数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))解读

合集下载

c语言计算机编程三种方法求解非线性方程

c语言计算机编程三种方法求解非线性方程

本科专业学年论文题目:非线性方程求解比较姓名:何娟专业:计算机科学技术系班级:08级本科(2)班指导老师:刘晓娜完成日期:2010年11 月21 日题 目:非线性方程求解比较摘 要本文给出了三种求解非线性方程的方法,分别是二分法,牛顿迭代法,割弦法。

二分法巧妙地利用插值得到的点以及有根区间中点这两点处的函数值,缩小隔根区间,以期望得到更快的收敛速度。

牛顿迭代法是非线性方程根的一种常见的数值方法,对于非线性方程的单重零点来说,牛顿迭代法一般具有局部二阶收敛性,但是当所求的根X*是F(X)的M 重根时,M 是大于等于2的整数,此时牛顿迭代法只有一阶收敛性。

弦截法是将牛顿迭代公式中用差商F(k x )-F(1-k x )/ (k x - 1-k x )代替导数'()k F x 。

本文给出了算法改进的具体步骤及算法流程图相关的数值结果也说明了方法的有效性。

关 键 词 : 二分法;牛顿迭代法;割弦法;非线性方程目录第一章绪论- 3 -第二章求解非线性方程的三种常见算法……………………………- 4-2.1 二分法………………………………………………………-4 -2.2 牛顿迭代法……………………………………………………- 5 -2.3 割弦法- 6 -第三章求解非线性方程的三种算法比较- 8 -3.1 二分法求解方法- 8 -3.2 牛顿迭代法求解- 10 -3.3 割弦法求解- 11 -参考文献- 14 -第一章绪论在科技飞速发展的今天,计算机已经成为我们生活中不可缺少的一部分了,在我们生活与生产中扮演越来越重要的角色,而科学计算已经成为科学计算的重要方法之一,其应用范围已渗透到所有科学领域,作为科学与工程计算的数学工具,计算方法已成为高等院校数学与应用数学,信息与计算科学,应用物理学等必修课。

在永恒变化发展的自然界与人类社会中,在研究其内部规律的各个科学领域中,更深刻、更精确地描述其内部规律的数学工具之一,就是非线性方程。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法
迭代法是一种通过迭代逼近的方式来求解方程的方法。

它的基本思想是通过不断逼近
方程的解,使得逼近值与真实解的差距越来越小,最终得到方程的解。

下面介绍三种新的迭代法:牛顿迭代法,弦截法和切线法。

一、牛顿迭代法
牛顿迭代法是一种通过利用函数导数的信息来逼近方程解的方法。

它的迭代公式为:
x_(n+1) = x_n - f(x_n)/f'(x_n)
x_n表示第n次迭代得到的逼近解,f(x_n)表示在x_n处的函数值,f'(x_n)表示在x_n 处的导数值。

牛顿迭代法的优点是收敛速度快,通常是二阶收敛,但其缺点是需要计算函数的导数,如果导数计算困难或者导数为零的情况下,该方法可能不适用。

二、弦截法
三、切线法
切线法的优点和牛顿迭代法类似,但其缺点是需要计算函数的导数,且对于初始逼近
解的选择比较敏感。

牛顿迭代法、弦截法和切线法都是三种常用的非线性方程迭代法。

它们各自有着优点
和缺点,适用的领域和条件也不尽相同。

在实际问题中,需要根据具体情况选择合适的方
法来求解非线性方程。

非线性方程求解

非线性方程求解

⾮线性⽅程求解基于MATLAB的⾮线性⽅程的五种解法探讨摘要:本⽂利⽤matlab软件对⾮线性⽅程解法中的⼆分法、简单迭代法、⽜顿法、割线法以及Steffensen法的数值分析⽅法的算法原理及实现⽅法进⾏了探讨。

对f x x x=+-()2ln2的零点问题,分别运⽤以上五种不同的⽅法进⾏数值实验,⽐较⼏种解法的优缺点并进⾏初步分析评价。

关键词:⼆分法、简单迭代法、⽜顿法、割线法、Steffensen法1、引⾔在很多实际问题中,经常需要求⾮线性⽅程f(x) =0的根。

⽅程f(x) =0的根叫做函数f(x)的零点。

由连续函数的特性知:若f(x)在闭区间[a,b ]上连续,且()()0f a f b<.则f(x) =0在开区间(a,b)内⾄少有⼀个实根。

这时称[a,b]为⽅程f(x) =0的根的存在区间。

本⽂主要对⾮线性⽅程的数值解法进⾏分析,并介绍了⾮线性⽅程数值解法的五种⽅法。

并设=+-.f x x x()2ln2f x在[1,2]上的图形,如图1:. 显然,函数在[1,2]之间有⼀个零点。

⾸先画出()2、计算机配置操作系统Windows 7 旗舰版内存2GB处理器AMD 4核 A6-3400M APU 1.4GHz图.13、⼆分法⼆分法的基本思想是将⽅程根的区间平分为两个⼩区间,把有根的⼩区间再平分为两个更⼩的区间,进⼀步考察根在哪个更⼩的区间内。

