nm)软磁合金。

这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。

其典型成份为Fe7315Cu1Nb3Si1315B9,牌号为Finemet。

其后,Suzuki等人又开发出了Fe-M-B(M=Zr,Hf,Ta)系,即Nanoperm系。

到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[2]。

由于Co基和Ni基不易于形成K、Ks同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。

三、铁基纳米晶软磁合金的制备方法纳米晶软磁合金的制备一般采用非晶晶化法。

它是在用快淬法、雾化法、溅射法等制得非晶合金的基础上,对非晶合金在一定的条件下(等温、真空、横向或纵向磁场等)进行退火,得到含有一定颗粒大小和体积分数的纳米晶相。

近年来,也有一些研究者采用高能球磨法制备纳米晶软磁合金。

四、纳米晶软磁合金的结构与性能纳米晶软磁合金的典型成份为Fe7315Cu1Nb3Si1315B9。

随着研究的不断进行,合金化元素几乎遍及整个元素周期表。

从合金的化学成份在合金中的作用看,可以分为4类: (1). 铁磁性元素:Fe、Co、Ni。

由于Fe基合金具有高Bs的优势,且纳米晶合金可以实现K和Ks同时为零,因而使L值很高、损耗很低,价格便宜,成为当今研究开发的中心课题。

纳米晶带材简介

纳米晶带材简介

铁基纳米晶合金一、简介:铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为的,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。

微晶直径 10-20 nm, 适用频率范围 50Hz-100kHz.二、背景介绍:1988年日本的Yoshizawa等人首先发现,在Fe-S-iB非晶合金的基体中加入少量Cu和M(M=Nb,Ta,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构的超细晶粒(D约10nm)软磁合金。

这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。

其典型成份为Fe7315Cu1Nb3Si1315B9,牌号为Finemet。

其后,Suzuki等人又开发出了Fe-M-B(M=Zr,Hf,Ta)系,即Nanoperm系。

到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[2]。

由于Co基和Ni基不易于形成K、Ks同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。

三、铁基纳米晶软磁合金的制备方法纳米晶软磁合金的制备一般采用非晶晶化法。

它是在用快淬法、雾化法、溅射法等制得非晶合金的基础上,对非晶合金在一定的条件下(等温、真空、横向或纵向磁场等)进行退火,得到含有一定颗粒大小和体积分数的纳米晶相。

近年来,也有一些研究者采用高能球磨法制备纳米晶软磁合金。

四、纳米晶软磁合金的结构与性能纳米晶软磁合金的典型成份为Fe7315Cu1Nb3Si1315B9。

随着研究的不断进行,合金化元素几乎遍及整个元素周期表。

从合金的化学成份在合金中的作用看,可以分为4类: (1). 铁磁性元素:Fe、Co、Ni。

由于Fe基合金具有高Bs的优势,且纳米晶合金可以实现K和Ks同时为零,因而使L值很高、损耗很低,价格便宜,成为当今研究开发的中心课题。

非晶、纳米晶软磁合金磁芯介绍

非晶、纳米晶软磁合金磁芯介绍

非晶、纳米晶软磁合金磁芯介绍1、讲授人:朱正吼,非晶、纳米晶软磁合金磁芯介绍,非晶及纳米晶软磁合金,牌号和基本成分铁基非晶合金铁镍基非晶合金铁基纳米晶合金非晶及纳米晶软磁合金磁芯非晶及纳米晶磁芯应用汇总销售---思索,,牌号和基本成分,,铁基非晶合金,组成:80%Fe、20%Si,B 类金属元素性能:1.高饱和磁感应强度〔1.54T〕;2.与硅钢片的损耗比较:磁导率、激磁电流和铁损等都优于硅钢片。

特殊是铁损低〔为取向硅钢片的1/3-1/5〕,代替硅钢做配电变压器可节能60-70%。

应用:广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯,适合于10kHz以2、下频率使用。

,,铁镍基非晶合金,组成:40%Ni、40%Fe及20%类金属元素性能:1.具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。

2.在中、低频率下具有低的铁损。

3.空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。

应用:广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。

,,铁基纳米晶合金,组成:铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金,经快速凝固工艺形成一种非晶态材料。