如此继续下去,直到求出满⾜精度要求的近似值。

设函数()f x 在区间[a,b ]上连续,且f(a)·f(b) <0,则[a,b ]是⽅程f(x) =0的根的存在区间,设其内有⼀实根,记为x*。

取区间[a,b ]的中点()2k a b x +=并计算1()f x ,则必有下列三种情况之⼀成⽴: (1) 1()f x =0,x1就是⽅程的根x*;(2)()f a .1()f x <0,⽅程的根x*位于区间[a, 1x ]之中,此时令111,a a b x ==; (3)1()f x .()f b <0,⽅程的根x*位于区间[1x ,b ]之中,此时令11a x =,1b b =。

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程的根,精确至8位有效数字。

比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。

[数值算法]求根算法系列小结

[数值算法]求根算法系列小结
fprintf(outputFile,"%-12d%-12f\r\n",iteratorNum,xk);
iteratorNum++;
}
fprintf(outputFile,"root finded at x=%f\r\n",xk);
return xk;
}
测试4:牛顿求根法的应用:
被求方程为:f(x)=x(x+1)^2-1=0
0.437500 0.453125
0.437500 0.445313
0.441406 0.445313
0.443359 0.445313
0.444336 0.445313
0.444824 0.445313
total iterator time is:11
a root of equation is :0.444824
当然,在这之前,首先是要准确的估计出根所处的区间,否则,是找不到根的。
Type binaryPationMethod(Type x1,Type x2,Type e,Type (*arguF)(Type),FILE* outputFile)
{
Type x;/*The return answer*/
Type mid;
{
Type xk;
int iteratorNum=0;
assertF(fiArguF!=NULL,"in NewTownMethod,arguF is NULL\n");
assertF(fiArguFDao!=NULL,"in NewTownMethod,fiArguFDao is NULL\n");
{
xk=(xk*(*fiArguF)((*fiArguF)(xk))-(*fiArguF)(xk)*(*fiArguF)(xk))/((*fiArguF)((*fiArguF)(xk))-2*(*fiArguF)(xk)+xk);

牛顿迭代、割线法、二分法算法实验报告

牛顿迭代、割线法、二分法算法实验报告

三、牛顿法计算实验
3.1 牛顿法算法思想和简要描述 我们有一个函数 f,其零点由数值计算得出,设 r 是 f 的一个零点,x 是 r 的一个近似。若 f 的二阶导数存在并且连续,则有泰勒定理,得 0=f(r)=f(x+h)=f(x)+hf ’(x)+o(h^2) 其中 h=r-x。若 h 较小(即 x 在 r 附近) ,则有理由略去 o(h^2)项并且 在余下方程中求 h。即得到 h=-f(x)/f ’(x)。故 x-f(x)/f ’(x)是比 x 更好的一个 近似。牛顿法从 r 的一个估计 x0 开始,得到更加准确的近似值 xn。递推 式定义为: f(xn ) xn+1 = xn − ′ f (xn ) 3.2 MATLAB 运行牛顿法程序 牛顿法求解 f=x^3-9 的根 参数设置:x0 设置为函数 f 零点的近似。 n 设置为牛顿法 for 语句迭代次数。 alpha 设置为最后结果 f(x)的精度。 delta 设置为最后结果 x 的精度。 (若 alpha,delta 都符合设置的计算精度时,结束迭代并得 出计算结果,否则一直迭代到 n 次) 设置初始值:设置参数 x0 分别为为 3;迭代次数 n 为 50 次;alpha 和 delta 都设置为 0.001。 列出计算结果: >> newton(f,50,3,0.001,0.001) n x f(x) delta alpha 1.0000 2.3333 3.7037 0.6667 3.7037 2.0000 2.1066 0.3483 0.2268 0.3483 3.0000 2.0804 0.0043 0.0262 0.0043 Elapsed time is 0.166680 seconds.
4.0000 2.0625 2.1250 5.0000 2.0625 2.0938 6.0000 2.0781 2.0938 7.0000 2.0781 2.0859 8.0000 2.0781 2.0820 9.0000 2.0801 2.0820 10.0000 2.0801 2.0811 11.0000 2.0801 2.0806 12.0000 2.0801 2.0803 13.0000 2.0801 2.0802 14.0000 2.0801 2.0801 elapsed time is 0.316426 seconds.