热处理后获得直径为10-20nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料。

性能:具有优异3、的综合磁性能,高饱和磁感、高初始磁导率、低Hc,高磁感下的高频损耗低,电阻率比坡莫合金高。

经纵向或横向磁场处理,可得到高Br或低Br值。

是目前市场上综合性能最好的材料。

应用:广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电爱护开关、共模电感铁芯。

,,非晶及纳米晶软磁合金磁芯,磁放大器磁芯滤波电感磁芯高频大功率磁芯恒电感磁芯电流互感器磁芯实例1:磁芯在开关电源中使用实例2:非晶磁芯在LED灯具上应用,,磁放大器磁芯,什么是磁放大器性能特点应用范围计算机ATX电源和通讯开关电源,,性能特点,,应用范围4、,磁放大器能使开关电源得到精确的掌握,从而提高了其稳定性。

超音速火焰喷涂 - 副本

超音速火焰喷涂 - 副本

超音速火焰喷涂(HVOF)FeCrSiBMn非晶/纳米晶涂层的长期腐蚀行为秦玉娇,吴玉萍,张建峰,郭文敏,陈晟,陈丽艳河海大学力学与材料学院金属材料与防护研究所摘要:采用超音速火焰(HVOF)喷涂技术制备FeCrSiBMn非晶/纳米晶涂层,涂层厚度为700um,孔隙率为0.65%。

采用动电位极化曲线和电化学阻抗普测试研究FeCrSiBMn涂层和对比材料镀铬层在3.5%溶液中的长期腐蚀行为。

结果表明,与镀铬层相比FeCrSiBMn涂层具有更高的腐蚀电位和更低的腐蚀电流密度。

FeCrSiBMn涂层的孔隙电阻(Rp)和电荷转移电阻(Rct)比镀铬层的高。

此外,在NacL溶液中浸泡28天后,FeCrSiBMn涂层的表面仅观察到微小的孔隙,结果表明FeCrSiBMn涂层相比镀铬涂层具有优异的耐腐蚀性能。

这主要与FeCrSiBMn涂层致密的结构,较低的孔隙率及非晶/纳米晶结构的存在有关。

关键词:超音速火焰喷涂,涂层,Fe基非晶/纳米晶;耐蚀性能引言:使用电镀或热喷涂保护许多工程部件免遭腐蚀的做法非常普遍。

然而,由于预防和控制环境污染的严格要求,寻找其他的表面处理技术来替代电镀也变得越来越重要。

超速火焰喷涂(HVOF)技术具有环境友好性和高效率的优点,是替代电镀铬工艺最具竞争力的热喷涂技术之一。

因此,许多研究者已经采用超音速火焰喷涂技术制备耐磨损或耐腐蚀涂层,其中Fe基非晶/纳米晶涂层由于具有高硬度/强度、优异的抗腐蚀性能及相对较低的制备成本而受到广泛的关注。

BAKARE等人[17]采用超音速火焰喷涂技术制备了Fe43Cr16Mo16C15B10非晶涂层,研究发现在0.5 mol/L H2SO4和3.5 % NacL溶液中,非晶涂层比相同成分的纳米涂层具有更好的耐腐蚀性能。

杨等[18]人与张等人[19]发现,在3.5 %NacL溶液中,Fe48Cr15Mo14C15B6Y2非晶涂层具有良好的耐腐蚀性,并且随着涂层中晶体相含量的增加,涂层的耐蚀性逐渐恶化。

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金(转载)

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金(转载)

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金(转载)硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B 值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