数值分析3.1.二分法、迭代法及收敛性

数值分析3.1.二分法、迭代法及收敛性

上述令p→∞, 及limxk+p=x* (p→∞)即得(2.6)式. 证毕. 注:误差估计式(2.5)原则上确定迭代次数,但它由 于含有信息 L 而不便于实际应用. 而误差估计式(2.6) 是实用的,只要相邻两次计算结果的偏差足够小即 可保证近似值 xk 具有足够精度.
注: 对定理1和定理2中的条件2º 可以改为导数,即 在使用时如果(x)∈C[a, b]且对任意x∈[a, b]有
显然f(x)∈C[a, b],且满足f(a)=(a)-a>0, f(b)=(b)-b<0, 由连续函数性质可知存在 x*∈(a, b) 使 f(x*)=0,即 x*=(x*),x*即为(x)的不动点. 再证不动点的唯一性. 设x1*, x2*∈[a, b]都是(x) 的不动点,则由(2.4)得
可以如此反复迭代计算
xk+1=(xk) 到的序列{xk}有极限 (k=0,1,2,). (2.2)
(x)称为迭代函数. 如果对任何x0∈[a, b],由(2.2)得
lim xk x .
k
则称迭代方程(2.2)收敛. 且x*=(x*)为(x)的不动点, 故称(2.2)为不动点迭代法.
例1 用二分法求方程 f(x)=x3-x-1=0在(1, 1.5)的实根, 要求误差不超过0.005.
解 由题设条件,即:
|x*-xn|≤0.005 则要
1 2
n 1
(b a)
1 2
n 1
(1.5 1)
1 2
n 2
0.005
2 由此解得 n 1 5.6,取 n=6, 按二分法计算过程见 lg 2
L2 xk 1 xk 2 Lk x1 x0 .
于是对任意正整数 p 有

牛顿迭代法与其他迭代法

牛顿迭代法与其他迭代法

牛顿迭代法与其他迭代法迭代法是一种常见的数值计算方法,用于求解方程的近似解。

其中,牛顿迭代法是一种较为常用且有效的迭代法。

本文将对牛顿迭代法与其他迭代法进行比较和探讨。

一、牛顿迭代法的原理和步骤牛顿迭代法是由英国物理学家牛顿在17世纪提出的一种寻找方程近似解的方法。

其基本思想是通过不断逼近函数的零点,找到方程的根。

牛顿迭代法的步骤如下:1.选择一个初始值x0;2.根据当前的近似解x0,利用函数的导数计算切线的斜率;3.通过切线与x轴的交点得到下一个近似解x1;4.重复步骤2和步骤3,直到满足精度要求为止。

牛顿迭代法的优点在于它通常具有较快的收敛速度,尤其在接近根的地方。

然而,牛顿迭代法可能会收敛到局部极值点,而不是全局极值点,这是其存在的一个不足之处。

二、牛顿迭代法与其他迭代法的比较除了牛顿迭代法,还存在着其他常用的迭代法,比如二分法和割线法。

下面将对牛顿迭代法与这两种方法进行比较。

1. 牛顿迭代法 vs. 二分法二分法是一种简单而广泛使用的迭代法。

它通过不断将搜索区间二分来逐步逼近方程的根。

二分法的步骤如下:- 选择一个初始的搜索区间[a, b],使得方程的根位于[a, b]之间;- 计算搜索区间的中点c=(a+b)/2;- 比较函数在c处的取值与零的关系来确定下一步搜索的区间,即更新[a, b]为[a, c]或者[c, b];- 重复上述步骤,直到满足精度要求。

与牛顿迭代法相比,二分法的收敛速度较慢。

然而,二分法具有简单易懂、稳定可靠的特点,在某些情况下仍然被广泛使用。

2. 牛顿迭代法 vs. 割线法割线法是一种类似于牛顿迭代法的迭代法,它通过直线的割线逼近方程的根。

割线法的步骤如下:- 选择两个初始值x0和x1,使得x0和x1分别位于方程的根的两侧;- 计算通过(x0, f(x0))和(x1, f(x1))两点的直线的方程;- 求解该直线与x轴的交点得到下一个近似解x2;- 重复上述步骤,直到满足精度要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。
2.2 简单迭代法
思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。
步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。
2.计算x1,x1=f(x0).
3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。
k
xk
f(xk)
1
-1.01393
0.0415678
2
-1.0002
0.000607777
3
-0.999999
-3.11969e-006
4
-1
2.11001e-010
表4-2
区间[1.5,1.8]结果x=1.69028
k
xk
f(xk)
1
1.64403
-0.676455
2
1.68071
-0.151106
14
1.69029
1
1.725
8
1.69043
15
1.69029
2
1.6875
9
1.69014
16
1.69029
3
1.70625
10
1.69028
17
1.69028
4
1.69687
11
1.69036
18
1.69028
5
1.69219
12
1.69032
6
1.68984
13
1.6903
表1-3
简单
初值-1.5
12
-1.50489
18
-1.50505
表2-1
初值-1
k
x
1
-1
2
-1
表2-2
初值1.6结果x=1.69028
k
xk
k
xk
k
xk
1
1.6
8
1.68862
15
1.69023
2
1.65669
9
1.68927
16
1.69025
3
1.66987
10
1.68967
17
1.69027
4
1.6779
11
1.68991
2.计算x2=x1-f(x1)(x1-x0)/f(x1)-f(x0);
3.判断f(x2)是否满足精度要求,若没有则按照上述步骤继续迭代,否则输出x2.x2即为方程的近似解。