高饱和磁通密度Fe基非晶软磁合金研究进展_陈国钧

高饱和磁通密度Fe基非晶软磁合金研究进展_陈国钧

0.01 0.4
2605HB1 单板试料
0.8
1.2
1.6
2.0
B/T
(c)激磁功率 S
图 3 2605HB1 合金的特性曲线及与现用合金(2605SA1,取向硅钢电磁钢板)的比较[3]
成 分(at%)
表 3 某些 FeSiBC 系合金的成分和性能[4,5]
Bs/T B80/T B80/Bs P1.3/50/W·kg-1 P1.4/50/W·kg-1 P1.5/60/W·kg-1 TC/℃ Tx1/℃ RS△/% ε△ C 偏析层位置/nmC 含量峰值/at%
金 性 能 的 实 验 室 水 平 和 生 产 水 平 (0.025×170mm
带),并与现用合金 2605SA1 和 0.23mm 厚高取向
硅钢加以对比。
表 1 变压器用铁心材料特性比较 (实验室水平,磁性能用单片样品测)[3]
材料
板厚 mm
2605HB1 0.025
Bs
Hc
T A·m-1
1.64 1.5
J Magn Mater Devices Vol 42 No 5
利。总之,我国的非晶纳米晶材料产业也进入了欣 欣向荣的发展时期。无论是国外或国内,该产业市 场年需要量都以二位百分数增长。
本文主要根据外国企业在华申请的专利及相 关文章介绍新型高 Bs(>1.6T)、低损耗非晶合金 的最新研究进展。
2 新材料开发
Fe81.7Si2B16C0.3 1.650
0.85* 024**
0.29**
0.38
359 466
Fe82Si2B14 C2 1.669 1.646 0.986
0.152
0.227
0.34
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fe基非晶纳米晶
非晶纳米晶是一种新型的材料结构,具有非常特殊的物理和化学性质。

它是由纳米晶粒子组成的材料,具有非晶态的结构,因此被称为非晶纳米晶。

它具有许多独特的特点,包括高硬度、优异的力学性能、优良的热稳定性和良好的耐腐蚀性。

非晶纳米晶材料在各个领域都有广泛的应用前景。

非晶纳米晶材料的制备方法有很多种,其中最常用的是物理气相沉积法和溶胶-凝胶法。

物理气相沉积法是利用高温等离子体或激光等能量源将材料原子或分子在基底上沉积,形成纳米晶结构。

溶胶-凝胶法则是通过溶胶和凝胶两个阶段的相互转化,将材料原子或分子逐渐凝聚成纳米晶粒子。

这些制备方法不仅能够控制非晶纳米晶材料的粒子尺寸和形状,还能够控制其晶粒的分布和结构,从而调控材料的性能。

非晶纳米晶材料的特殊性质主要源于其纳米晶结构。

纳米晶结构是指材料晶粒的尺寸在纳米级别范围内,一般为1-100纳米。

在这个尺寸范围内,材料的晶粒数量巨大,表面积也相对较大。

这使得材料具有很高的强度和硬度,同时也增加了材料的塑性和韧性。

此外,纳米晶结构还能够显著改变材料的电子结构和光学性质,使得非晶纳米晶材料具有良好的导电性和光学透明性。

非晶纳米晶材料在材料科学、能源领域和生物医学等领域有着广泛
的应用前景。

在材料科学领域,非晶纳米晶材料可以用于制备高强度、高硬度和高导电性的材料,如高性能合金、纳米线和纳米薄膜等。

在能源领域,非晶纳米晶材料的高导电性和光学透明性使其成为制备高效太阳能电池和光催化剂的理想材料。

在生物医学领域,非晶纳米晶材料的独特性质可以用于制备生物传感器、药物传递系统和生物成像材料等。

然而,非晶纳米晶材料的制备和应用仍面临一些挑战。

首先,由于非晶纳米晶材料的制备过程较为复杂,需要严格控制各种参数,因此制备成本较高。

其次,非晶纳米晶材料在制备过程中易受到杂质和缺陷的影响,这会对材料的性能产生不利影响。

此外,非晶纳米晶材料的长期稳定性和安全性也需要进一步研究和验证。

非晶纳米晶材料是一种具有独特性质和广阔应用前景的新型材料。

它的制备方法多样,可以通过控制制备参数来调控材料的性能。

非晶纳米晶材料在材料科学、能源领域和生物医学等领域有着广泛的应用前景,但仍需进一步研究和发展。

相信随着科技的进步和研究的深入,非晶纳米晶材料必将在各个领域展现出更大的潜力和价值。

相关文档
最新文档