测试结果
函数图像
函数Y=x5-3x3+x-1
二分法
[-1.6,-1.3]
k
xk
k
xk
k
xk
0
-1.45
5
-1.50156
10
-1.50493
cout<<x0<<endl;
doublex1=fitera(x0);
while(fabs(x1-x0)>precision){
x0=x1;
x1=fitera(x0);//没有到达精度要求继续迭代
cout<<x1<<endl;
}
returnx1;//返回最终结果
}
//===============牛顿迭代法==================
x1=newtonitera(x0);//继续迭代
cout<<x1<<endl;
}
returnx1;//返回最终结果
}
//==================双点弦法迭代======================
//构造弦截法的迭代公式
doubletwopointchord_f(doublex0,doublex1){
3
1.69126
0.0157988
4
1.69027
-0.000313515
5
1.69028
-6.3006e-007
表4-3
从测试结果可以看出二分法和简单迭代法的收敛速度远大于牛顿迭代和弦截法的收敛速度。二分法和简单迭代法的公式易于构造和计算,牛顿迭代法虽然收敛高,但要求导数,计算的复杂度高!双点弦法随稍慢于牛顿跌代法,可以用差商代替牛顿迭代法中的导数,降低了计算的复杂度!
rn[m]=i*foot-8;
m++;
}
}
}
//=====================二分法==========================
doubleDichotomy(doublea,doubleb){
doublemid=0;
inti=0;
while(fabs(b-a)>precision){
//计算函数的一阶导数fderivatives(double x)
doublefderivatives(doublex){
return5*pow(x,4)-9*(x,2)+1;
}
//构造牛顿迭代公式newtonitera(double x)
doublenewtonitera(doublex){
if(fderivatives(x)==0)return-1;//若导数为0则停止迭代
result=Dichotomy(rn[i],rn[i]+foot); //将区间端点带入公式
cout<<"求得近似解为"<<result<<endl;
}
cout<<"------------------------迭代法----------------------"<<endl;
for(i =0;i<3;i++){
附录:源程序清单
#include<iostream>
#include<math.h>
usingnamespacestd;
doublefoot=0.3;//定义寻根步长
inta=-8,b=8;
double*rn=newdouble[5];//解的区间
double*r=newdouble[5];//方程近似解
cout<<"f(x3)"<<f(x3)<<endl;//输出x3的函数值
x0=x1;
x1=x3;
x3=twopointchord_f(x0,x1);//没有到达精度要求继续迭代
// cout<<x3<<endl;
}
cout<<f(x3)<<endl;
returnx3;//返回最终结果
}
//测试
voidmain(){
double result=0;
cout<<"有根区间为["<<rn[i]<<" "<<rn[i]+foot<<"]"<<endl;
double x0 =r[i]; //取得初值
result=itera(x0); //带入公式
cout<<"求得近似解为"<<result<<endl;
//构造迭代公式
doublefitera(doublex){
doubleresult=0;
doublexx=3*pow(x,3)-x+1;
if(xx<=0){
xx=-xx;
returnpow(xx,1.0/5.0)*(-1);}
else
returnpow(xx,1.0/5.0);
}
//简单迭代
doubleitera(doublex0){
k
xk
f(xk)
1
-1.5
0.03125
5
-1.50667
0.0784566
2
-1.66149
0.376502
6
-1.505
-0.010079
3
-1.47175
-1.56322
7
-1.50507
0.000440988
4
-1.492
0.186801
8
-1.50507
2.30387e-006
表4-1
区间[-1.2,-0.9]结果x=-1
mid=(a+b)/2;
if(f(a)*f(mid)<=0)b=mid;//判断与端点函数值得符号
elsea=mid;
cout<<mid<<endl;
}
r[x_count++]=mid;
returnmid;//返回最终结果
}
//================简单迭代法=========================
表3-1
初值-1结果x=-1.50507
k
x
1
-1
2
-1
表3-2
初值1.6结果x=1.69028
k
xk
k
xk
1
1.6
5
1.69024
2
1.68602
6
1.69027
3
1.68893
7
1.69028
4
1.68985
8
1.69028
表3-3
双点
区间[-1.6,-1.3]结果x=-1.50507
k
xk
f(xk)
相关文档
最新文档